[摘要]目的 探討ErbB2基因沉默介導(dǎo)PI3K/Akt/eNOS信號(hào)通路對(duì)卵巢癌細(xì)胞生物學(xué)特性的影響及機(jī)制。方法 選取對(duì)數(shù)生長(zhǎng)期人卵巢癌細(xì)胞株HO8910細(xì)胞分為5組:空白對(duì)照組(不轉(zhuǎn)染任何序列)、陰性對(duì)照組(轉(zhuǎn)染空載體質(zhì)粒)、siErbB2組(轉(zhuǎn)染siRNA序列)、wortmannin組(轉(zhuǎn)染PI3K/Akt/eNOS信號(hào)通路抑制劑wortmannin)、siErbB2+IGF-1組(轉(zhuǎn)染siRNA序列+PI3K/Akt/eNOS信號(hào)通路激動(dòng)劑IGF-1)。采用實(shí)時(shí)定量逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(qRT-PCR)和Western blot檢測(cè)ErbB2、Akt、PI3K、eNOS、Caspase-3、Bax和Bcl-2的mRNA和蛋白表達(dá)水平,同時(shí)檢測(cè)細(xì)胞增殖、凋亡、遷移和侵襲的變化。結(jié)果 與空白對(duì)照組比較,siErbB2組和wortmannin組卵巢癌細(xì)胞中Akt、PI3K、eNOS和Bcl-2的mRNA和蛋白表達(dá)量顯著下降,而Caspase-3、Bax的mRNA和蛋白表達(dá)量則顯著增加(F=3.58~8.69,P均lt;0.05),細(xì)胞增殖能力、侵襲能力、遷移能力均顯著下降(F=8.84~15.67,P均lt;0.05),細(xì)胞凋亡率上升(F=9.46,Plt;0.05);siErbB2組ErbB2表達(dá)明顯下降(Plt;0.05)。與siErbB2組相比,siErbB2+IGF-1組ErbB2、Akt、PI3K、eNOS和Bcl-2的mRNA和蛋白表達(dá)量顯著下降(P均lt;0.05),Caspase-3、Bax的mRNA和蛋白表達(dá)量顯著增加(P均lt;0.05),細(xì)胞增殖能力、侵襲能力、遷移能力均明顯下降(P均lt;0.05),細(xì)胞凋亡率上升(Plt;0.05)。結(jié)論 ErbB2基因沉默可抑制PI3K/Akt/eNOS信號(hào)通路,從而抑制卵巢癌細(xì)胞增殖,促進(jìn)細(xì)胞凋亡。而PI3K/Akt/eNOS信號(hào)通路激活可逆轉(zhuǎn)ErbB2基因沉默作用,促進(jìn)卵巢癌細(xì)胞增殖并抑制細(xì)胞凋亡。
[關(guān)鍵詞]基因,erbB-2;基因沉默;PI3K/Akt/eNOS信號(hào)通路;卵巢腫瘤;細(xì)胞增殖;細(xì)胞凋亡;細(xì)胞運(yùn)動(dòng);腫瘤侵潤(rùn)
[中圖分類號(hào)]R737.31;R394.3
[文獻(xiàn)標(biāo)志碼]A
[文章編號(hào)]2096-5532(2021)02-0222-06
[ABSTRACT]Objective To investigate the effect of ErbB2 gene silencing on the biological characteristics of ovarian cancer cells by mediating the PI3K/Akt/eNOS signaling pathway and its mechanism.
