[摘要]目的基于自噬相關(guān)基因(ATGs)構(gòu)建肝細(xì)胞癌病人預(yù)后風(fēng)險(xiǎn)模型。方法TCGA數(shù)據(jù)庫(kù)下載374例肝細(xì)胞癌及50例正常肝組織的轉(zhuǎn)錄組數(shù)據(jù)和臨床信息,首先篩選出差異表達(dá)基因(DEGs),然后從中篩選出差異表達(dá)的ATGs(DEATGs),最終利用單因素Cox回歸分析、LASSO回歸分析以及多因素Cox回歸分析構(gòu)建預(yù)后風(fēng)險(xiǎn)模型,并應(yīng)用ROC曲線評(píng)估模型對(duì)于肝細(xì)胞癌病人預(yù)后的預(yù)測(cè)能力。結(jié)果肝細(xì)胞癌組織與正常肝組織篩選得到12 471個(gè)DEGs,其中包含62個(gè)DEATGs。單因素Cox回歸分析得到40個(gè)預(yù)后相關(guān)DEATGs,LASSO回歸分析以及多因素Cox回歸分析得到7個(gè)風(fēng)險(xiǎn)自噬基因(RAB7A、FOS、ATG9A、HSPA8、PRKN、TUSC1和GAPDH)用于構(gòu)建預(yù)后風(fēng)險(xiǎn)模型。Kaplan-Meier分析顯示,高風(fēng)險(xiǎn)組病人的總體生存期顯著低于低風(fēng)險(xiǎn)組(χ2=36.972,Plt;0.05)。多因素Cox回歸分析表明,預(yù)后風(fēng)險(xiǎn)模型可以作為一個(gè)獨(dú)立預(yù)后因素(HR=2.574,Plt;0.01)。結(jié)論基于ATGs構(gòu)建的預(yù)后風(fēng)險(xiǎn)模型是一個(gè)獨(dú)立的預(yù)后因素,可有效預(yù)測(cè)肝細(xì)胞癌病人的預(yù)后。
[關(guān)鍵詞]癌,肝細(xì)胞;自噬;基因;預(yù)后;計(jì)算生物學(xué)
[中圖分類(lèi)號(hào)]R730.7[文獻(xiàn)標(biāo)志碼]A[文章編號(hào)]2096-5532(2021)01-0001-07
[ABSTRACT]ObjectiveTo establish a prognostic risk model for patients with hepatocellular carcinoma (HCC) based on autophagy-related genes (ATGs). MethodsThe transcriptome data and clinical information of 374 HCC samples and 50 normal liver tissue samples were downloaded from TCGA database. Firstly, differentially expressed genes (DEGs) were screened out, then differentially expressed ATGs (DEATGs) were screened out, and finally, the univariate Cox regression analysis, the LASSO regression analysis, and the multivariate Cox regression analysis were used to establish a prognostic risk model and the receiver ope-rating characteristic curve was used to evaluate the value of this model in predicting the prognosis of HCC patients. ResultsA total of 12 471 DEGs were screened out from HCC tissue and normal liver tissue, including 62 DEATGs. The univariate Cox regression analysis obtained 40 DEATGs associated with prognosis, and the LASSO regression analysis and the multivariate Cox regression analysis obtained 7 risk autophagy genes (RAB7A, FOS, ATG9A, HSPA8, PRKN, TUSC1, and GAPDH) which were used to establish the prognostic risk model. The Kaplan-Meier analysis showed that the patients in the high-risk group had a significantly lower overall survival than those in the low-risk group (χ2=36.972,Plt;0.05). The multivariate Cox regression analysis showed that the prognostic risk model could be used as an independent prognostic factor (HR=2.574,Plt;0.01). ConclusionThe risk prognostic model based on ATGs is an independent prognostic factor and can effectively predict the prognosis of HCC patients.
