邱東峰,葛平娟,劉剛,楊金松,陳建國(guó),張?jiān)倬?/p>
優(yōu)質(zhì)水稻新種質(zhì)ZY56的創(chuàng)制及評(píng)價(jià)
1湖北省農(nóng)業(yè)科學(xué)院糧食作物研究所/糧食作物種質(zhì)創(chuàng)新與遺傳改良湖北省重點(diǎn)實(shí)驗(yàn)室,武漢 430064;2湖北大學(xué)生命科學(xué)學(xué)院,武漢 430062
【】為避免未知基因和遺傳背景等不可控因素對(duì)育種實(shí)踐的影響,將高通量SNP分型技術(shù)與傳統(tǒng)育種相結(jié)合,培育新品種,以提高育種效率,實(shí)現(xiàn)育種方法的改進(jìn),為優(yōu)質(zhì)食味稻米新種質(zhì)的鑒定和創(chuàng)制方法提供參考。以鑒真2號(hào)和鄂中5號(hào)為親本,通過(guò)雜交、回交及系譜法選育,在BC1F2—BC1F4群體開展稻米品質(zhì)分析評(píng)價(jià),至BC1F7初步選定優(yōu)良株系4W1-056,進(jìn)一步利用捕獲測(cè)序的方法,對(duì)鑒真2號(hào)、鄂中5號(hào)及66個(gè)4W1-056單株中的68個(gè)DNA片段進(jìn)行PCR擴(kuò)增,并測(cè)序,分析908個(gè)SNP位點(diǎn)?;赟NP位點(diǎn)的基因型,采用p-distance方法,使用MEGA7軟件進(jìn)行系統(tǒng)進(jìn)化分析。結(jié)合系統(tǒng)進(jìn)化分析、農(nóng)藝性狀和稻米品質(zhì)的鑒定,對(duì)新品系的選育和鑒定進(jìn)行評(píng)價(jià)。經(jīng)雜交、回交和自交獲得株型好、分蘗力強(qiáng)、莖稈粗壯、抗倒性好、外觀品質(zhì)優(yōu)的穩(wěn)定優(yōu)良株系4W1-056。系統(tǒng)進(jìn)化分析表明,從4W1-056優(yōu)良株系中篩選的66個(gè)單株分成3個(gè)類群:類群Ⅰ、類群Ⅱ和類群Ⅲ。3個(gè)類群之間的堿基替代率為0.1398,類群Ⅰ和類群Ⅱ之間的堿基替代率為0.0662,而在各類群內(nèi)的堿基替代率為0,表明同一類群內(nèi)的單株沒有遺傳差異。結(jié)合農(nóng)藝性狀和稻米品質(zhì)的鑒定,將類群Ⅱ作為新的品系,命名為ZY56,與4W1-056相比,其外觀品質(zhì)更好,堊白度為0.9,更接近鄂中5號(hào)。利用水稻8K SNP芯片檢測(cè)ZY56及2個(gè)親本(鑒真2號(hào)和鄂中5號(hào)),顯示ZY56有14.13%的染色體片段來(lái)源于鑒真2號(hào),85.87%的染色體片段來(lái)源于鄂中5號(hào),進(jìn)一步說(shuō)明ZY56的主要基因源于鄂中5號(hào),驗(yàn)證了雜交、回交和自交后的選擇結(jié)果。特征特性研究結(jié)果顯示,ZY56完成基本營(yíng)養(yǎng)生長(zhǎng)所需要的最低有效積溫為760.5℃,生殖生長(zhǎng)的臨界光照長(zhǎng)度為14 h 13 min,完成幼穗分化需要的有效積溫高于711.5℃。不同播期的品質(zhì)分析結(jié)果表明,ZY56對(duì)光照長(zhǎng)度的反應(yīng)明顯弱于鄂中5號(hào),但生長(zhǎng)平穩(wěn),有利于稻米品質(zhì)的形成,表明ZY56的稻米品質(zhì)具有更好的穩(wěn)定性。在資源創(chuàng)制高代選擇中,利用高通量SNP分型技術(shù)進(jìn)行遺傳一致性篩選,將通過(guò)農(nóng)藝性狀測(cè)定等常規(guī)方法難以細(xì)分的材料進(jìn)行類群細(xì)分,最終確定符合目標(biāo)要求的株系。該方法克服了傳統(tǒng)系譜法在高世代選擇中針對(duì)農(nóng)藝性狀難以繼續(xù)選擇的困難,避免了同類單株重復(fù)選擇和不同類單株漏選的問(wèn)題,降低了高世代選擇工作量,提高了選擇效率,具有推廣價(jià)值。
水稻;種質(zhì)創(chuàng)新;資源評(píng)價(jià)
【研究意義】水稻是重要的糧食作物,為世界人口提供了約25%的能量[1]。從人類最早馴化野生稻到現(xiàn)在的水稻遺傳改良,稻種資源的鑒定評(píng)價(jià)、創(chuàng)新和利用以及育種方法的改進(jìn)等,始終是種質(zhì)資源研究的重要內(nèi)容,也是水稻品種培育的基礎(chǔ)工作[2]。在現(xiàn)代生物技術(shù)條件下,如何利用分子技術(shù)評(píng)價(jià)資源,如何更高效地創(chuàng)制新材料將是未來(lái)水稻資源創(chuàng)制和遺傳改良的重要研究方向。【前人研究進(jìn)展】經(jīng)典的種質(zhì)創(chuàng)新方法包括有性雜交和回交、輻射和化學(xué)誘變、花培、組培、原生質(zhì)融合和基因轉(zhuǎn)移等[3]。綜合多種水稻品種培育方法,通常包含有利基因的聚合和優(yōu)異基因型的純合2個(gè)過(guò)程?;谛螒B(tài)學(xué),以經(jīng)驗(yàn)為主的傳統(tǒng)育種進(jìn)程慢、效率低,已不能滿足日益增長(zhǎng)的糧食需求[4]。近年來(lái),隨著水稻功能基因組學(xué)領(lǐng)域的快速發(fā)展[5-7],水稻育種技術(shù)已逐步實(shí)踐精準(zhǔn)和高效的分子設(shè)計(jì)育種理念。分子設(shè)計(jì)育種以探究盡可能多的重要農(nóng)藝性狀形成的分子機(jī)理為基礎(chǔ),以性狀優(yōu)良的品種為素材進(jìn)行設(shè)計(jì),針對(duì)目標(biāo)性狀進(jìn)行精準(zhǔn)選擇和改良,提高育種的精準(zhǔn)程度。分子設(shè)計(jì)育種依賴于遺傳學(xué)、分子生物學(xué)和基因組學(xué)等學(xué)科的發(fā)展。