[摘要]目的研究微小RNA-29a(miR-29a)對1-甲基-4-苯基吡啶離子(MPP+)誘導(dǎo)的PC12細(xì)胞氧化應(yīng)激和凋亡的影響以及作用機(jī)制。方法不同濃度MPP+(0、100、300、500 μmol/L)誘導(dǎo)PC12細(xì)胞24 h,熒光定量PCR(qPCR)檢測miR-29a的表達(dá)量,噻唑藍(lán)比色法(MTT)檢測細(xì)胞活力。PC12細(xì)胞分別采用0和500 μmol/L MPP+干預(yù)并轉(zhuǎn)染anti-miR-29a或?qū)φ召|(zhì)粒,采用流式細(xì)胞術(shù)檢測細(xì)胞的凋亡率。觀察細(xì)胞活性氧(ROS)水平。TargetScan軟件預(yù)測、雙熒光素酶報告基因驗(yàn)證miR-29a與重組人轉(zhuǎn)化生長因子誘導(dǎo)因子同源框2(TGIF2)的靶向關(guān)系。結(jié)果隨著MPP+濃度的增加miR-29a表達(dá)量隨之增加(F=590.067,Plt;0.05),而細(xì)胞活力則隨之降低(F=153.561,Plt;0.05)。下調(diào)miR-29a表達(dá)可抑制PC12細(xì)胞凋亡(F=301.044,Plt;0.05),降低ROS水平(F=254.120,Plt;0.05)。TGIF2是miR-29a下游靶基因。結(jié)論miR-29a可能通過調(diào)控TGIF2抑制MPP+誘導(dǎo)的PC12細(xì)胞氧化應(yīng)激和凋亡。
[關(guān)鍵詞]帕金森病;微RNAs;PC12細(xì)胞;細(xì)胞凋亡;TGFB引導(dǎo)因子2
[中圖分類號]R742.5;R342.2[文獻(xiàn)標(biāo)志碼]A[文章編號]2096-5532(2021)01-0100-05
[ABSTRACT]ObjectiveTo investigate the effect and mechanism of action of microRNA-29a (miR-29a) on 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis of PC12 cells. MethodsPC12 cells were induced by different concentrations of MPP+ (0,100,300, and 500 μmol/L) for 24 hours, and then quantitative real-time PCR was used to measure the expression of miR-29a and MTT assay was used to measure cell viability. PC12 cells were treated with MPP+ (0 and 500 μmol/L) and transfected with anti-miR-29a or control plasmids, and flow cytometry was used to measure the apoptosis rate of the cells. The level of reactive oxygen species (ROS) in cells was observed. TargetScan software was used to predict and dual-luciferase reporter genes were used to verify the targeting relationship between miR-29a and recombinant human TGFB-induced factor homeobox 2 (TGIF2). ResultsThe expression level of miR-29a increased with the increase in the concentration of MPP+ (F=590.067,Plt;0.05), while cell viability decreased with the increase in the concentration of MPP+ (F=153.561,Plt;0.05). Downregulation of miR-29a expression inhibited the apoptosis of PC12 cells (F=301.044,Plt;0.05) and reduced the level of ROS (F=254.120,Plt;0.05). TGIF2 was a downstream target gene of miR-29a. ConclusionmiR-29a may inhibit MPP+-induced oxidative stress and apoptosis of PC12 cells by regulating TGIF2.