[KEY WORDS]carcinoma, hepatocellular; autophagy; genes; prognosis; computational biology
肝細(xì)胞癌(HCC)是癌癥死亡的主要原因,其發(fā)病率逐年遞增[1]。HCC的治療主要包括手術(shù)切除、分子靶向治療和肝移植等[2]。然而,由于其具有惡性程度高以及術(shù)后易復(fù)發(fā)等特點(diǎn),許多國(guó)家HCC的發(fā)病率和死亡率還在持續(xù)上升[3]。盡管多項(xiàng)研究提出了包括病人的基本特征(如年齡和性別)和腫瘤相關(guān)因素(如腫瘤分級(jí))等在內(nèi)的預(yù)后因素,可用于預(yù)測(cè)HCC病人的生存狀態(tài)[4-5],但是仍然缺乏有效的預(yù)后因素。自噬是一種高度保守的溶酶體降解途徑[6],由一系列高度協(xié)同的信號(hào)通路調(diào)控,發(fā)生在所有細(xì)胞的基礎(chǔ)水平,在維持細(xì)胞內(nèi)環(huán)境穩(wěn)定方面起著重要作用[7-8]。研究結(jié)果顯示,自噬在多種疾病如癌癥、心血管和神經(jīng)系統(tǒng)疾病等病理過(guò)程中起關(guān)鍵作用[9]。自噬參與調(diào)控HCC的進(jìn)程[10-11]。癌癥基因組圖譜(TCGA)計(jì)劃是通過(guò)大規(guī)模測(cè)序的基因組分析技術(shù)來(lái)繪制人類(lèi)腫瘤的基因組圖譜[12],其中包含33種癌癥[13-14]。本研究基于TCGA公共數(shù)據(jù)庫(kù)中HCC轉(zhuǎn)錄組數(shù)據(jù)和臨床信息進(jìn)行分析,構(gòu)建預(yù)后風(fēng)險(xiǎn)模型并將其應(yīng)用于HCC的預(yù)后預(yù)測(cè)?,F(xiàn)將結(jié)果報(bào)告如下。
1資料和方法
1.1數(shù)據(jù)資料收集及處理
研究涉及的數(shù)據(jù)資源下載于TCGA(https://portal.gdc.cancer.gov/),其中包括所有HCC病人RNA-seq數(shù)據(jù)及相關(guān)的臨床數(shù)據(jù)。從人類(lèi)自噬數(shù)據(jù)庫(kù)(HADb,http://www.autophagy.lu/)下載232個(gè)自噬相關(guān)基因(ATGs)。根據(jù)病人的ID號(hào)碼將轉(zhuǎn)錄組數(shù)據(jù)與病人的臨床信息進(jìn)行匹配,最終從TCGA數(shù)據(jù)庫(kù)中獲得了365例病人完整的生存信息和基因表達(dá)譜數(shù)據(jù)。
1.2差異表達(dá)的ATGs(DEATGs)的鑒定
利用edgeR函數(shù)包對(duì)數(shù)據(jù)進(jìn)行分析,以FDRlt;0.05和|fold change(FC)|gt;1為條件,篩選HCC組織和正常組織樣本中的差異表達(dá)基因(DEGs)以及DEATGs。
1.3預(yù)后風(fēng)險(xiǎn)模型的構(gòu)建
使用Survival函數(shù)包對(duì)DEATGs進(jìn)行單因素Cox回歸分析,以Plt;0.05為條件篩選影響預(yù)后的DEATGs,使用LASSO回歸分析降維,納入多因素Cox回歸分析得到了用于HCC預(yù)后模型的風(fēng)險(xiǎn)ATGs。建立預(yù)后風(fēng)險(xiǎn)模型評(píng)分公式如下:風(fēng)險(xiǎn)評(píng)分=∑nj=1Coefj×Xj,其中Coef為ATGs的多變量回歸分析系數(shù),X為各ATGs的相對(duì)表達(dá)水平。根據(jù)公式為每個(gè)病人生成風(fēng)險(xiǎn)評(píng)分,并以風(fēng)險(xiǎn)評(píng)分中位數(shù)為界值,將病人分為高風(fēng)險(xiǎn)組和低風(fēng)險(xiǎn)組,高風(fēng)險(xiǎn)組提示病人預(yù)后差。采用Kaplan-Meier分析和log-rank檢驗(yàn)評(píng)估兩組病人的總體生存期,并利用ROC曲線及曲線下面積(AUC)評(píng)估該預(yù)后模型的準(zhǔn)確性。