在當(dāng)前階段,雖有較多研究從分子水平上闡明或部分闡明了水稻產(chǎn)量相關(guān)[8-10]、品質(zhì)相關(guān)[11-12]、耐逆性[13-16]、氮素高效[17-18]等復(fù)雜性狀形成的遺傳機(jī)理,但精準(zhǔn)育種需要對(duì)這些遺傳調(diào)控網(wǎng)絡(luò)進(jìn)行系統(tǒng)解析和組裝,難度成指數(shù)級(jí)增加。因此,引入基因組學(xué)研究成果雖然能一定程度上提高了研究效率,但基因數(shù)量龐大、遺傳累贅、無(wú)法準(zhǔn)確預(yù)測(cè)基因互作和遺傳背景的影響,對(duì)水稻種質(zhì)資源創(chuàng)新利用工作提出了新的挑戰(zhàn)?!颈狙芯壳腥朦c(diǎn)】高通量SNP分型技術(shù)的發(fā)展,推動(dòng)了作物遺傳、種質(zhì)鑒定、分子育種等方面的研究[19],然而,結(jié)合高通量SNP技術(shù)和傳統(tǒng)育種技術(shù),評(píng)價(jià)遺傳背景和未知基因的影響,提高育種效率的研究仍鮮見報(bào)道。稻米的蒸煮與食味品質(zhì)是一個(gè)綜合性狀,是由眾多淀粉合成與調(diào)控相關(guān)基因共同控制的復(fù)雜網(wǎng)絡(luò),又是優(yōu)質(zhì)稻米重要和較難確定的性狀指標(biāo)[20]。盡管對(duì)控制稻米蒸煮與食味品質(zhì)性狀的基因功能研究得比較透徹,但是目前仍然不能有效利用現(xiàn)有的基因資源實(shí)現(xiàn)精準(zhǔn)和高效創(chuàng)制新的優(yōu)質(zhì)食味稻米種質(zhì)。同時(shí),稻米品質(zhì)的形成還受到氣候、土壤等環(huán)境因素的影響[21],因此,創(chuàng)制優(yōu)質(zhì)稻品種還需要對(duì)其進(jìn)行精準(zhǔn)鑒定評(píng)價(jià),并研究其優(yōu)質(zhì)食味品質(zhì)形成的遺傳因素與環(huán)境控制因素,才能適應(yīng)現(xiàn)代稻米產(chǎn)業(yè)化生產(chǎn)、加工的需求?!緮M解決的關(guān)鍵問(wèn)題】本研究利用湖北省現(xiàn)有的高檔優(yōu)質(zhì)水稻資源鄂中5號(hào)、鑒真2號(hào)[22-24]創(chuàng)制新的種質(zhì)ZY56,探討其作為優(yōu)質(zhì)稻的生產(chǎn)適應(yīng)性,提出將高通量SNP分型技術(shù)與傳統(tǒng)育種技術(shù)相結(jié)合,以提高育種效率的新育種方法,使育種由經(jīng)驗(yàn)選擇轉(zhuǎn)變?yōu)獒槍?duì)目標(biāo)性狀進(jìn)行精準(zhǔn)選擇和改良,提高育種效率,為優(yōu)質(zhì)食味稻米新種質(zhì)的鑒定和創(chuàng)制方法提供參考。
鄂中5號(hào)(鄂審稻2004010)[22-24]和鑒真2號(hào)(鄂審稻2001004)[24]由國(guó)家農(nóng)作物種質(zhì)資源庫(kù)湖北分庫(kù)提供,均為中秈遲熟常規(guī)品種,感溫性強(qiáng),感光性弱,基本營(yíng)養(yǎng)生長(zhǎng)期長(zhǎng),稻米品質(zhì)優(yōu)良。
2011年夏季在湖北,以鄂中5號(hào)為母本、鑒真2號(hào)為父本進(jìn)行雜交,F(xiàn)1與鄂中5號(hào)回交得BC1F1,然后連續(xù)自交,至2014年冬季,獲得相對(duì)穩(wěn)定的株系4W1-056。
采用武漢基諾賽克科技有限公司提供的捕獲測(cè)序SNP分型技術(shù)進(jìn)行基因型檢測(cè),首先分別提取4W1-056株系中的66個(gè)中選單株的DNA,設(shè)計(jì)目標(biāo)位點(diǎn)引物,通過(guò)PCR捕獲目標(biāo)DNA片段,然后依據(jù)Illumina文庫(kù)構(gòu)建流程完成Paired-end(PE)測(cè)序文庫(kù)的構(gòu)建,并利用Illumina Hiseq測(cè)序儀進(jìn)行測(cè)序,最后進(jìn)行目標(biāo)位點(diǎn)的基因型分析。
水稻8K SNP芯片檢測(cè)由中玉金標(biāo)記(北京)生物技術(shù)有限公司完成。
采用p-distance方法[25]分析遺傳距離,采用MEGA7軟件[26]完成進(jìn)化分析。采用EXCEL完成方差分析。
2017—2018年在湖北武漢、荊州、武穴、棗陽(yáng)以及海南陵水等地種植ZY56,調(diào)查播種期、幼穗分化期、始穗期等的農(nóng)藝性狀,結(jié)合當(dāng)?shù)販囟鹊葰庀髷?shù)據(jù)(http://www.tianqihoubao.com/lishi/),綜合分析其感光性、感溫性和基本營(yíng)養(yǎng)生長(zhǎng)性,成熟后,每小區(qū)各取10株考種并用于分析稻米品質(zhì)。
2018年5月18日、5月30日、6月12日在湖北武穴分期播種ZY56和鄂中5號(hào),收獲稻谷進(jìn)行稻米品質(zhì)分析。
參照優(yōu)質(zhì)稻谷GB/T17891-2017的品質(zhì)分析方法,由農(nóng)業(yè)農(nóng)村部食品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心(武漢)分析ZY56和鄂中5號(hào)的稻米品質(zhì)。由農(nóng)業(yè)農(nóng)村部稻米及制品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心(杭州)分析黏度RVA譜特征值。