[KEY WORDS]Parkinson disease; microRNAs; PC12 cells; apoptosis; TGFB-induced factor 2
帕金森?。≒D)是一種多發(fā)于中老年的慢性神經(jīng)退行性疾病[1]。研究表明,PD的病理進(jìn)展與細(xì)胞氧化應(yīng)激[2]、凋亡率增加[3]、線粒體功能障礙[4]等緊密相關(guān)。微小RNA(microRNA,miRNA)是一類長度為18~25 nt的短鏈小RNA,目前已被證實(shí)在人類多種疾病包括PD的發(fā)生發(fā)展中發(fā)揮重要的調(diào)控作用[5-7]。研究表明,miR-29a在PD病人血漿中表達(dá)量明顯減少[8-10],表明miR-29a可能參與PD的發(fā)生發(fā)展和惡化過程。然而,miR-29a在PD中的作用及其具體的作用機(jī)制尚不明確。因此,本文通過1-甲基-4-苯基吡啶離子(MPP+)誘導(dǎo)PC12細(xì)胞構(gòu)建PD細(xì)胞模型,觀察miR-29a對細(xì)胞中活性氧(ROS)以及凋亡率的影響,為闡明PD發(fā)病的病理機(jī)制提供理論基礎(chǔ)。
1材料與方法
1.1實(shí)驗(yàn)材料
PC12細(xì)胞由北納生物公司提供,胎牛血清、DMEM培養(yǎng)基購自美國Gibco公司;MPP+、2′,7′-二氯二氫熒光素二乙酸酯(DCFH-DA)和噻唑藍(lán)比色法(MTT)試劑購自美國Sigma公司;Trizol試劑、PCR逆轉(zhuǎn)錄試劑盒、熒光定量PCR(qPCR)試劑盒、熒光素酶試劑盒購自上海吉瑪制藥技術(shù)有限公司;細(xì)胞凋亡檢測試劑盒購自美國BD公司;Lipofectamine 2000購自美國Life Technologies公司;對照質(zhì)粒、anti-miR-29a質(zhì)粒(5′-UAACCGAUUUCAGAUGGUGCUA-3′)均購自廣州銳博生物科技公司。7500熒光定量 PCR 儀購自美國ABI公司,熒光顯微鏡購自日本OLYMBUS公司。
1.2實(shí)驗(yàn)方法
1.2.1細(xì)胞培養(yǎng)方法以及模型構(gòu)建將PC12細(xì)胞培養(yǎng)在含體積分?jǐn)?shù)0.10胎牛血清和青霉素-鏈霉素的DMEM培養(yǎng)基中,培養(yǎng)條件設(shè)為體積分?jǐn)?shù)0.05 CO2、37 ℃,待細(xì)胞生長達(dá)到90%融合時加入胰蛋白酶按1∶3傳代。取對數(shù)期的PC12細(xì)胞以5×105個接種到6孔板中,過夜分別培養(yǎng),加入終濃度為0、100、300、500 μmol/L的MPP+,放置在37 ℃培養(yǎng)箱繼續(xù)培養(yǎng)24 h。
1.2.2qPCR實(shí)驗(yàn)收集PC12細(xì)胞,采用Trizol試劑提取細(xì)胞總RNA,根據(jù)逆轉(zhuǎn)錄試劑盒說明書操作,合成cDNA。以cDNA為模板,由上海生工生物技術(shù)公司設(shè)計(jì)、合成miR-29a和U6引物(見表1),進(jìn)行qPCR擴(kuò)增實(shí)驗(yàn)。以U6作為參照。反應(yīng)條件:95 ℃、8 min;95 ℃、20 s,60 ℃、30 s,35個循環(huán)。使用2-ΔΔCt法計(jì)算miR-29a 的相對表達(dá)量。
1.2.3MTT實(shí)驗(yàn)分別向不同濃度MPP+溶液孵育24 h后的PC12細(xì)胞中添加100 μL MTT溶液(500 mg/L),37 ℃孵育4 h,除去MTT溶液,再加入150 μL二甲基亞砜,反應(yīng)10 min,使用酶標(biāo)儀測定490 nm波長處吸光度值(A),計(jì)算各組PC12細(xì)胞的存活率,細(xì)胞存活率(%)=(實(shí)驗(yàn)組A-空白組A)/(對照組A-空白組A)×100%。
1.2.4細(xì)胞的轉(zhuǎn)染選取對數(shù)期PC12細(xì)胞,根據(jù)前期實(shí)驗(yàn)結(jié)果隨機(jī)分為4組:0 μmol/L MPP++anti-NC組(A組)、0 μmol/L MPP++anti-miR-29a組(B組)、500 μmol/L MPP++anti-NC組(C組)、500 μmol/L MPP++anti-miR-29a組(D組)。A組、B組PC12細(xì)胞中加入0 μmol/L的 MPP+孵育24 h,并在Lipofectamine 2000介導(dǎo)下分別轉(zhuǎn)染對照質(zhì)粒和anti-miR-29a質(zhì)粒。C組、D組PC12細(xì)胞中分別加入500 μmol/L 的MPP+孵育24 h后,再分別轉(zhuǎn)染入對照質(zhì)粒和anti-miR-29a質(zhì)粒。繼續(xù)培養(yǎng)48 h。