Methods Human ovarian cancer HO8910 cells in the logarithmic growth phase were divided into blank control group (without transfection of any sequence), negative control group (transfected with empty vector plasmid), siErbB2 group (transfected with siRNA sequence), wortmannin group (transfected with the PI3K/Akt/eNOS signaling pathway inhibitor wortmannin), and siErbB2+IGF-1 group (transfected with siRNA sequence and the PI3K/Akt/eNOS signaling pathway agonist IGF-1). Quantitative reverse transcription-polymerase chain reaction and Western blot were used to measure the mRNA and protein expression levels of ErbB2, Akt, PI3K, eNOS, Caspase-3, Bax, and Bcl-2, and the changes in cell proliferation, apoptosis, migration, and invasion were observed."Results Compared with the blank control group, the siErbB2 group and the wortmannin group had significant reductions in the mRNA and protein expression levels of Akt, PI3K, eNOS, and Bcl-2 and significant increases in the mRNA and protein expression levels of Caspase-3 and Bax in ova-rian cancer cells (F=3.58-8.69,Plt;0.05), as well as significant reductions in cell proliferation, invasion, and migration abilities (F=8.84-15.67, all Plt;0.05) and a significant increase in cell apoptotic rate (F=9.46,Plt;0.05); the siErbB2 group had a significant reduction in the expression of ErbB2 (Plt;0.05). Compared with the siErbB2 group, the siErbB2+IGF-1 group had signi-ficant reductions in the mRNA and protein expression levels of ErbB2, Akt, PI3K, eNOS, and Bcl-2 (all Plt;0.05), significant increases in the mRNA and protein expression of Caspase-3 and Bax (all Plt;0.05), significant reductions in cell proliferation, invasion, and migration abilities (all Plt;0.05), and a significant increase in cell apoptotic rate (Plt;0.05)."Conclusion ErbB2 gene silencingcan inhibit the PI3K/Akt/eNOS signaling pathway, thereby inhibiting the proliferation of ovarian cancer cells and promoting cell apoptosis. The activation of the PI3K/Akt/eNOS signaling pathway can reverse the effect of ErbB2 gene silencing, promote the proli-feration of ovarian cancer cells, and inhibit cell apoptosis.