通過(guò)分析親本鄂中5號(hào)和鑒真2號(hào)的主要性狀(表1)。發(fā)現(xiàn)二者的農(nóng)藝性狀和稻米品質(zhì)指標(biāo)差異較大。鑒真2號(hào)單株成穗12.6個(gè),比鄂中5號(hào)多2.5個(gè),表明其分蘗能力強(qiáng)于鄂中5號(hào);鑒真2號(hào)株高104.2 cm,但莖稈較纖細(xì)柔軟,鄂中5號(hào)株高117.9 cm,莖稈粗壯,但莖基部韌性不足,易發(fā)生倒伏;鑒真2號(hào)單株產(chǎn)量為34.5 g,高于鄂中5號(hào),表明鑒真2號(hào)具有更高的產(chǎn)量潛力。鄂中5號(hào)稻米長(zhǎng)寬比為3.6,無(wú)堊白,外觀品質(zhì)優(yōu)于鑒真2號(hào)。2個(gè)品種的播始?xì)v期均較長(zhǎng),有利于優(yōu)良稻米品質(zhì)的形成,生產(chǎn)實(shí)踐表明,二者均具有稻米品質(zhì)優(yōu)良的特點(diǎn),但鄂中5號(hào)稻米蒸煮后的蓬松度較鑒真2號(hào)差。結(jié)合遺傳相似系數(shù)與農(nóng)藝性狀差異考慮,選用鄂中5號(hào)和鑒真2號(hào)為親本雜交再回交創(chuàng)制資源,以期快速獲得新的優(yōu)質(zhì)種質(zhì)。
以鄂中5號(hào)為母本、鑒真2號(hào)為父本進(jìn)行雜交,F(xiàn)1代與鄂中5號(hào)進(jìn)行回交得BC1F1,后代通過(guò)連續(xù)自交到BC1F7。在BC1F2—BC1F4系譜選育過(guò)程中,較早開展了混合株系的稻米品質(zhì)分析檢測(cè),以篩選稻米的食味品質(zhì)和米飯的膨松度。2014年冬季在海南BC1F7獲得相對(duì)穩(wěn)定的株系4W1-056,于2014—2016年在多地試驗(yàn)種植4W1-056,并以鄂中5號(hào)為對(duì)照品種,調(diào)查農(nóng)藝性狀,結(jié)果顯示,4W1-056株型松散適度,劍葉挺直,生長(zhǎng)量大,分蘗力強(qiáng),莖稈粗壯,抗倒伏能力強(qiáng),群體結(jié)構(gòu)合理,后期轉(zhuǎn)色好,農(nóng)藝性狀相對(duì)一致、稻米品質(zhì)優(yōu)良。
在常規(guī)方法無(wú)法繼續(xù)篩選的情況下,收獲全株系4W1-056的66個(gè)單株。2016年利用高通量SNP分型技術(shù)對(duì)收獲的66個(gè)單株及鄂中5號(hào)、鑒真2號(hào)進(jìn)行基因型分析,分析了908個(gè)SNP位點(diǎn),涉及68個(gè)DNA片段,最終在310個(gè)位點(diǎn)找到差異,以每個(gè)位點(diǎn)的堿基差異數(shù)為單位,進(jìn)行遺傳距離和進(jìn)化分析(圖1)。
表1 鑒真2號(hào)與鄂中5號(hào)的主要性狀表現(xiàn)
圖1 4W1-056株系與鄂中5號(hào)、鑒真2號(hào)的遺傳進(jìn)化關(guān)系
鑒真2號(hào)與鄂中5號(hào)、4W1-056的遺傳進(jìn)化距離為0.6838,表明鑒真2號(hào)與鄂中5號(hào)及4W1-056的遺傳背景差異較大;而4W1-056的66個(gè)單株與鄂中5號(hào)的遺傳進(jìn)化距離為0.2580,明顯小于其與鑒真2號(hào)的遺傳進(jìn)化距離,表明4W1-056與鄂中5號(hào)之間的差異小于其與鑒真2號(hào)之間的差異,這與4W1-056的來(lái)源(鄂中5號(hào)/鑒真2號(hào)//鄂中5號(hào))一致。而在4W1-056的66個(gè)單株之間,依據(jù)單株間的遺傳分化,仍然可以分為3個(gè)類群(類群Ⅰ、類群Ⅱ和類群Ⅲ)。3個(gè)類群之間的堿基替代率為0.1398,類群Ⅰ和類群Ⅱ之間的堿基替代率為0.0662,而在各類群內(nèi)的堿基替代率為0,表明同一類群內(nèi)單株的遺傳沒有差異。由此可見,4W1-056各單株之間,在通過(guò)農(nóng)藝性狀測(cè)定等常規(guī)方法難以再細(xì)分的情況下,卻可以利用分子生物學(xué)手段繼續(xù)分出不同的類群,提供了繼續(xù)選擇的可能。各類群間的差異可以通過(guò)遺傳分化(堿基替代率)來(lái)區(qū)分,而在各類群內(nèi),堿基替代率為0,可視為群體穩(wěn)定。
將每個(gè)類群視為穩(wěn)定群體,分別進(jìn)行混合收種,并加代繁殖。群體自交至BC1F10,再次進(jìn)行農(nóng)藝性狀、稻米品質(zhì)的篩選(表2),發(fā)現(xiàn)類群Ⅱ具有生育期稍短、稻米外觀品質(zhì)更優(yōu)等特征,因此,選擇類群Ⅱ作為新的品系,命名為ZY56,于2020年獲得植物新品種權(quán)證書(品種權(quán)號(hào):CNA20180295.0)。類群Ⅰ和類群Ⅲ作為備用品系。
表2 4W1-056各類群之間部分性狀的差異
2017年5月9日,在湖北武漢播種ZY56,全生育期為133.7 d,比對(duì)照鄂中5號(hào)早5 d,株高124.2 cm,有效穗數(shù)為280.5萬(wàn)/hm2,每穗總粒數(shù)為147.8粒,結(jié)實(shí)率為87.72%,千粒重25.1 g,產(chǎn)量穩(wěn)定且比對(duì)照增產(chǎn)3.25%,稻瘟病綜合指數(shù)為3.2,中抗稻瘟病。經(jīng)過(guò)SNP分型選擇和類群細(xì)分,ZY56抽穗集中,穗層整齊,農(nóng)藝性狀更穩(wěn)定。
采用水稻8K SNP芯片檢測(cè)ZY56及2個(gè)親本(鑒真2號(hào)和鄂中5號(hào)),結(jié)果(圖2)表明,ZY56的染色體片段Chr.1:24536282—32696222、Chr.1:34520371—34964519、Chr.2:4803030—5632572、Chr.4:599979—6914238、Chr.8:26891056—28213513和Chr.11:17914093—18746042來(lái)源于親本鑒真2號(hào),其他均來(lái)源于親本鄂中5號(hào)。統(tǒng)計(jì)表明,ZY56有14.13%的染色體片段來(lái)源于鑒真2號(hào),85.87%的染色體片段來(lái)源于鄂中5號(hào)。8K SNP芯片檢測(cè)結(jié)果與ZY56的系譜來(lái)源一致,驗(yàn)證了ZY56與親本鑒真2號(hào)和鄂中5號(hào)的農(nóng)藝性狀既存在一定的差異,也有較多的相似性(如稻米品質(zhì)、株高、生育期等)。