1.2.5細(xì)胞ROS的檢測收集各組PC12細(xì)胞接種至24孔板中,每孔加入10 μmol/L 的DCFH-DA,37 ℃孵育30 min。熒光顯微鏡下隨機(jī)選取5個視野分析平均綠色熒光強(qiáng)度。
1.2.6流式細(xì)胞術(shù)實(shí)驗(yàn)收集細(xì)胞,用PBS沖洗3次,調(diào)整細(xì)胞密度至1×109/L。根據(jù)細(xì)胞凋亡試劑盒說明書,在室溫下每孔分別加入膜聯(lián)蛋白 V-FITC和碘化丙啶各5 μL,混合均勻,孵育15 min。采用流式細(xì)胞儀檢測凋亡率。
1.2.7雙熒光素酶報告基因?qū)嶒?yàn)用TargetScan(http://www.targetscan.org/vert_71/)軟件預(yù)測miR-29a與重組人轉(zhuǎn)化生長因子誘導(dǎo)因子同源框2(TGIF2)基因的靶向關(guān)系,熒光素酶進(jìn)一步驗(yàn)證。野生型(TGIF2-wt)熒光素酶報告載體(含有與miR-29a結(jié)合位點(diǎn))以及突變位型(TGIF2-mut)熒光素酶報告載體均購買自廣州銳博生物科技公司。將TGIF2-wt和TGIF2-mut分別與對照質(zhì)粒以及anti-miR-29a質(zhì)粒共轉(zhuǎn)染入PC12細(xì)胞,37 ℃培養(yǎng)48 h,采用熒光素酶試劑盒測定PC12細(xì)胞相對熒光素酶活性。
1.3統(tǒng)計(jì)學(xué)分析
采用SPSS 20.0統(tǒng)計(jì)學(xué)軟件進(jìn)行數(shù)據(jù)處理,計(jì)量資料數(shù)據(jù)以±s表示,兩組間比較采用t檢驗(yàn);多組均數(shù)間比較采用單因素方差分析,組間兩兩比較使用SNK-q檢驗(yàn)。以Plt;0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1不同濃度MPP+對PC12細(xì)胞miR-29a表達(dá)量及細(xì)胞活力的影響與0 μmol/L相比較,100、300、500 μmol/L 的MPP+誘導(dǎo)PC12細(xì)胞中miR-29a的表達(dá)量顯著上升,差異具有統(tǒng)計(jì)學(xué)意義(F=590.067,Plt;0.05),PC12細(xì)胞存活率明顯降低,差異具有統(tǒng)計(jì)學(xué)意義(F=153.561,Plt;0.05)。見表2。
2.2轉(zhuǎn)染anti-miR-29a質(zhì)粒對細(xì)胞miR-29a表達(dá)量的影響
與A組相比,B組細(xì)胞中miR-29a的表達(dá)量明顯降低,C組、D組細(xì)胞中miR-29a的表達(dá)量明顯增加,差異具有統(tǒng)計(jì)學(xué)意義(F=574.765,q=8.106~45.723, Plt;0.05);與C組相比,D組PC12細(xì)胞中miR-29a的表達(dá)量明顯降低,差異具有統(tǒng)計(jì)學(xué)意義(q=40.457,Plt;0.05)。見表3。
2.3下調(diào)miR-29a對細(xì)胞ROS、凋亡的影響
與A組相比較,B組PC12細(xì)胞中ROS水平、細(xì)胞凋亡率無顯著差異, C組、D組PC12細(xì)胞中ROS水平、凋亡率明顯增加(F=254.120、301.044,q=7.076~36.233,Plt;0.05);與C組相比較,D組ROS的水平、凋亡率顯著降低,差異均具有顯著性(q=13.629、26.247, Plt;0.05)。見圖1和表3。
2.4miR-29a靶基因的預(yù)測和驗(yàn)證
TGIF2基因3′端非翻譯區(qū)域與miR-29a靶向結(jié)合;與anti-NC與TGIF2-wt共轉(zhuǎn)染相比,anti-miR-29a與TGIF2-wt共轉(zhuǎn)染提高PC12細(xì)胞熒光素酶相對活性(t=21.266,Plt;0.05);但anti-miR-29a與TGIF2-mut共轉(zhuǎn)染對PC12細(xì)胞熒光素酶相對活性無明顯影響。見圖2和表4。
3討論