1.4統(tǒng)計(jì)學(xué)方法
使用R3.6.1軟件(https://www.R-project.org/)進(jìn)行統(tǒng)計(jì)學(xué)分析及圖形繪制。采用Cox回歸分析風(fēng)險(xiǎn)比(HR)及其95%可信區(qū)間(CI)評(píng)價(jià)ATGs表達(dá)與預(yù)后的關(guān)聯(lián)。使用Cox回歸分析和LASSO回歸分析降維篩選模型相關(guān)風(fēng)險(xiǎn)ATGs,構(gòu)建多基因預(yù)后風(fēng)險(xiǎn)模型。利用ROC曲線和AUC評(píng)估預(yù)后風(fēng)險(xiǎn)模型的預(yù)測(cè)能力。采用單因素和多因素Cox回歸分析確定具有獨(dú)立預(yù)后價(jià)值的因素。利用Wilcoxon-signedrank檢驗(yàn)和Kruskal檢驗(yàn)分析臨床變量與ATGs的關(guān)系。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.1DEATGs的篩選和富集分析
共篩選出12 471個(gè)DEGs(圖1A),并進(jìn)一步從中篩選出62個(gè)DEATGs(圖1B)。對(duì)DEATGs進(jìn)行Gene Ontology(GO)分析,包括生物過(guò)程(BP)、細(xì)胞成分(CC)和分子功能(MF)。DEATGs在BP組中自噬和利用自噬機(jī)制的過(guò)程等方面顯著富集、CC組中空泡膜和膜區(qū)域等方面顯著富集、MF組中蛋白激酶調(diào)節(jié)活性和激酶調(diào)節(jié)活性等方面顯著富集(圖1C)。此外,KEGG通路分析顯示,DEATGs主要富集于自噬、細(xì)胞凋亡和人乳頭瘤病毒感染等方面(圖1D)。
2.2預(yù)后風(fēng)險(xiǎn)模型風(fēng)險(xiǎn)ATGs的構(gòu)建
對(duì)62個(gè)DEATGs進(jìn)行單因素Cox回歸分析,共有40個(gè)與HCC預(yù)后顯著相關(guān)的ATGs納入后續(xù)的分析。經(jīng)過(guò)LASSO回歸分析降維,再使用多因素Cox回歸分析,最終得到了7個(gè)與HCC預(yù)后相關(guān)的風(fēng)險(xiǎn)ATGs(RAB7A、GAPDH、ATG9A、HSPA8、PRKN、TUSC1和FOS),風(fēng)險(xiǎn)ATGs與HCC預(yù)后的關(guān)聯(lián)見(jiàn)圖2。利用風(fēng)險(xiǎn)評(píng)分函數(shù)構(gòu)建預(yù)后風(fēng)險(xiǎn)模型,風(fēng)險(xiǎn)評(píng)分=(RAB7A表達(dá)量×0.445 444 289)+(FOS表達(dá)量×0.217 687 513)+(ATG9A的表達(dá)量×0.542 642 682)+(HSPA8的表達(dá)量×0.218 555 915)+(PRKN的表達(dá)量×-0.727 657 489)+(TUSC1表達(dá)量×0.337 901 906)+(GAPDH表達(dá)量×0.246 856 663)。
2.3預(yù)后風(fēng)險(xiǎn)模型的評(píng)價(jià)
基于上述風(fēng)險(xiǎn)評(píng)分函數(shù)生成每個(gè)病人的風(fēng)險(xiǎn)評(píng)分,高風(fēng)險(xiǎn)組 182例,低風(fēng)險(xiǎn)組183例。隨著風(fēng)險(xiǎn)評(píng)分的升高,病人的生存期縮短且死亡例數(shù)增加(圖3A)。Kaplan-Meier分析顯示,高風(fēng)險(xiǎn)組病人的總體生存期較低(χ2=36.972,Plt;0.05)。ROC曲線分析顯示,風(fēng)險(xiǎn)評(píng)分模型對(duì)HCC病人1~9年總生存期預(yù)測(cè)的AUC值分別為0.733、0.696、0.726、0.692、0.692、0.669、0.742、0.737和0.729(圖3B、C)。