2017—2018年分別在湖北武漢、荊州、武穴、棗陽(yáng)以及海南陵水等地播種ZY56,記錄其生長(zhǎng)過(guò)程中的積溫、光照長(zhǎng)度以考察ZY56溫光反應(yīng)特征(表3)。ZY56完成基本營(yíng)養(yǎng)生長(zhǎng)所需要的最低有效積溫為760.5℃,轉(zhuǎn)換為生殖生長(zhǎng)的臨界光照時(shí)長(zhǎng)需短于14 h 13 min,完成幼穗分化需要有效積溫高于711.5℃。有效積溫能反映水稻生育期間對(duì)熱量的要求,只要地理位置和其他外界條件變化不明顯,通常同一品種對(duì)有效積溫的要求是穩(wěn)定的。由于ZY56由營(yíng)養(yǎng)生長(zhǎng)轉(zhuǎn)換為生殖生長(zhǎng)的臨界光照時(shí)長(zhǎng)短于14 h 13 min的要求會(huì)先于有效積溫需求的條件,可以推測(cè)ZY56的生長(zhǎng)適宜控制條件應(yīng)當(dāng)優(yōu)先考慮有效積溫是否滿足。ZY56完成營(yíng)養(yǎng)生長(zhǎng)向生殖生長(zhǎng)的轉(zhuǎn)換,需有效積溫大于760.5℃的條件。
將2018年分期播種的ZY56和鄂中5號(hào)收獲的種子送農(nóng)業(yè)農(nóng)村部食品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心分析稻米品質(zhì)(表4)。隨著播種期的推遲,ZY56表現(xiàn)出膠稠度下降,直鏈淀粉含量升高,堊白粒率和堊白度下降,外觀品質(zhì)變好;而鄂中5號(hào)的膠稠度和直鏈淀粉含量變化無(wú)規(guī)律,堊白粒率和堊白度逐漸升高,外觀品質(zhì)變差。5月18日播種的鄂中5號(hào)各項(xiàng)指標(biāo)達(dá)到國(guó)標(biāo)一級(jí),堊白粒率和堊白度等指標(biāo)優(yōu)于ZY56;而6月12日播種的ZY56米質(zhì)各項(xiàng)指標(biāo),尤其是整精米率、堊白粒率和堊白度、膠稠度等重要指標(biāo)都優(yōu)于鄂中5號(hào)。
表3 ZY56在多個(gè)生長(zhǎng)地點(diǎn)的溫光反應(yīng)
表4 不同播種期ZY56與鄂中5號(hào)的稻米品質(zhì)分析結(jié)果(GB/T 17891-2017)
表4中播種始穗日期亦顯示,分3期播種,播種期前后跨度25 d,光照長(zhǎng)度變化明顯,鄂中5號(hào)的播始?xì)v期分別為97、86和80 d,前后相差17 d;而ZY56的播始?xì)v期分別為99、94和92 d,前后相差7 d,說(shuō)明ZY56對(duì)光照長(zhǎng)度的反應(yīng)明顯弱于鄂中5號(hào),但生長(zhǎng)平穩(wěn),有利于稻米品質(zhì)的形成。同時(shí)說(shuō)明鄂中5號(hào)不宜遲播,短光照條件加速其生長(zhǎng)發(fā)育,不利于稻米品質(zhì)的發(fā)育。綜上所述,ZY56宜遲于5月30日后播種,品質(zhì)更佳。
經(jīng)農(nóng)業(yè)農(nóng)村部稻米及制品質(zhì)量監(jiān)督檢驗(yàn)測(cè)試中心分析不同播種期收獲的ZY56和鄂中5號(hào)種子的黏度RVA譜的崩解值、峰值、終值、谷值、回冷值等5個(gè)特征值(表5)。結(jié)果顯示,在3個(gè)播期間,二者的峰值(=0.013<0.05)差異顯著;崩解值(=0<0.01)差異極顯著;谷值(=0.149>0.05)、終值(=0.091>0.05)、回冷值(=0.815>0.05)差異不顯著。鄂中5號(hào)的回冷值表現(xiàn)為第二播種期最小,無(wú)明顯的變化規(guī)律,其他特征值表現(xiàn)出隨著播種期的延遲而增加的趨勢(shì)。ZY56的各個(gè)特征值均表現(xiàn)出隨著播種期的延遲而增加的趨勢(shì)。
米飯的食味品質(zhì)與黏度RVA譜的峰值、谷值、崩解值、終值呈正相關(guān),與RVA譜的回冷值呈負(fù)相關(guān),崩解值和峰值的貢獻(xiàn)更大,5個(gè)值對(duì)米飯食味品質(zhì)的貢獻(xiàn)大小排序?yàn)椋罕澜庵担痉逯担窘K值>谷值>回冷值。因此,可以認(rèn)為隨著播種期的延遲 (6月12日之前)ZY56和鄂中5號(hào)的食味品質(zhì)均變好。
紅色:來(lái)源于鑒真2號(hào);藍(lán)色:來(lái)源于鄂中5號(hào) Red: the SNP sites come from Jianzhen 2; Blue: the SNP sites come from Ezhong 5
表5 不同播種期ZY56與鄂中5號(hào)的RVA譜特征值
為了探索食味品質(zhì)與淀粉發(fā)育的關(guān)系,設(shè)置30、60和90 s等不同的加工精米時(shí)間,分析所得米粉的膠稠度和直鏈淀粉含量(表6)。經(jīng)方差分析可知,同一播種期收獲的稻谷不同加工精米時(shí)間,鄂中5號(hào)和ZY56的直鏈淀粉含量和膠稠度均表現(xiàn)為差異不顯著,說(shuō)明其在同一播期籽粒發(fā)育過(guò)程中,籽粒的內(nèi)外層直鏈淀粉含量和膠稠度無(wú)明顯的變化。不同的播期間,鄂中5號(hào)的直鏈淀粉含量和膠稠度差異顯著;ZY56的直鏈淀粉含量差異顯著,但膠稠度(=0.150>0.05)差異不顯著,說(shuō)明不同的抽穗灌漿期氣候環(huán)境對(duì)其稻米品質(zhì)的影響明顯,而不同的品種表現(xiàn)出不同的變化規(guī)律,而ZY56的稻米品質(zhì)具有更好的穩(wěn)定性,這可能與其光溫反應(yīng)特性有關(guān)。