PD是一種運(yùn)動障礙性疾病,隨著年齡的增加患病風(fēng)險增加,嚴(yán)重影響老年人的身體健康。研究表明,細(xì)胞凋亡在PD發(fā)生、惡化過程中具有重要作用[11-12]。研究證實(shí),miRNA參與神經(jīng)退行性疾病的發(fā)生發(fā)展,影響神經(jīng)細(xì)胞的分化、凋亡等,從而影響病人的病理進(jìn)程[13]。miRNA在PD病人中的表達(dá)量顯著異常,表明miRNA可能在PD的病理演進(jìn)過程中發(fā)揮重要的作用[14-16]。研究表明,miR-29a表達(dá)量異常在人類多種疾病中發(fā)揮重要作用,如結(jié)直腸癌、胰腺癌、胃癌、子宮內(nèi)膜癌等[17-20]。邱峰等[21]通過μParaflo微流體芯片技術(shù)發(fā)現(xiàn),miR-29a在PD病人表達(dá)量明顯上調(diào)。韓凱等[5]的研究也進(jìn)一步證實(shí),miR-29a在PD病人外周血清中表達(dá)量較對照組明顯增加,可作為PD臨床診斷的潛在新血清標(biāo)志物。但miR-29a在PD發(fā)生發(fā)展過程中的具體作用尚不清楚。
目前,采用MPP+誘導(dǎo)PC12細(xì)胞構(gòu)建PD細(xì)胞模型是國內(nèi)外公認(rèn)的研究模型[22-23]。本文研究結(jié)果顯示,miR-29a表達(dá)量隨著MPP+濃度的增加逐漸升高,表明miR-29a可能參與PD的發(fā)生發(fā)展過程。MPP+濃度越高,miR-29a的表達(dá)量越高,其中濃度為500 μmol/L的MPP+誘導(dǎo)PC12細(xì)胞的存活率為(45.674±3.152)%,因此選擇500 μmol/L的MPP+作為后續(xù)實(shí)驗(yàn)干預(yù)濃度。此外,本實(shí)驗(yàn)結(jié)果還顯示,轉(zhuǎn)染anti-miR-29a質(zhì)??擅黠@降低PC12細(xì)胞中miR-29a的表達(dá)量,表明轉(zhuǎn)染成功,可用于后續(xù)實(shí)驗(yàn)。本文進(jìn)一步研究顯示,抑制miR-29a的表達(dá)量可降低PC12細(xì)胞中ROS水平以及凋亡率,表明抑制miR-29a表達(dá)可能通過影響細(xì)胞的氧化應(yīng)激水平和凋亡率,從而參與PD的病理進(jìn)展。
miRNA主要通過靶向阻礙下游靶基因的轉(zhuǎn)錄或翻譯,調(diào)控細(xì)胞的生物學(xué)特性,從而抑制或誘導(dǎo)疾病的病理進(jìn)程[24]。TGIF2蛋白是三胺酸環(huán)延伸(TALE)蛋白家族成員之一,參與多種腫瘤如膠質(zhì)瘤、前列腺癌、胃癌等的發(fā)生發(fā)展過程,對細(xì)胞的增殖、凋亡具有重要的調(diào)控作用[25-28]。TGIF2對膠質(zhì)瘤和膠質(zhì)瘤干細(xì)胞同樣具有調(diào)控作用[29-33]。此外,TGIF2能夠參與神經(jīng)干細(xì)胞的調(diào)控,在調(diào)節(jié)神經(jīng)系統(tǒng)發(fā)育中扮演重要角色。因此,推測TGIF2對神經(jīng)細(xì)胞PC12的凋亡可能存在一定的調(diào)控作用[34-36]。在本實(shí)驗(yàn)中,在線預(yù)測顯示miR-29a與TGIF2存在靶向結(jié)合位點(diǎn),表明TGIF2可能是miR-29a的下游靶基因。雙熒光素酶進(jìn)一步驗(yàn)證表明,下調(diào)miR-29a與野生型TGIF2熒光素酶報告載體共轉(zhuǎn)染可顯著增加PC12細(xì)胞的熒光素酶活性,而與突變型TGIF2熒光素酶報告載體共轉(zhuǎn)染對PC12細(xì)胞熒光素酶活性無顯著影響,證實(shí)TGIF2是miR-29a的下游靶基因,表明miR-29a可能通過靶向TGIF2抑制MPP+誘導(dǎo)的PC12細(xì)胞凋亡和氧化應(yīng)激反應(yīng),從而阻礙PD的進(jìn)一步惡化。
綜上所述,miR-29a在MPP+誘導(dǎo)的PC12細(xì)胞中表達(dá)量增加,且具有一定的濃度依賴性;下調(diào)miR-29a可能通過靶向TGIF2抑制MPP+誘導(dǎo)的PC12細(xì)胞凋亡,阻礙其氧化應(yīng)激反應(yīng),這為PD基因靶向治療提供新的方向。但本實(shí)驗(yàn)僅在細(xì)胞水平進(jìn)行了相關(guān)研究,且本實(shí)驗(yàn)未涉及干擾TGIF2進(jìn)行驗(yàn)證,本研究尚顯不足,后續(xù)實(shí)驗(yàn)將對此進(jìn)行補(bǔ)充。此外未來會進(jìn)一步通過構(gòu)建動物模型等深入探究miR-29a在PD發(fā)生發(fā)展中的作用及機(jī)制。
[參考文獻(xiàn)]
[1]SARRAFCHI A, BAHMANI M, SHIRZAD H A. Oxidative stress and Parkinson’s disease: new hopes in treatment with herbal antioxidants[J]." Current Pharmaceutical Design, 2016,22(2):238-246.