1期許楊,等. 基于TCGA數(shù)據(jù)庫(kù)的肝細(xì)胞癌自噬相關(guān)基因預(yù)后風(fēng)險(xiǎn)模型的建立3
A為12 471個(gè)DEGs熱圖,N為正常肝組織,T為HCC組織;B為62個(gè)DEATGs熱圖,N為正常肝組織,T為HCC組織;C為DEATGs GO分析;D為DEATGs KEGG分析。
A為L(zhǎng)ASSO回歸模型中采用10折交叉驗(yàn)證方法篩選出的14個(gè)ATGs;B為40個(gè)ATGs在LASSO模型中的回歸系數(shù)圖譜;C為多因素Cox分析篩選出來(lái)的7個(gè)風(fēng)險(xiǎn)ATGs。
2.4ATGs預(yù)后風(fēng)險(xiǎn)模型的獨(dú)立預(yù)后價(jià)值
單因素Cox回歸分析顯示,病人的腫瘤分期(HR=1.865,95%CI=1.456~2.388,Plt;0.05)、腫瘤浸潤(rùn)深度(HR=1.804,95%CI=1.434~2.270,Plt;0.05)、腫瘤遠(yuǎn)處轉(zhuǎn)移(HR=3.850,95%CI=1.207~12.281,Plt;0.05)和風(fēng)險(xiǎn)評(píng)分模型(HR=3.029,95%CI=2.160~4.248,Plt;0.05)為預(yù)后預(yù)測(cè)因素。多因素Cox回歸分析顯示,風(fēng)險(xiǎn)評(píng)分是HCC病人的獨(dú)立預(yù)后因素(HR=2.574,95%CI=1.801~3.677,Plt;0.05)。見(jiàn)表1。
A為HCC高風(fēng)險(xiǎn)組、低風(fēng)險(xiǎn)組生存時(shí)間及7個(gè)風(fēng)險(xiǎn)ATGs表達(dá)分布圖;B為HCC高風(fēng)險(xiǎn)組、低風(fēng)險(xiǎn)組Kaplan-Meier分析;C為應(yīng)用ROC曲線對(duì)預(yù)后風(fēng)險(xiǎn)模型進(jìn)行1~9年生存期的預(yù)測(cè)性能評(píng)價(jià)。
2.5預(yù)后風(fēng)險(xiǎn)模型的臨床應(yīng)用
為了檢驗(yàn)預(yù)后風(fēng)險(xiǎn)模型預(yù)測(cè)HCC進(jìn)展的能力,分析了風(fēng)險(xiǎn)因素(風(fēng)險(xiǎn)評(píng)分和風(fēng)險(xiǎn)基因)與臨床變量(生存狀態(tài)、年齡、性別、病理組織分級(jí)和病理TNM分期)之間的關(guān)系。結(jié)果顯示,隨著RAB7A、TUSC1和風(fēng)險(xiǎn)評(píng)分因素的增加,HCC病人生存狀態(tài)變差(t=-5.265~-2.175,Plt;0.05),腫瘤浸潤(rùn)深度增加(t=-3.613~-2.644,Plt;0.05)(圖4A~F);隨著RAB7A、ATG9A、TUSC1和風(fēng)險(xiǎn)評(píng)分的增加,HCC病人的病理分期增加(t=-3.737~-1.992,Plt;0.05)(圖4H~J)。高風(fēng)險(xiǎn)組病人自噬基因RAB7A、FOS、ATG9A、HSPA8、TUSC1和5GAPDH表達(dá)高于低風(fēng)險(xiǎn)組(t=3.848~7.467,Plt;0.05)(圖4L~Q),PRKN基因表達(dá)低于低風(fēng)險(xiǎn)組(t=-3.741,Plt;0.05)(圖4R)。隨著FOS基因表達(dá)的增加,HCC病人病理組織分級(jí)明顯降低(t=3.542,Plt;0.05)(圖4K)。
3討論
HCC病人術(shù)后高復(fù)發(fā)率和化療藥物耐藥性的產(chǎn)生是肝癌病人病死率高的主要因素。因此,預(yù)測(cè)HCC預(yù)后的可靠分子標(biāo)志物對(duì)于指導(dǎo)病人的預(yù)后具有重要意義。業(yè)已證實(shí),ATGs參與多種腫瘤的進(jìn)展和預(yù)后,例如結(jié)直腸癌、膀胱癌和小細(xì)胞性肺癌等[15-17]。本研究結(jié)果顯示,ATGs與HCC的臨床病理特征和預(yù)后密切相關(guān)。本文通過(guò)對(duì)HCC腫瘤組織和正常組織DEGs表達(dá)的分析,篩選出62個(gè)DEATGs。