表6 不同加工精米時(shí)間ZY56與鄂中5號(hào)直鏈淀粉含量和膠稠度變化
鄂中5號(hào)、鑒真2號(hào)是湖北省審定的2個(gè)優(yōu)質(zhì)稻品種,2001—2018年累計(jì)推廣面積80萬(wàn)hm2,是湖北的高檔稻米品牌。但這兩個(gè)品種都存在生育期偏長(zhǎng),耐寒性較差、不適宜輕簡(jiǎn)化栽培等缺點(diǎn),已不適應(yīng)當(dāng)前優(yōu)質(zhì)稻產(chǎn)業(yè)高效發(fā)展的需求。本研究在保持鄂中5號(hào)、鑒真2號(hào)優(yōu)質(zhì)特性的基礎(chǔ)上創(chuàng)制新的優(yōu)質(zhì)資源ZY56,具有生育期穩(wěn)定、適宜直播和遲播等優(yōu)點(diǎn),在湖北各地自4月中旬至6月上旬均可播種,可輕簡(jiǎn)化栽培。與其親本鄂中5號(hào)遲播品質(zhì)不穩(wěn)定的特性相比,ZY56適應(yīng)性更廣,具有更高的推廣利用價(jià)值。
灌漿期氣候環(huán)境因素對(duì)優(yōu)質(zhì)稻米資源的品質(zhì)形成作用不容忽視。灌漿期是稻米品質(zhì)形成的關(guān)鍵時(shí)期[21],溫光因子影響品種的平均灌漿速率,因此,稻米品質(zhì)的最終形成與環(huán)境因子關(guān)系密切。本研究為探索ZY56能獲得優(yōu)質(zhì)高效的適宜栽培技術(shù)和生態(tài)環(huán)境,2017—2018年開展了多年多點(diǎn)種植試驗(yàn),以推測(cè)其生育期間對(duì)光熱資源的要求[27],同時(shí)評(píng)價(jià)不同的灌漿環(huán)境下稻米品質(zhì)的變化[28-29],以確定其適宜的生產(chǎn)環(huán)境。因此,創(chuàng)制優(yōu)質(zhì)稻米資源應(yīng)充分考慮其環(huán)境適應(yīng)性,并制定配套的生產(chǎn)標(biāo)準(zhǔn),以指導(dǎo)優(yōu)質(zhì)稻米生產(chǎn)。
種質(zhì)資源的精準(zhǔn)鑒定是其創(chuàng)新利用的基礎(chǔ)。在ZY56的創(chuàng)制過(guò)程中,分析了選用的2個(gè)親本的農(nóng)藝性狀,鄂中5號(hào)株高較高,鑒真2號(hào)株高較矮但莖稈較柔軟,但2個(gè)品種均具有稻米品質(zhì)優(yōu)良的特點(diǎn)。根據(jù)邱東峰等[30]利用親本的遺傳相似系數(shù)結(jié)合農(nóng)藝性狀的差異選擇親本的方法,辜大川等[31]在27份水稻資源進(jìn)行SSR分析結(jié)果顯示,鑒真2號(hào)與鄂中5號(hào)的遺傳相似系數(shù)為0.6822,小于平均遺傳相似系數(shù)0.7536,顯示它們的親緣關(guān)系較遠(yuǎn);同時(shí),前述進(jìn)行的高通量SNP分型分析亦表明,鑒真2號(hào)與鄂中5號(hào)遺傳進(jìn)化距離較遠(yuǎn),遺傳背景差異較大,這與利用SSR分子標(biāo)記評(píng)價(jià)的結(jié)果吻合。在親本差異較大的情況下宜采用雜交后回交的方法可快速穩(wěn)定目標(biāo)性狀。因此,在ZY56的創(chuàng)制過(guò)程中采用雜交后再回交一次,快速獲得相對(duì)穩(wěn)定的后代群體,并從BC1F2代開始連續(xù)評(píng)價(jià)其稻米外觀品質(zhì)、蒸煮和食味品質(zhì),確保了品質(zhì)性狀選擇的有效性。親本選擇中將表型鑒定和遺傳背景評(píng)價(jià)相結(jié)合,提高了育種的成功率。
在新種質(zhì)選育過(guò)程中,利用常規(guī)方法往往無(wú)法準(zhǔn)確鑒定評(píng)價(jià)其穩(wěn)定性、一致性,如果不能進(jìn)行有效分型選擇,所選品系很難快速穩(wěn)定,甚至?xí)G失部分優(yōu)良品系。因此應(yīng)在選育過(guò)程中引入分子評(píng)價(jià)的方法進(jìn)行遺傳背景的篩選,以提高選擇的效率和多樣性。長(zhǎng)期以來(lái),對(duì)稻種資源的遺傳多樣性分群分析的研究[32-36]較多,但如何從分析的水稻資源中利用遺傳距離的相關(guān)數(shù)據(jù)信息去創(chuàng)新材料或培育新品種,這些研究中并未涉及。本研究選擇親本以及新種質(zhì)選育過(guò)程中利用的新方法,降低了選擇的工作量,提高了選擇效率。
稻米的品質(zhì)性狀由多基因控制,且各性狀間彼此交叉,其遺傳調(diào)控非常復(fù)雜,盡管很多基因的功能已比較清楚,但卻不能有效地指導(dǎo)育種實(shí)踐[20]。對(duì)于此類多基因控制的復(fù)雜性狀,以及更多未知基因控制的其他性狀,目前,在育種實(shí)踐中并未見有較好的解決方法,本研究提出的通過(guò)高能量SNP分型對(duì)遺傳背景進(jìn)行綜合評(píng)價(jià)的方法,比較有效地解決了這類問(wèn)題。
種質(zhì)創(chuàng)制高代選擇中,常規(guī)方法獲得的相對(duì)穩(wěn)定株系,利用高通量SNP分型技術(shù)進(jìn)行遺傳背景或未知基因的一致性篩選,可最終確定符合目標(biāo)要求的株系。該方法克服傳統(tǒng)系譜法在高世代選擇中針對(duì)農(nóng)藝性狀難以繼續(xù)選擇的困難,具有避免同類單株重復(fù)選擇和不同類單株漏選的問(wèn)題,降低了高世代選擇工作量,提高了選擇效率,實(shí)用性強(qiáng),具有推廣的價(jià)值。
[1] 黎舒佳, 高謹(jǐn), 李家洋, 王永紅. 獨(dú)腳金內(nèi)酯調(diào)控水稻分蘗的研究進(jìn)展. 植物學(xué)報(bào), 2015, 50(5): 539-548.