[KEY WORDS]genes, erbB2; gene silencing; PI3K/Akt/eNOS signaling pathway; ovarian neoplasms; cell proliferation; apoptosis; cell movement; neoplasm invasiveness
卵巢癌作為一種常見女性惡性腫瘤,發(fā)病隱匿,病死率高[1]。而卵巢癌以化療為主的治療手段因耐藥性其效果不容樂(lè)觀[2]。故有必要通過(guò)對(duì)卵巢癌發(fā)病機(jī)制的探究,尋找新型的腫瘤治療方法。ErbB2基因又稱HER2,隸屬于表皮生長(zhǎng)因子受體家族[3]。ErbB2基因常高表達(dá)于腫瘤細(xì)胞中[4],而且PI3K/Akt信號(hào)轉(zhuǎn)導(dǎo)途徑活性較高[5],導(dǎo)致腫瘤細(xì)胞惡性程度極高,提示腫瘤病人轉(zhuǎn)移率高、存活期縮短。而PI3K/Akt/eNOS信號(hào)通路是一種經(jīng)典的抗細(xì)胞凋亡的信號(hào)轉(zhuǎn)導(dǎo)途徑,該通路異常已被證實(shí)在眾多惡性腫瘤的發(fā)生、轉(zhuǎn)移及放化療抵抗中發(fā)揮關(guān)鍵作用[6-7]。PI3K抑制劑可有效抑制癌細(xì)胞增殖從而促進(jìn)細(xì)胞凋亡,進(jìn)而發(fā)揮腫瘤治療作用[8]。然而,目前關(guān)于ErbB2基因是否影響卵巢癌細(xì)胞生物學(xué)特性以及其與PI3K/Akt/eNOS信號(hào)通路相關(guān)的機(jī)制的研究未見報(bào)道。因此,本研究期望通過(guò)基因沉默技術(shù),探究ErbB2基因沉默介導(dǎo)PI3K/Akt/eNOS信號(hào)通路對(duì)卵巢癌細(xì)胞生物學(xué)特性的影響及可能機(jī)制,以期為卵巢癌分子靶向治療提供潛在證據(jù)。
1 材料與方法
1.1 實(shí)驗(yàn)材料
人卵巢癌細(xì)胞株HO8910細(xì)胞(上海生物工程研究所提供);RPMI-1640和DMEM(Gibco公司,美國(guó));RNA提取試劑盒(北京康潤(rùn)誠(chéng)業(yè)生物科技有限公司);紫外線分光光度儀(上海奧析科學(xué)儀器有限公司);ABI PRISM7300系統(tǒng)(ABI,USA);BCA試劑盒(上海翊圣生物科技有限公司);Wes-tern blot蛋白檢測(cè)的兔多克隆一抗和山羊抗兔IgG二抗(Abcam公司,Cambridge,MA,USA);噻唑藍(lán)(MTT)溶液(Sigma公司,USA);自動(dòng)酶標(biāo)讀數(shù)儀(BIO-RAD公司,USA);ECL化學(xué)發(fā)光檢測(cè)試劑盒(Sigma公司,USA);Annexin V-FITC/PI雙標(biāo)染色試劑盒(BestBio公司,上海);流式細(xì)胞儀(BD公司,USA);Matrigel基質(zhì)膠(BD公司,USA);Transwell小室(康寧公司,USA)。
1.2 實(shí)驗(yàn)方法
1.2.1 細(xì)胞培養(yǎng)及其分組處理 人卵巢癌細(xì)胞株HO8910細(xì)胞培養(yǎng)于含有體積分?jǐn)?shù)0.1胎牛血清的RPMI-1640培養(yǎng)基中。以每孔1×105個(gè)細(xì)胞接種于6孔培養(yǎng)板,置于37 ℃、含體積分?jǐn)?shù)0.05 CO2、飽和濕度的孵箱中培養(yǎng)。待細(xì)胞鋪滿培養(yǎng)板80%~90%做傳代培養(yǎng)。棄培養(yǎng)液,PBS洗2次,以2.5 g/L胰蛋白酶消化,用含體積分?jǐn)?shù)0.10胎牛血清的DMEM培養(yǎng)基重懸細(xì)胞,傳代培養(yǎng)。
本實(shí)驗(yàn)siRNA序列設(shè)計(jì)參照Genbank中報(bào)道的ErbB2的mRNA全序列,并由上海生工生物工程技術(shù)服務(wù)有限公司對(duì)所有片段進(jìn)行合成。選取對(duì)數(shù)生長(zhǎng)期的HO8910細(xì)胞分為5組:空白對(duì)照組(A組:不轉(zhuǎn)染任何序列)、陰性對(duì)照組(B組:轉(zhuǎn)染空載體質(zhì)粒)、siErbB2組(C組:轉(zhuǎn)染siRNA序列)、wortmannin組(D組:轉(zhuǎn)染PI3K/Akt/eNOS信號(hào)通路抑制劑wortmannin)、siErbB2+IGF-1組(E組:轉(zhuǎn)染siRNA序列+PI3K/Akt/eNOS信號(hào)通路激動(dòng)劑IGF-1)。