[2]YE Y, ZHU Z. MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim[J]." Brain Pathology, 2016,26(2):167-176.
[3]EXNER N, LUTZ A K, HAASS C A. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological Consequences[J]." EMBO Journal, 2012,31(14):3038-3062.
[4]PILETI K, KUNEJ T. MicroRNA epigenetic signatures in human disease[J]." Archives of Toxicology, 2016,90(10):2405-2419.
[5]邱峰,吳越,曹輝,等. 帕金森病異常表達(dá)microRNAs的篩選及microRNA-1976作用機(jī)制的初步研究[J]." 臨床神經(jīng)病學(xué)雜志, 2017,30(3):171-174.
[6]BAN E, KWON T H, KIM A. Delivery of therapeutic miRNA using polymer-based formulation[J]." Drug Deliv Transl Res, 2019,9(6):1043-1056.
[7]SAMEC M, LISKOVA A, KUBATKA P, et al. The role of dietary phytochemicals in the carcinogenesis via the modulation of miRNA expression[J]." J Cancer Res Clin Oncol, 2019,145(7):1665-1679.
[8]BAI X, TANG Y, YU M, et al. Downregulation of blood se-rum microRNA 29 family in patients with Parkinson’s disease[J]." Sci Rep, 2017,7(1):5411.
[9]BARBAGALLO C, MOSTILE G, BAGLIERI G, et al. Specific signatures of serum miRNAs as potential biomarkers to discriminate clinically similar neurodegenerative and vascular-related diseases[J]." Cell Mol Neurobiol, 2020,40(4):531-546.
[10]OZDILEK B, DEMIRCAN B. Serum microRNA expression levels in Turkish patients with Parkinson’s disease[J]." Int J Neurosci, 2020, https://doi.org/10.1080/00207454.2020. 1784165.
[11]HUANG Q, ZHU X, XU M. Silencing of TRIM10 alleviates apoptosis in cellular model of Parkinson’s disease[J]." Biochem Biophys Res Commun, 2019,518(3):451-458.
[12]NAOI M, MARUYAMA W, SHAMOTO-NAGAI M. Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson’s disease[J]." J Neural Transm (Vienna), 2020,127(2):131-147.
[13]JUZWIK C A, S DRAKE S, ZHANG Y, et al. microRNA dysregulation in neurodegenerative diseases: a systematic review[J]." Prog Neurobiol, 2019,182:101664.
[14]GOH S Y, CHAO Y X, DHEEN S T, et al. Role of microRNAs in Parkinson’s disease[J]." Int J Mol Sci, 2019,20(22):5649.
[15]ANGELOPOULOU E, PAUDEL Y N, PIPERI C. miR-124 and Parkinson’s disease: a biomarker with therapeutic potential[J]." Pharmacol Res, 2019,150:104515.
[16]PATIL K S, BASAK I, DALEN I, et al. Combinatory microRNA serum signatures as classifiers of Parkinson’s disease[J]." Parkinsonism Relat Disord, 2019,64:202-210.
[17]WANG A, DENG S, CHEN X, et al. miR-29a-5p/STAT3 positive feedback loop regulates TETs in colitis-associated colorectal cancer[J]." Inflamm Bowel Dis, 2020,26(4):524-533.