LI S J, GAO J, LI J Y, WANG Y H. Advances in studies on the regulation of rice tiller by strigolactone. The Plant Journal, 2015, 50(5): 539-548. (in Chinese)
[2] 黎裕, 李英慧, 楊慶文, 張錦鵬, 張金梅, 邱麗娟, 王天宇. 基于基因組學(xué)的作物種質(zhì)資源研究: 現(xiàn)狀與展望. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(17): 3333-3353.
LI Y, LI Y H, YANG Q W, ZHANG J P, ZHANG J M, QIU L J, WANG T Y. Genomics-based crop germplasm research: Advances and perspectives. Scientia Agricultura Sinica, 2015, 48(17): 3333-3353. (in Chinese)
[3] 胡興明, 錢前. 現(xiàn)階段中國(guó)水稻種質(zhì)創(chuàng)新的研究策略和應(yīng)用思考. 植物遺傳資源學(xué)報(bào), 2004, 5(2): 193-196.
HU X M, QIAN Q. Current research strategies and ways of utilization of new rice germplasm in China. Journal of Plant Genetic Resources, 2004, 5(2): 193-196. (in Chinese)
[4] 余泓, 王冰, 陳明江, 劉貴富, 李家洋. 水稻分子設(shè)計(jì)育種發(fā)展與展望. 生命科學(xué), 2018, 30(10): 1032-1037.
YU H, WANG B, CHEN M J, LIU G F, LI J Y. Research advance and perspective of rice breeding by molecular design. Chinese Bulletin of Life Sciences, 2018, 30(10): 1032-1037. (in Chinese)
[5] Zuo J, Li J. Molecular dissection of complex agronomic traits of rice: a team effort by Chinese scientists in recent years. National Science Review,2014, 1: 253-276.
[6] 符德保, 李燕, 肖景華, 張啟發(fā), 吳昌銀. 中國(guó)水稻基因組學(xué)研究歷史及現(xiàn)狀. 生命科學(xué), 2016, 28: 1113-1121.
FU D B, LI Y, XIAO J H, ZHANG Q F, WU C Y. The history and current status of rice genomics research in China. Chinese Bulletin of Life Sciences, 2016, 28: 1113-1121. (in Chinese)
[7] Li Y, Xiao J H, Chen L L, HUANG X H, CHENG Z K, HAN B, ZHANG Q F, WU C Y. Rice functional genomics research: past decade and future. Molecular Plant, 2018, 11: 359-380.
[8] Wang A H, Hou Q Q, Si L Z, HUANG X H, LUO J H, LU D F, ZHU J J, SHANGGUAN Y Y, MIAO J S, XIE Y F, WANG Y C, ZHAO Q, FENG Q, ZHOU C C, LI Y, FAN D L, LU Y Q, TIAN Q L, WANG Z X, HAN B. The PLATZ transcription factor GL6 affects grain length and number in rice. Plant Physiology, 2019, 180: 2077-2090.
[9] Xue W Y, Xing Y Z, Weng X Y, ZHAO Y, TANG W J, WANG L, ZHOU H J, YU S B, XU C G, LI X H, ZHANG Q F. Natural variation inis an important regulator of heading date and yield potential in rice. Nature Genetics, 2008, 40: 761-767.
[10] Wang J, Zhou L, Shi H, MAWSHENG C, YU H, YI H, HE M, YIN J J, ZHU X B, LI Y, LI W T, LIU J L, WANG J C, CHEN X Q, QING H, WANG Y P, LIU G F, WANG W M, LI P, WU X J, ZHU L H, ZHOU J M, PAMELA C R, LI S Q, LI J Y, CHEN X W. A single transcription factor promotes both yield and immunity in rice. Science, 2018, 361: 1026-1028.
[11] Tian Z x, Qian Q, Liu Q Q, YAN M X, LIU X F, YAN C J, LIU G F, GAO Z Y, TANG S Z, ZENG D L, WANG Y H, YU J M, GU M H, LI J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 21760-21765.
[12] Zhao D S, Li Q F, Zhang C Q, ZHANG C Q, ZHANG C, YANG Q Q, PAN L X, REN X Y, LU J, GU M H, LIU Q Q.acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nature Communications, 2018, 9: 1240.
[13] Huang X Y, Chao D Y, Gao J P, ZHU M Z, SHI M, LIN H X. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control.Genes & Development, 2009, 23: 1805-1817.
[14] Li X M, Chao D Y, Wu Y, HUANG X H, CHEN K, CUI L G, SU L, YE W W, CHEN H, CHEN H C, DONG N Q, GUO T, SHI M, FENG Q, ZHANG P, HAN B, SHAN J X, GAO J P, LIN H X. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genetics, 2015, 47: 827-833.
[15] Liu Y Y, Cao Y L, Zhang Q L, LI X H, WANG S P. A cytosolic triosephosphate isomerase is a key component in XA3/XA26- mediated resistance. Plant Physiology, 2018, 178: 923-935.
[16] Hu L, Wu Y, Wu D, RAO W W, GUO J P, MA Y H, WANG Z Z, SHANGGUAN X X, WANG H Y, XU C X, HUANG J, SHI S J, CHEN R Z, DU B, ZHU L L, HE G C. The coiled-coil and nucleotide binding domains of BROWN PLANTHOPPER RESISTANCE14 function in signaling and resistance against planthopper in rice. The Plant Cell, 2017, 29: 3157-3185.