1.2.2 實(shí)時(shí)定量逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(qRT-PCR)檢測(cè) 采用RNA提取試劑盒抽提總RNA。采用紫外線分光光度法檢測(cè)組織和細(xì)胞中RNA的純度及濃度。設(shè)計(jì)ErbB2、Akt、PI3K、eNOS、Caspase-3、Bcl-2、Bax和GAPDH引物,交由TaKaRa公司合成。逆轉(zhuǎn)錄參照TaqMan MicroRNA Assays Reverse Transcription Primer說(shuō)明書進(jìn)行。取反應(yīng)液進(jìn)行熒光定量PCR操作。在ABI PRISM7300系統(tǒng)中進(jìn)行熒光定量PCR。以2-ΔCt表示實(shí)驗(yàn)組與對(duì)照組目的基因表達(dá)的倍比關(guān)系。其計(jì)算公式如下:ΔCt=Ct miRNA-CtU6,分別計(jì)算細(xì)胞中ErbB2、Akt、PI3K、eNOS、Caspase-3、Bax和Bcl-2的mRNA表達(dá)量。
1.2.3 Western blot檢測(cè) 在細(xì)胞中加入蛋白裂解液,4 ℃裂解30 min;4 ℃下12 000 r/min離心20 min。取上清液采用BCA試劑盒測(cè)定每個(gè)樣品的蛋白濃度。本實(shí)驗(yàn)所用一抗為兔多克隆抗體ErbB2、Akt、PI3K、eNOS、Caspase-3、Bax和Bcl-2,二抗為辣根過(guò)氧化物酶標(biāo)記的山羊抗兔IgG。孵育后,室溫下PBS緩沖液洗滌3次,每次5 min。在暗室環(huán)境中用線片曝光,顯影、定影之后觀察結(jié)果。以GAPDH作內(nèi)參照,以目標(biāo)條帶與內(nèi)參照條帶的灰度值之比作為蛋白質(zhì)的相對(duì)表達(dá)水平。
1.2.4 MTT法檢測(cè) 轉(zhuǎn)染24 h后,取對(duì)數(shù)生長(zhǎng)期的細(xì)胞,調(diào)整細(xì)胞密度制備細(xì)胞懸液后,接種到96孔培養(yǎng)板,根據(jù)實(shí)驗(yàn)分組,每組各設(shè)3個(gè)復(fù)孔,置于37 ℃、體積分?jǐn)?shù)0.05 CO2細(xì)胞培養(yǎng)箱中培養(yǎng),分別于培養(yǎng)24、48、72、96 h時(shí)取出培養(yǎng)板,每孔加入5 g/L的MTT溶液20 μL繼續(xù)培養(yǎng)4 h終止培養(yǎng),棄上清液,每孔加150 μL 二甲基亞砜(DMSO),振蕩15 min,使紫結(jié)晶充分溶解。采用自動(dòng)酶標(biāo)讀數(shù)儀于570 nm波長(zhǎng)處測(cè)定各孔吸光度(A)值。最后根據(jù)所采集值,計(jì)算HO8910細(xì)胞的生長(zhǎng)抑制率,繪制生長(zhǎng)曲線。
1.2.5 流式細(xì)胞術(shù)檢測(cè) 細(xì)胞轉(zhuǎn)染48 h后,收集細(xì)胞,以2.5 g/L胰蛋白酶消化,調(diào)整細(xì)胞的密度。檢測(cè)前先離心10 min,棄上清后加入預(yù)冷的體積分?jǐn)?shù)0.70乙醇溶液固定細(xì)胞,4 ℃過(guò)夜。用100目的尼龍網(wǎng)過(guò)濾。離心棄上清,加入100 μL的RNA酶溶液。然后加入10 μL的Annexin V-FITC和5 μL 的PI輕輕混勻,避光室溫反應(yīng)15 min,加入300 μL結(jié)合緩沖液,用流式細(xì)胞儀以激發(fā)波長(zhǎng)488 nm檢測(cè)細(xì)胞凋亡情況。
1.2.6 Transwell實(shí)驗(yàn) 取Transwell小室及實(shí)驗(yàn)所需試劑溫育后,制備細(xì)胞懸液,調(diào)整細(xì)胞密度。首先于24孔板底部加入含體積分?jǐn)?shù)0.10胎牛血清的培養(yǎng)基平衡,取配制細(xì)胞懸液加入Transwell小室,孵育過(guò)夜。培養(yǎng)24 h后,取出Transwell小室,吸干上室固定液,行甲紫染色。輕擦去上室內(nèi)面未穿膜的細(xì)胞,光鏡下計(jì)算細(xì)胞穿膜數(shù)。細(xì)胞侵襲實(shí)驗(yàn)用Matrigel稀釋液模擬細(xì)胞外基質(zhì),觀察細(xì)胞穿透向外浸潤(rùn)的能力。