[18]DEY S, KWON J J, LIU S, et al. miR-29a is repressed by MYC in pancreatic cancer and its restoration drives tumor-suppressive effects via downregulation of LOXL2[J]." Mol Cancer Res, 2020,18(2):311-323.
[19]WANG L, SONG W. Reduced miR-29a-3p expression is linked to the cell proliferation and cell migration in gastric cancer[J]." World Journal of Surgical Oncology, 2015,13(1):1-7.
[20]SUI D, YOU D. MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2[J]." Cell Cycle, 2018,17(10):1268-1278.
[21]韓凱. 血清miR-103a、miR-30b、miR-29a相對表達(dá)量對帕金森病的診斷效能[J]." 山東醫(yī)藥, 2017,57(11):72-74.
[22]ZHOU F, JU J, FANG Y, et al. Salidroside protected against MPP+-induced Parkinson’s disease in PC12 cells by inhibiting inflammation, oxidative stress and cell apoptosis[J]." Biotech-nol Appl Biochem, 2019,66(2):247-253.
[23]ZENG R, LUO DX, LI H P, et al. MicroRNA-135b alleviates MPP+-mediated Parkinson’s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis[J]." J Clin Neurosci, 2019,65:125-133.
[24]ANGIUS A, UVA P, PIRA G, et al. Integrated analysis of miRNA and mRNA endorses a twenty miRNAs signature for colorectal carcinoma[J]." Int J Mol Sci, 2019,20(16):4067.
[25]VINCHURE O S, SHARMA V, TABASUM S, et al. Polycomb complex mediated epigenetic reprogramming alters TGF-β signaling via a novel EZH2/miR-490/TGIF2 axis thereby inducing migration and EMT potential in glioblastomas[J]." Int J Cancer, 2019,145(5):1254-1269.
[26]SHIJUN T, LINHUI W. MiR-181a promotes epithelial to mesenchymal transition of prostate cancer cells by targeting TGIF2[J]." European Review for Medical and Pharmacological Sciences, 2017,21(21):4835-4843.
[27]HU Yang, PU Qingha, CUI Bin, et al. MicroRNA-34a inhi-bits tumor invasion and metastasis in gastric cancer by targeting Tgif2[J]." International Journal of Clinical and Experimental Pathology, 2015,8(8):8921-8928.
[28]XU W, XUE R, XIA R, et al. Sevoflurane impedes the progression of glioma through modulating the circular RNA has_circ_0012129/miR-761/TGIF2 axis[J]." Eur Rev Med Pharmacol Sci, 2020,24(10):5534-5548.
[29]DIAO Y, JIN B, HUANG L, et al. MiR-129-5p inhibits glioma cell progression in vitro and in vivo by targeting TGIF2[J]." J Cell Mol Med. 2018,22(4):2357-2367.
[30]SONG C P, CONG J K, WANG M Z." MicroRNA-129-5p represses the growth and aggressiveness of oral squamous cell carcinoma via suppressing HMGB[J]." Kaohsiung J Med Sci, 2020,36(8):1-11.
[31]YAN L, SUN K, LIU Y, et al. Mir-129-5p influences the progression of gastric cancer cells through interacting with spock1[J]." Tumour Biol, 2017,39:1010428317706916.
[32]ZHANG P, LI J, SONG Y, et al. Mir-129-5p inhibits prolife-ration and invasion of chondrosarcoma cells by regulating sox4/wnt/beta-catenin signaling pathway[J]." Cell Physiol Biochem, 2017,42:242-253.
[33]SHEN N, HUANG X, LI J. Upregulation of mir-129-5p affects laryngeal cancer cell proliferation, invasiveness, and migration by affecting stat3 expression[J]." Tumour Biol, 2016,37:1789-1796.
[34]KURIBAYASHI H, TSUHAKO A, KIKUCHI M, et al. Role of transcription factor Tgif2 in photoreceptor differentiation in the mouse retina[J]." Exp Eye Res, 2016,152:34-42.
[35]LUCY C, LAUREN H, AMANIA S, et al. Assessing the role of the T-box transcription factor Eomes in B cell differentiation during either Th1 or Th2 cell-biased responses[J]." PLoS ONE, 2018:e0208343.
[36]WEN Lei, WEN Yuechun, KE Genjie, et al. TRPV4 regulates migration and tube formation of human retinal capillary endothelial cells[J]." BMC Ophthalmology, 2018,18(1):38-43.
(本文編輯 于國藝)