GO分析顯示,DEATGs在BP組中自噬和利用自噬機(jī)制的過(guò)程等方面顯著富集、CC組中空泡膜和膜區(qū)域等方面顯著富集、MF組中蛋白激酶調(diào)節(jié)活性和激酶調(diào)節(jié)活性等方面顯著富集。KEGG富集分析顯示,DEATGs主要富集在自噬、細(xì)胞凋亡和人乳頭瘤病毒感染等方面。本文應(yīng)用單因素Cox回歸、LASSO回歸分析和多因素Cox回歸分析,確定7個(gè)風(fēng)險(xiǎn)ATGs(RAB7A、GAPDH、ATG9A、HSPA8、PRKN、TUSC1和FOS)構(gòu)建的預(yù)后風(fēng)險(xiǎn)模型;Kaplan-Meier分析顯示,高風(fēng)險(xiǎn)組的生存期明顯低于低風(fēng)險(xiǎn)組。本文還分析了風(fēng)險(xiǎn)評(píng)分模型中的因素與某些臨床特征的關(guān)系,研究結(jié)果顯示模型中的一些因素(如基因RAB7A、FOS、ATG9A、HSPA8、TUSC1和GAPDH表達(dá))的增加與HCC的病情進(jìn)展呈正相關(guān)。提示本文構(gòu)建的模型在預(yù)測(cè)HCC發(fā)展、演化等方面具有較高的臨床適用性,并為ATGs在HCC發(fā)生發(fā)展中的作用機(jī)制研究提供了信息。
FOS是一種核原癌基因,編碼c-Fos,參與細(xì)胞增殖和凋亡的調(diào)控。有研究顯示,HCC組織中c-Fos高表達(dá)[18]。免疫組化研究顯示,HCC腫瘤組織中c-Fos的表達(dá)明顯高于非腫瘤組織[19]。本文研究結(jié)果表明,F(xiàn)OS與HCC病人預(yù)后相關(guān),并隨著病理組織分級(jí)的增高,其表達(dá)量下降,提示FOS在HCC的進(jìn)展中可能發(fā)揮保護(hù)性作用,為進(jìn)一步研究提供了更多的信息。ATG9A是一種跨膜蛋白,可以促進(jìn)自噬體的形成[20],有研究表明ATG9A在HepG2細(xì)胞中高表達(dá)[21],而ATG9A基因的沉默則抑制膠質(zhì)瘤生長(zhǎng)[22]。本文研究結(jié)果顯示,ATG9A與HCC病人預(yù)后相關(guān),并隨著腫瘤分期的增加,其表達(dá)量升高,提示ATG9A是HCC發(fā)生發(fā)展的一個(gè)危險(xiǎn)因素。HSPA8是應(yīng)激蛋白,也是肝癌的早期生物標(biāo)志物,HSPA8高表達(dá)提示HCC復(fù)發(fā)[23]。本文研究結(jié)果顯示,HSPA8在高危組中的表達(dá)高于低危組,提示HSPA8是HCC發(fā)展過(guò)程中的危險(xiǎn)因素。SHIMIZU等[24]研究顯示,TUSC1基因內(nèi)高甲基化病人的疾病特異性生存期明顯短于未發(fā)生基因內(nèi)高甲基化者。本文研究結(jié)果顯示,TUSC1與HCC病人預(yù)后有關(guān),隨著TUSC1表達(dá)的增加,HCC腫瘤分期升高、腫瘤浸潤(rùn)深度增加,該結(jié)果提示TUSC1是HCC進(jìn)程中的一個(gè)危險(xiǎn)因素。另外有研究顯示,GAPDH在HCC病人中表達(dá)上調(diào),GAPDH通過(guò)與3-BrPA或GAPDH shRNA的分子靶點(diǎn)作用阻斷腫瘤的進(jìn)展[25]。本文研究顯示,GAPDH在高危組中表達(dá)高于低危組,多因素Cox回歸分析顯示GAPDH是HCC的危險(xiǎn)因素。XIE等[26]研究發(fā)現(xiàn),RAB7A影響體內(nèi)乳癌細(xì)胞增殖和遷移。PRKN通過(guò)抑制線粒體鐵介導(dǎo)的慢性炎癥和免疫功能障礙,顯著抑制KRAS驅(qū)動(dòng)的胰腺腫瘤的發(fā)生[27]。DUAN等[28]研究發(fā)現(xiàn),PRKN通過(guò)EGFR/AKT/mTOR通路抑制肺癌的生長(zhǎng)和轉(zhuǎn)移。但RAB7A和PRKN在HCC中的作用機(jī)制研究較少。本文研究單因素、多因素Cox回歸分析顯示,RAB7A和PRKN對(duì)于HCC病人的預(yù)后具有一定的預(yù)測(cè)作用,提示RAB7A和PRKN可能是HCC治療的潛在靶點(diǎn),但這一結(jié)論需要大規(guī)模、多中心的基礎(chǔ)實(shí)驗(yàn)以及臨床試驗(yàn)進(jìn)一步驗(yàn)證。