1.3 統(tǒng)計(jì)學(xué)分析
所有數(shù)據(jù)均采用SPSS 21.0統(tǒng)計(jì)軟件進(jìn)行處理,計(jì)量資料采用x2±s的形式表示,多組間均數(shù)的比較用單因素方差分析,兩兩比較采用Tukey’s方法。多組間A值隨時(shí)間的變化比較采用2因素析因設(shè)計(jì)的方差分析。以Plt;0.05表示差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 轉(zhuǎn)染后各組細(xì)胞相關(guān)信號(hào)通路因子mRNA和蛋白表達(dá)的變化
單因素方差分析顯示,5組間mRAN和蛋白表達(dá)量差異具有統(tǒng)計(jì)學(xué)意義(F=3.58~8.69,P均lt;0.05)。兩兩比較顯示,與空白對(duì)照組比較,siErbB2組和wortmannin組卵巢癌細(xì)胞中的Akt、PI3K、eNOS和Bcl-2的mRNA和蛋白表達(dá)量均顯著下降(P均lt;0.05),Caspase-3和Bax的mRNA和蛋白表達(dá)量顯著增加(P均lt;0.05);siErbB2組ErbB2的mRNA和蛋白表達(dá)量則顯著下降(P均lt;0.05);與siErbB2組相比較,siErbB2+IGF-1組細(xì)胞Akt、PI3K、eNOS和Bcl-2的mRNA和蛋白表達(dá)量顯著上升,Caspase-3和Bax的mRNA和蛋白表達(dá)量則顯著下降(P均lt;0.05)。見圖1。
2.2 轉(zhuǎn)染后各組細(xì)胞的增殖變化
MTT法檢測(cè)結(jié)果的單因素方差分析顯示,5組間的細(xì)胞增殖差異有統(tǒng)計(jì)學(xué)意義(F=8.84,Plt;0.05)。兩兩比較的結(jié)果顯示,與空白對(duì)照組相比較,siErbB2組和wortmannin組細(xì)胞增殖較慢(P均lt;0.05);與siErbB2組比較,siErbB2+IGF-1組細(xì)胞增殖增加(Plt;0.05)。析因設(shè)計(jì)方差分析結(jié)果顯示,F(xiàn)組別=7.31,P=0.002;F時(shí)間=10.49,Plt;0.001;F組別×?xí)r間=5.78,Plt;0.05。見圖2。
2.3 轉(zhuǎn)染后各組細(xì)胞凋亡變化
單因素方差分析顯示,5組的凋亡率差異有統(tǒng)計(jì)學(xué)意義(F=9.46,Plt;0.05)。兩兩比較顯示,與空白對(duì)照組相比較,siErbB2組和wortmannin組細(xì)胞凋亡率均明顯上升(P均lt;0.05);對(duì)比siErbB2組,siErbB2+IGF-1組凋亡率明顯下降(Plt;0.05)。見圖3。
2.4 轉(zhuǎn)染后各組細(xì)胞遷移與侵襲的變化
轉(zhuǎn)染后各組細(xì)胞的遷移結(jié)果單因素方差分析顯示,5組的遷移能力差異有統(tǒng)計(jì)學(xué)意義(F=12.57,Plt;0.05)。兩兩比較顯示,與陰性對(duì)照組相比較,siErbB2組和wortmannin組細(xì)胞遷移能力都顯著減弱(P均lt;0.05);siErbB2+IGF-1組遷移能力明顯上升(Plt;0.05)。轉(zhuǎn)染后各組細(xì)胞的侵襲結(jié)果單因素方差分析顯示,5組的侵襲能力差異有統(tǒng)計(jì)學(xué)意義(F=15.67,Plt;0.05)。兩兩比較顯示,與空白對(duì)照組相比,siErbB2組和wortmannin組細(xì)胞侵襲能力明顯降低(P均lt;0.05);siErbB2+IGF-1組侵襲能力明顯上升(Plt;0.05)。見圖4。
3 討 論
卵巢癌發(fā)病率位居女性生殖系統(tǒng)癌癥第三,但其病死率卻位居之首[9-12]。其發(fā)病隱匿,化療等綜合治療效果不顯著[13-17]。因此,提高卵巢癌早期診斷水平并探究其分子機(jī)制,對(duì)于提高卵巢癌病人生存率至關(guān)重要。而RNA干擾自其發(fā)現(xiàn)以來(lái),便成為基因研究領(lǐng)域的熱點(diǎn)[18-21]?;虺聊夹g(shù)高效、方便,且具有極高特異性。ErbB2(HER2)基因在人類多種惡性腫瘤中呈高表達(dá),且伴隨惡性程度更高的細(xì)胞表型,誘發(fā)癌細(xì)胞增殖和轉(zhuǎn)移[22-25]。既往研究者推測(cè)ErbB2在腫瘤細(xì)胞中的過(guò)度表達(dá),與相關(guān)信號(hào)轉(zhuǎn)導(dǎo)途徑的異常相關(guān),可誘導(dǎo)腫瘤微環(huán)境中良好的細(xì)胞生長(zhǎng)環(huán)境[26]。也有學(xué)者報(bào)道,PI3K和Akt可以干擾細(xì)胞中ErbB2轉(zhuǎn)錄,進(jìn)而影響該因子的致癌性[14]。因此,本研究作出如下假設(shè):ErbB2基因沉默可能通過(guò)PI3K/Akt/eNOS信號(hào)通路發(fā)揮對(duì)卵巢癌細(xì)胞生物學(xué)特性的影響。