[17] Hu B, Wang W, Ou S j, TANG J Y, LI H, CHE R H, ZHANG Z H, CHAI X Y, WANG H R, WANG Y Q, LIANG C Z, LIU L C, PIAO Z Z, DENG Q Y, DENG K, XU C, LIANG Y, ZHANG L H, LI L G, CHU C C. Variation incontributes to nitrate-use divergence between rice subspecies. Nature Genetics, 2015, 47: 834-838.
[18] Wang Q, Nian J Q, Xie X Z, YU H, ZHANG J, BAI J T, DONG G J, HU J, BAI B, CHEN L C, XIE Q J, FENG J, YANG X L, PENG J L, CHEN F, QIAN Q, LI J Y, ZUO J R. Genetic variations inmediate grain yield by modulating nitrogen utilization in rice. Nature Communications, 2018, 9: 735.
[19] 張先文, 賀治洲, 江南, 鄧華鳳, 李繼明. 高通量基因型分型技術(shù)及其在水稻中的應(yīng)用. 生物技術(shù)通報(bào), 2017, 33(12): 67-73.
ZHAng X w, HE Z z, JIANG N, DENG H f, LI J m. High-throughput genotyping techniques and their applications in rice. Biotechnology Bulletin, 2017, 33(12): 67-73. (in Chinese)
[20] 張昌泉, 趙冬生, 李錢峰, 顧銘洪, 劉巧泉. 稻米品質(zhì)性狀基因的克隆與功能研究進(jìn)展. 中國(guó)農(nóng)業(yè)科學(xué), 2016, 49(22): 4267-4283.
Zhang C Q, Zhao D S, Li Q F, Gu M H, Liu Q Q. Progresses in research on cloning and functional analysis of key genes involving in rice grain quality. Scientia Agricultura Sinica, 2016, 49(22): 4267-4283. (in Chinese)
[21] 王惠貞, 吳瑞芬, 李丹. 稻米品質(zhì)形成和調(diào)控機(jī)理概述. 中國(guó)稻米, 2016, 22(1): 10-13.
Wang H Z, Wu R F, Li D. Review on rice quality formation and its regulation mechanism. China Rice, 2016, 22(1): 10-13. (in Chinese)
[22] 李宏凱, 徐得澤, 陳億毅. 優(yōu)質(zhì)中秈稻新品種鄂中5號(hào)的選育. 湖北農(nóng)業(yè)科學(xué), 2005(1): 31-32.
Li H K, Xu D Z, Chen Y Y. Breeding of a new middle indica rice line Ezhong 5 with high quality. Hubei Agricultural Sciences, 2005(1): 31-32. (in Chinese)
[23] 鄭明. 高檔優(yōu)質(zhì)中秈稻鄂中5號(hào)在孝感的種植表現(xiàn). 中國(guó)稻米, 2015, 21(6): 105-106.
Zheng M. Planting performance of fine quality indica rice Ezhong 5 in Xiaogan City. China Rice, 2015, 21(6): 105-106. (in Chinese)
[24] 張?jiān)倬? 楊金松. 中國(guó)水稻品種志(湖北卷). 北京: 中國(guó)農(nóng)業(yè)出版社, 2018: 76-79.
Zhang Z j, Yang J s. China Rice Varieties (Hubei Juan). Beijing: China Agriculture Press, 2018: 76-79. (in Chinese)
[25] Nei M, Kumar S. Molecular Evolution and Phylogenetics. New York: Oxford University Press, 2000.
[26] Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33: 1870-1874.
[27] 薛大偉, 方茂庭, 錢前. 有效積溫在水稻生產(chǎn)中的應(yīng)用. 中國(guó)稻米, 2004(4): 47-48.
Xue D W, Fang M T, Qian Q. Application of effective accumulated temperature in rice production. China Rice, 2004(4): 47-48. (in Chinese)
[28] 舒慶堯, 吳殿星, 夏英武, 高明尉, Anna McClung. 稻米淀粉RVA譜特征與食用品質(zhì)的關(guān)系. 中國(guó)農(nóng)業(yè)科學(xué), 1998, 31(3): 25-29.
Shu Q Y, Wu D X, Xia Y W, Gao M W, Anna M C. Relationship between RVA profile character and eating quality inL.. Scientia Agricultura Sinica, 1998, 31(3): 25-29. (in Chinese)
[29] 隋炯明, 李欣, 嚴(yán)松, 嚴(yán)長(zhǎng)杰, 張蓉, 湯述翥, 陸駒飛, 陳宗祥, 顧銘洪. 稻米淀粉RVA譜特征與品質(zhì)性狀相關(guān)性研究. 中國(guó)農(nóng)業(yè)科學(xué), 2005, 38(4): 657-663.
Sui J M, Li X, Yan S, Yan C J, Zhang R, Tang S Z, Lu J F, Chen Z X, Gu M H. Studies on the rice RVA profile characteristics and its correlation with the quality. Scientia Agricultura Sinica, 2005, 38(4): 657-663. (in Chinese)
[30] 邱東峰, 張?jiān)倬? 辜大川, 殷明珠, 焦春海, 楊金松. 水稻R7606、229A系列優(yōu)異資源的創(chuàng)制. 植物遺傳資源學(xué)報(bào), 2013, 14(5): 918-924.
Qiu D f, Zhang Z j, Gu D c, Yin M z, Jiao C h, Yang J s. Breeding of elite rice lines R7606 and 229A. Journal of Plant Genetic Resources, 2013, 14(5): 918-924. (in Chinese)
[31] 辜大川, 邱東峰, 殷明珠, 焦春海, 楊金松, 張?jiān)倬? 劉春萍. 水稻優(yōu)異資源分子身份證的構(gòu)建. 湖北農(nóng)業(yè)科學(xué), 2012, 51(24): 5581-5586.
Gu D c, Qiu D f, Yin M z, Jiao C h, Yang J s, Zhang Z j, Liu C p. Establishment of molecular identity card of elite rice resources. Hubei Agricultural Sciences, 2012, 51(24): 5581-5586. (in Chinese)
[32] 李丹婷, 農(nóng)保選, 夏秀忠, 劉開強(qiáng), 楊慶文, 張宗文, 高國(guó)慶. 東南亞稻種資源收集與鑒定評(píng)價(jià). 植物遺傳資源學(xué)報(bào), 2012, 13(4): 622-625.