綜上,本研究通過(guò)ATGs表達(dá)譜分析,篩選出了7個(gè)(RAB7A、FOS、ATG9A、HSPA8、PRKN、TUSC1、GAPDH)與HCC病人的預(yù)后顯著相關(guān)的風(fēng)險(xiǎn)ATGs。基于這7個(gè)風(fēng)險(xiǎn)ATGs組成的風(fēng)險(xiǎn)模型能夠很好地識(shí)別預(yù)后不良高風(fēng)險(xiǎn)的HCC病人,并且可以作為一個(gè)獨(dú)立的預(yù)后因素預(yù)測(cè)HCC病人的預(yù)后?;诖私⒌念A(yù)后風(fēng)險(xiǎn)模型對(duì)判斷HCC預(yù)后顯示出較高的準(zhǔn)確率。
[參考文獻(xiàn)]
[1]KULIK L, EL-SERAG H B. Epidemiology and management of hepatocellular carcinoma[J]." Gastroenterology, 2019,156(2):477-491.e1.
[2]EL-SERAG H B, MARRERO J A, RUDOLPH L," et al. Diagnosis and treatment of hepatocellular carcinoma[J]." Gastroenterology, 2008,134(6):1752-1763.
[3]Global Burden of Disease Cancer Collaboration, FITZMAURICE C, AKINYEMIJU T F," et al." Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study[J]." JAMA Oncology, 2018,4(11):1553-1568.
[4]ROAYAIE S, BLUME I N, THUNG S N," et al." A system of classifying microvascular invasion to predict outcome after resection in patients with hepatocellular carcinoma[J]." Gastroenterology, 2009,137(3):850-855.
[5]CUCCHETTI A, VIVARELLI M, PISCAGLIA F," et al." Tumor doubling time predicts recurrence after surgery and describes the histological pattern of hepatocellular carcinoma on cirrhosis[J]." Journal of Hepatology, 2005,43(2):310-316.
[6]BOGA J A, CABALLERO B, POTES Y," et al." Therapeutic potential of melatonin related to its role as an autophagy regulator: a review[J]." Journal of Pineal Research, 2019,66(1):e12534. doi:10.1111/jpi.12534.
[7]TOWERS C G, THORBURN A. Therapeutic targeting of autophagy[J]." EBio Medicine, 2016,14:15-23.
[8]WHITE E. The role for autophagy in cancer[J]." J Clin Investig, 2015,125(1):42-46.
[9]CHENG Y, REN X C, HAIT W N," et al." Therapeutic targeting of autophagy in disease:biology and pharmacology[J]." Pharmacological Reviews, 2013,65(4):1162-1197.