本研究采用人卵巢癌細(xì)胞系HO8910細(xì)胞,進(jìn)行分組培養(yǎng)及轉(zhuǎn)染,設(shè)置空白對(duì)照組和陰性對(duì)照組,以siErbB2組表示抑制ErbB2表達(dá),以wortmannin組表示對(duì)PI3K/Akt/eNOS信號(hào)通路的抑制,并進(jìn)一步構(gòu)建siErbB2+IGF-1組驗(yàn)證假設(shè)推理。采用qRT-PCR和Western blot方法檢測(cè)各組細(xì)胞中ErbB2、Akt、PI3K、eNOS、Caspase-3、Bax和Bcl-2的mRNA和蛋白表達(dá)水平。同時(shí),應(yīng)用MTT法、流式細(xì)胞術(shù)、Transwell侵襲實(shí)驗(yàn)和劃痕實(shí)驗(yàn)檢測(cè)各組細(xì)胞增殖、凋亡、遷移能力和侵襲能力的變化。本文研究結(jié)果顯示,siErbB2組和siErbB2+IGF-1組ErbB2表達(dá)明顯下降,而wortmannin組無(wú)明顯變化,說(shuō)明RNA干擾可作為研究ErbB2在卵巢癌中作用的有效工具。
為進(jìn)一步了解ErbB2對(duì)卵巢癌細(xì)胞增殖、凋亡的影響及其機(jī)制。本研究后續(xù)實(shí)驗(yàn)應(yīng)用ErbB2基因沉默技術(shù)和通路抑制劑wortmannin處理卵巢癌細(xì)胞,檢測(cè)結(jié)果顯示,與空白對(duì)照組和陰性對(duì)照組相比較,siErbB2組和wortmannin組卵巢癌細(xì)胞中Akt、PI3K、eNOS和Bcl-2的mRNA和蛋白表達(dá)量則顯著下降,Caspase-3、Bax的mRNA和蛋白表達(dá)量顯著增加;而且與siErbB2組和wortmannin組相比,siErbB2+IGF-1組Akt、PI3K、eNOS和Bcl-2的mRNA和蛋白表達(dá)量顯著上升。我們推測(cè)采用wortmannin抑制劑后,PI3K/Akt/eNOS信號(hào)通路效應(yīng)分子PI3K、Akt、eNOS活化狀態(tài)被抑制,進(jìn)而抑制腫瘤細(xì)胞生長(zhǎng)并促進(jìn)細(xì)胞凋亡、抑制腫瘤細(xì)胞的低氧耐受和腫瘤微環(huán)境中的生存能力。
本文研究結(jié)果還表明,siErbB2組、wortmannin組和siErbB2+IGF-1組細(xì)胞增殖、侵襲和遷移能力均下降,而細(xì)胞凋亡率上升。與siErbB2組和wortmannin組相比較,siErbB2+IGF-1組細(xì)胞增殖、侵襲和遷移能力均上升,而細(xì)胞凋亡率下降。以上結(jié)果從PI3K/Akt/eNOS信號(hào)通路和細(xì)胞生物學(xué)特性兩個(gè)方面證實(shí),ErbB2基因沉默或許可通過(guò)抑制PI3K/Akt/eNOS信號(hào)通路,進(jìn)而抑制細(xì)胞增殖并能促進(jìn)細(xì)胞凋亡。而PI3K/Akt/eNOS信號(hào)通路激活可發(fā)揮逆轉(zhuǎn)作用。提示ErbB2在卵巢癌的生長(zhǎng)轉(zhuǎn)移的調(diào)控中可能發(fā)揮重要作用,且其分子機(jī)制與PI3K/Akt/eNOS信號(hào)通路密切相關(guān)。
PI3K/Akt/eNOS信號(hào)通路在細(xì)胞增殖、凋亡中的作用,既往有眾多報(bào)道。例如,LI等[27]報(bào)道,F(xiàn)GF21抑制劑可通過(guò)eNOS/PI3K/Akt信號(hào)通路抑制人臍靜脈內(nèi)皮細(xì)胞的增殖和遷移;AHSAN等[28]的結(jié)果顯示,磷酸肌酸可通過(guò)調(diào)節(jié)PI3K/Akt/eNOS通路保護(hù)內(nèi)皮細(xì)胞免受氧化低密度脂蛋白誘導(dǎo)的凋亡的影響。目前針對(duì)ErbB2基因沉默通過(guò)PI3K/Akt/eNOS信號(hào)通路發(fā)揮對(duì)卵巢癌細(xì)胞生物學(xué)特性的影響的研究較少,本文借助RNA干擾技術(shù),從基因和蛋白水平證實(shí)ErbB2基因沉默可有效影響人卵巢癌細(xì)胞株HO8910細(xì)胞增殖、凋亡等生物學(xué)行為,提示ErbB2與卵巢癌細(xì)胞的生物學(xué)行為密切相關(guān),且其可能機(jī)制與PI3K/Akt/eNOS信號(hào)通路的抑制有關(guān)。