LI D t, Nong B x, XIA X z, LIU K q, YANG Q W, ZHANG Z W, GAO G Q. Collection and evaluation of rice germplasm from Southeast Asia. Journal of Plant Genetic Resources, 2012, 13(4): 622-625. (in Chinese)
[33] 束愛萍, 劉增兵, 余麗琴, 黎毛毛, 陳大洲. 水稻SSR標(biāo)記的遺傳多樣性研究進(jìn)展. 植物遺傳資源學(xué)報(bào), 2013, 14(5): 918-924.
SHU A p, LIU Z b, YU L q, LI M m, CHEN D z. Research progress on genetic diversity in rice based on SSR marker analysis. Journal of Plant Genetic Resources, 2013, 14(5): 918-924. (in Chinese)
[34] 劉傳光, 張桂權(quán). 用SSR標(biāo)記分析1949-2005年華南地區(qū)常規(guī)秈稻主栽品種遺傳多樣性及變化趨勢(shì). 作物學(xué)報(bào), 2010, 36(11): 1843-1852.
LIU C g, ZHANG G q. SSR analysis of genetic diversity and the temporal trends of major commercial inbredrice cultivars in south China in 1949-2005. Acta Agronomica Sinica, 2010, 36(11): 1843-1852. (in Chinese)
[35] Zeng Y W, Zhang H L, Li Z C, SHEN S Q, SUN J L, WANG M X, LIAO D Q, LIU X, WANG X K, XIAO F H, WEN G S. Evolution of genetic diversity of rice landraces (L.) in Yunnan, China. Breeding Science, 2007, 57: 91-99.
[36] 陳峰, 朱其松, 徐建第, 孫公臣,柳發(fā)財(cái),朱文銀,張洪瑞,高潔,袁守江. 山東地方水稻品種的農(nóng)藝性狀與品質(zhì)性狀的多樣性分析. 植物遺傳資源學(xué)報(bào), 2012, 13(3): 393-397.
CHEN F, ZHU Q s, XU J d, SUN G c, LIU F c, ZHU W y, ZHANG H r, GAO J, YUAN S j. Diversity analysis of agronomic and quality characters of rice landraces in Shandong. Journal of Plant Genetic Resources, 2012, 13(3): 393-397. (in Chinese)
Breeding and Evaluation of Elite Rice Line ZY56
QIU DongFeng1, GE PingJuan1, Liu Gang1, Yang JinSong1, Chen JianGuo2, ZHANG ZaiJun1
1Food Crop Institute, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Wuhan 430064;2School of Life Sciences, Hubei University, Wuhan 430062
【】In order to avoid the influences of unknown genes, genetic background and other uncontrollable factors in breeding practice, experiments were conducted to create new high-quality rice germplasm using an improved method, which integrated high-throughput SNP genotyping with traditional breeding to improve breeding efficiency.【】Two varieties of rice (Jianzhen 2 and Ezhong 5) were used as parents to make a cross (Ezhong 5/Jianzhen 2), and Ezhong 5 was used as recurrent parent to obtain backcross generations, whose progenies were selected by pedigree method. Rice qualities were evaluated in generations from BC1F2to BC1F4. An elite line, 4W1-056, was screened in the generation of BC1F7. DNA segments from Jianzhen 2, Ezhong 5 and 66 plants of 4W1-056 were PCR-amplified and sequenced using capture sequencing technologies, and 908 SNP sites were analyzed. Phylogenetic analyses were performed based on genotypes of SNP sites using p-distance method in software MEGA7. Novel lines were selected and evaluated based on agronomic traits and rice qualities in combination with the results from phylogenetic analyses.【】An elite line 4W1-056 was obtained by means of crossing, backcrossing and selfing, which has desirable plant type, strong tillering ability, good lodging resistance for stocky stems, excellent appearance quality and preliminarily stable in agronomic traits. Sixty-six plants selected from 4W1-056 were clustered into three groups based on the results from phylogenetic analyses.The base substitution rate among cluster Ⅰ, Ⅱ and cluster Ⅲ was 0.1398, and that between cluster I and Ⅱ was 0.0662. The base substitution rate within any of these clusters was 0, which suggested that there were no genetic differences among individual plants within the same cluster. Cluster II was designated ZY56 as a new line based on its agronomic traits and rice qualities, and its appearance quality is better than that of 4W1-056, with a chalkiness score of 0.9, which is closer to the appearance quality performance of Ezhong 5. ZY56 and its original parents were detected using 8K RICE SNP chips, the results showed that 14.13% of ZY56’s chromosome segments were from Jianzhen 2 and 85.87% were from Ezhong 5, Chip detection further showed that most of the genes in ZY56 originated from Ezhong 5, and verified the selection results after crossing, backcrossing and selfing. The minimum effective accumulated temperature needed for basic vegetative growth in ZY56 was 760.5℃, the critical light length for reproductive growth was 14 h 13 min, and the effective accumulated temperature needed for panicle differentiation was above 711.5℃. The results of quality analyses from experiments at different sowing dates showed that ZY56 responded to light length significantly weaker than Ezhong 5, its photosensitivity was weak and growth was stable, which was conducive to the development of rice qualities, and the rice qualities of ZY56 were more stable than Ezhong 5. 【】We proposed a new method for the selection in higher generations of a germplasm development program, in which high-throughput SNP genotyping technology was used to screen plants for genetic consistency, and eventually to find out the strains that conform to breeding targets. This method overcame the difficulty in the selection for agronomic traits by means of traditional pedigree in advanced generations, and circumvented the problems that similar types of strains were repeatedly selected and different types were missed. The method saved efforts of selection in higher generations, while increased the efficiency of selection, so it had value of popularization.
rice; germplasm improvement; resources evaluation
10.3864/j.issn.0578-1752.2021.06.001
2020-08-13;
2020-11-05
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFD0100101-05)、國(guó)家作物種質(zhì)資源庫(kù)(湖北分庫(kù))(NICGR2020-31)、物種資源保護(hù)費(fèi)(1120162130135252037)
邱東峰,Tel:18672779158;E-mail:qdflcp@163.com。通信作者張?jiān)倬?,Tel:13871426107;E-mail:zjzhang0459@aliyun.com。通信作者陳建國(guó),E-mail:jgchen@hubu.edu.cn
(責(zé)任編輯 李莉)