[10]ZHANG K, CHEN J, ZHOU H," et al." PU.1/microRNA-142-3p targets ATG5/ATG16L1 to inactivate autophagy and sensitize hepatocellular carcinoma cells to sorafenib[J]." Cell Death amp; Disease, 2018,9(3):312.
[11]ZHAO Z Z, WU J Y, LIU X D," et al." Insufficient radiofrequency ablation promotes proliferation of residual hepatocellular carcinoma via autophagy[J]." Cancer Letters, 2018,421:73-81.
[12]TOMCZAK K, CZERWISKA P, WIZNEROWICZ M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]." Contemporary Oncology (Poznan,Poland), 2015,19(1A):A68-A77.
[13]DING L, BAILEY M H, PORTA-PARDO E," et al." Perspective on oncogenic processes at the end of the beginning of can-cer genomics[J]." Cell, 2018,173(2):305-320.
[14]SANCHEZ-VEGA F, MINA M, ARMENIA J," et al." Oncogenic signaling pathways in the cancer genome atlas[J]." Cell, 2018,173(2):321-337.
[15]BEDNARCZYK M, MUC-WIERZGO M, WANICZEK D," et al." Autophagy-related gene expression in colorectal cancer patients[J]." Journal of Biological Regulators and Homeostatic Agents, 2017,31(4):923-927.
[16]EISSA S, MATBOLI M, AWAD N," et al." Identification and validation of a novel autophagy gene expression signature for human bladder cancer patients[J]." Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine, 2017,39(4):1010428317698360.
[17]LIU Y, WU L G, AO H J," et al." Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer[J]." Aging, 2019,11(23):11440-11462.
[18]LEE J S, HEO J, LIBBRECHT L," et al." A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells[J]." Nature Medicine, 2006,12(4):410-416.
[19]YUEN M F, WU P C, LAI V C," et al." Expression of c-Myc, c-Fos, and c-Jun in hepatocellular carcinoma[J]." Cancer, 2001,91(1):106-112.
[20]ORSI A, RAZI M, DOOLEY H C," et al." Dynamic and tran-sient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy[J]." Molecular Biology of the Cell, 2012,23(10):1860-1873.
[21]KUNANOPPARAT A, KIMKONG I, PALAGA T," et al." Increased ATG5-ATG12 in hepatitis B virus-associated hepatocellular carcinoma and their role in apoptosis[J]. World Journal of Gastroenterology, 2016,22(37):8361-8374.
[22]ABDUL RAHIM S A, DIRKSE A, OUDIN A," et al." Regulation of hypoxia-induced autophagy in glioblastoma involves ATG9A[J]." British Journal of Cancer, 2017,117(6):813-825.
[23]XIANG X, YOU X M, LI L Q. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression[J]." OncoTargets and Therapy, 2018,11:3013-3023.
[24]SHIMIZU D, KANDA M, NOMOTO S," et al." Identification of intragenic methylation in the TUSC1 gene as a novel prognostic marker of hepatocellular carcinoma[J]." Oncology Reports, 2014,31(3):1305-1313.
[25]GANAPATHY-KANNIAPPAN S, KUNJITHAPATHAM R, TORBENSON M S," et al." Human hepatocellular carcinoma in a mouse model: assessment of tumor response to percutaneous ablation by using glyceraldehyde-3-phosphate dehydrogenase antagonists[J]." Radiology, 2012,262(3):834-845.
[26]XIE J M, YAN Y, LIU F," et al." Knockdown of Rab7a suppresses the proliferation, migration, and xenograft tumor growth of breast cancer cells[J]." Bioscience Reports, 2019,39(2):BSR20180480.
[27]KANG R, XIE Y C, ZEH H J," et al." Mitochondrial quality control mediated by PINK1 and PRKN: links to iron metabolism and tumor immunity[J]." Autophagy, 2019,15(1):172-173.
[28]DUAN H J, LEI Z, XU F," et al." PARK2 suppresses prolife-ration and tumorigenicity in non-small cell lung cancer[J]." Frontiers in Oncology, 2019,9:790.
(本文編輯 黃建鄉(xiāng))