綜上所述,本文的研究結(jié)果顯示,ErbB2在卵巢癌細(xì)胞中呈高表達(dá),RNA干擾技術(shù)可有效抑制ErbB2表達(dá);ErbB2基因沉默可抑制PI3K/Akt/eNOS信號(hào)通路,從而抑制卵巢癌細(xì)胞增殖、促進(jìn)其凋亡。而PI3K/Akt/eNOS信號(hào)通路激活可逆轉(zhuǎn)ErbB2基因沉默作用,促進(jìn)卵巢癌細(xì)胞增殖并抑制細(xì)胞凋亡。本研究結(jié)果為臨床卵巢癌的基因治療提供了潛在依據(jù)。值得注意的是,本研究以細(xì)胞實(shí)驗(yàn)探究ErbB2在卵巢癌中的作用及其與PI3K/Akt/eNOS信號(hào)通路相關(guān)的分子機(jī)制,有待進(jìn)一步動(dòng)物實(shí)驗(yàn)和臨床驗(yàn)證。同時(shí),抑制ErbB2在卵巢癌中的表達(dá)進(jìn)而發(fā)揮抑癌作用是否受到其他信號(hào)通路的影響,均為本研究未來(lái)探討的方向。
[參考文獻(xiàn)]
[1]BALDWIN L A, PAVLIK E J, UELAND E, et al. Complications from surgeries related to ovarian cancer screening[J]. Diagnostics (Basel, Switzerland), 2017,7(1):E16.
[2]PISO P, DAHLKE M H, LOSS M, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in peritoneal carcinomatosis from ovarian cancer[J]. World Journal of Surgical Oncology, 2004,2:21.
[3]楊偉斌,劉志毅,曹寬,等. 表皮生長(zhǎng)因子受體家族特點(diǎn)及與腫瘤關(guān)系的研究進(jìn)展[J]. 現(xiàn)代腫瘤醫(yī)學(xué), 2019,27(2):346-351.
[4]QI X W, ZHANG F, YANG X H, et al. High Wilms’ tumor 1 mRNA expression correlates with basal-like and ERBB2 molecular subtypes and poor prognosis of breast cancer[J]. Oncology Reports, 2012,28(4):1231-1236.
[5]顧清,張莉,張新星,等. 抑制ERBB2基因?qū)Ω伟〩epG2細(xì)胞生長(zhǎng)及PI3K/AKT信號(hào)通路的影響[J]. 鄭州大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2019,54(1):19-23.
[6]WANG Z W, HUANG Y, ZHANG J Q. Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy[J]. Cellular amp; Molecular Bio-logy Letters, 2014,19(2):233-242.
[7]ZHU B J, ZHOU X D. The study of PI3K/AKT pathway in lung cancer metastasis and drug resistance[J]. Zhongguo Fei Ai Za Zhi, 2011,14(8):689-694.
[8]丁婭,詹靖,吳躍翰,等. PI3K抑制劑XC302連續(xù)給藥治療晚期實(shí)體腫瘤的Ⅰ期臨床耐受性試驗(yàn)[J]. 中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版), 2015,36(3):414-420.
[9]HOLSCHNEIDER C H, BEREK J S. Ovarian cancer: epidemiology, biology, and prognostic factors[J]. Seminars in Surgical Oncology, 2000,19(1):3-10.
[10]DAUPLAT J. Ovarian cancer[J]. Seminars in Surgical Onco-logy, 2000,19(1):1-2.
[11]ARMSTRONG D K. Research summaries: the 11th biennial rivkin center ovarian cancer research symposium[J]. International Journal of Gynecological Cancer, 2017, 27(9S Suppl 5):S1.
[12]WANG J Y, LU A Q, CHEN L J. LncRNAs in ovarian cancer[J]. Clinica Chimica Acta, 2019,490:17-27.
[13]ZHANG L, CAO X L, ZHANG L Q, et al. UCA1 overexpression predicts clinical outcome of patients with ovarian cancer receiving adjuvant chemotherapy[J]. Cancer Chemotherapy and Pharmacology, 2016,77(3):629-634.
[14]FRIELINK L M, PIJLMAN B M, EZENDAM N P, et al. Clinical practice of adjuvant chemotherapy in patients with early-stage epithelial ovarian cancer[J]. Chemotherapy, 2016,61(6):287-294.
[15]SANT M, CHIRLAQUE LOPEZ M D, AGRESTI R, et al. Survival of women with cancers of breast and genital organs in Europe 1999—2007: results of the EUROCARE-5 study[J]. European Journal of Cancer, 2015,51(15):2191-2205.
[16]DINKELSPIEL H E, TERGAS A I, ZIMMERMAN L A, et al. Use and duration of chemotherapy and its impact on survi-val in early-stage ovarian cancer[J]. Gynecologic Oncology, 2015,137(2):203-209.
[17]LEE J Y, KIM T H, SUH D H, et al. Impact of guideline adherence on patient outcomes in early-stage epithelial ovarian cancer[J]. European Journal of Surgical Oncology (EJSO), 2015,41(4):585-591.
[18]JANSEN V M, BHOLA N E, BAUER J A, et al. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer[J]. Cancer Research, 2017,77(9):2488-2499.
[19]JANSEN V M, FORMISANO L, WITKIEWICZ A, et al. Abstract P3-03-05: PI3K/PDK1 mediates resistance to CDK4/6 inhibitors through dysregulation of S-phase cyclins/cyclin dependent kinases (CDKs)[C]//Poster Session Abstracts. 2016 San Antonio Breast Cancer Symposium. American Association for Cancer Research, 2017.
[20]JANSEN V M, BHOLA N E, BAUER J A, et al. Kinome-wide RNA interference screen reveals a role for PDK1 in acquired resistance to CDK4/6 inhibition in ER-positive breast cancer[J]. Cancer Research, 2017,77(9):2488-2499.
[21]QIAN Y, WU X, WANG H X, et al. PAK1 silencing is synthetic lethal with CDK4/6 inhibition in gastric cancer cells via regulating PDK1 expression[J]. Human Cell, 2020,33(2):377-385.
[22]ZHOU N, QU Y L, XU C L, et al. Upregulation of microRNA-375 increases the cisplatin-sensitivity of human gastric cancer cells by regulating ERBB2[J]. Experimental and Therapeutic Medicine, 2016,11(2):625-630.
[23]STARK M S, KLEIN K, WEIDE B, et al. The prognostic and predictive value of melanoma-related MicroRNAs using tissue and serum: a MicroRNA expression analysis[J]. EBioMedicine, 2015,2(7):671-680.
[24]BROCHEZ L, NAEYAERT J M. Serological markers for me-lanoma[J]. The British Journal of Dermatology, 2000,143(2):256-268.
[25]FINCK S J, GIULIANO A E, MORTON D L. LDH and me-lanoma[J]. Cancer, 1983,51(5):840-843.
[26]SHAN X, WEN W, ZHU D X, et al. miR 1296-5p inhibits the migration and invasion of gastric cancer cells by repressing ERBB2 expression[J]. PLoS One, 2017,12(1):e0170298. doi:10.1371/journal.pone.0170298.
[27]LI Y M, HUANG J N, JIANG Z Y, et al. FGF21 inhibitor suppresses the proliferation and migration of human umbilical vein endothelial cells through the ENOS/PI3K/AKT pathway[J]. American Journal of Translational Research, 2017,9(12):5299-5307.
[28]AHSAN A, HAN G Z, PAN J F, et al. Phosphocreatine protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3K/Akt/ENOS pathway[J]. Apoptosis: an International Journal on Programmed Cell Death, 2015,20(12):1563-1576.
(本文編輯 于國(guó)藝)