譚鶴群,黃忠浩,李亞蘋
病死豬輔熱好氧發(fā)酵尾氣中的惡臭物質(zhì)分析
譚鶴群1,2,3,黃忠浩1,2,李亞蘋1,2
(1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070;2. 農(nóng)業(yè)農(nóng)村部長(zhǎng)江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070;3.生豬健康養(yǎng)殖湖北省協(xié)同創(chuàng)新中心,武漢 430070)
為了明確病死豬輔熱好氧發(fā)酵過(guò)程中產(chǎn)生的惡臭氣體種類及其排放規(guī)律,為控制惡臭氣體排放濃度、降低病死豬無(wú)害化處理過(guò)程對(duì)環(huán)境的污染提供基礎(chǔ)依據(jù),該研究以病死豬為發(fā)酵原料,以玉米秸稈為輔料,開展病死豬輔熱好氧發(fā)酵試驗(yàn),發(fā)酵過(guò)程中,采集處理槽排放的尾氣,分析尾氣中的有機(jī)惡臭物質(zhì)組分并測(cè)定其排放濃度,同時(shí)測(cè)定其中的氨氣濃度,并對(duì)不同發(fā)酵階段尾氣中氣味活度值大于1的惡臭物質(zhì)進(jìn)行相關(guān)性分析和主成分分析。結(jié)果表明:在病死豬輔熱好氧發(fā)酵過(guò)程中共檢出36種惡臭物質(zhì),其中能準(zhǔn)確定性與定量檢測(cè)的有3種含硫化合物,1種烷烴化合物,12種芳香烴化合物,1種酚類化合物,1種胺類化合物和1種無(wú)機(jī)氣體;發(fā)酵全程或部分時(shí)間點(diǎn)超過(guò)其嗅閾值的有3-乙基甲苯、4-乙基甲苯、二甲基二硫醚、二甲基硫醚、氨氣、對(duì)甲酚、甲硫醇、三甲胺8種,達(dá)到的最高濃度依次為0.241、0.350、0.247、0.280、69.06、0.041、0.314、0.033 mg/m3,與其嗅閾值的比值依次為2.746、8.635、29.326、36.982、66.669、173.315、374.770、432.471;各發(fā)酵階段的主要致臭物質(zhì)成分存在差異:在0~12 h的發(fā)酵階段,三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣、對(duì)甲酚、3-乙基甲苯、4-乙基甲苯為主要致臭物質(zhì),在12~36 h的發(fā)酵階段,三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣、對(duì)甲酚為主要致臭物質(zhì),在36~72 h的發(fā)酵階段,三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣為主要致臭物質(zhì);不同發(fā)酵階段的臭氣強(qiáng)度存在較大波動(dòng):在0~72 h內(nèi)的發(fā)酵過(guò)程中,0~3 h內(nèi)臭氣強(qiáng)度緩慢增強(qiáng),但第6小時(shí)臭氣強(qiáng)度有明顯下降,在6~18 h時(shí)再次增強(qiáng),第18小時(shí)臭氣強(qiáng)度達(dá)到峰值,18~72 h內(nèi)持續(xù)下降直至平穩(wěn)。該研究可為病死豬輔熱好氧發(fā)酵過(guò)程中惡臭物質(zhì)的減控策略提供理論參考。
惡臭控制;發(fā)酵;釋放規(guī)律;病死豬;輔熱好氧發(fā)酵;主要致臭物質(zhì)
輔熱好氧發(fā)酵是一種減量化程度高、效率高、環(huán)境友好的病死豬無(wú)害化處理工藝,是有機(jī)廢棄物資源化利用的重要途徑[1],可以較大程度地緩解中國(guó)病死豬處理壓力。然而,輔熱好氧發(fā)酵過(guò)程中的微生物活動(dòng)會(huì)產(chǎn)生和釋放各種揮發(fā)性有機(jī)物(Volatile Organic Compounds,VOCs)和揮發(fā)性無(wú)機(jī)物(Volatile Inorganic Compounds,VICs)[2-3]。揮發(fā)性物質(zhì)中有一些具有特殊臭味,長(zhǎng)時(shí)間生活在惡臭物質(zhì)濃度較高的環(huán)境下會(huì)引起感官不適,其對(duì)環(huán)境和人體健康的影響不容忽視[4]。輔熱好氧發(fā)酵過(guò)程中的VICs主要包括氨氣和硫化氫,VOCs主要包括含硫化合物、含氮化合物和揮發(fā)性脂肪酸等,這些物質(zhì)主要來(lái)源于氨基酸的脫羧和脫氨作用[5-6]。
當(dāng)有機(jī)廢物種類、發(fā)酵條件以及分解階段不同時(shí),好氧發(fā)酵產(chǎn)生的揮發(fā)性物質(zhì)的種類和濃度均有較大差異[7-9],目前在好氧發(fā)酵領(lǐng)域已檢測(cè)出的氣體達(dá)300多種[10],其中含氮化合物、含硫化合物臭味大、閾值極低,是重要的惡臭污染物,危害人體健康[11-12]。Scaglia等[13]在城市生活垃圾好氧發(fā)酵過(guò)程中檢測(cè)出147種VOCs,含氮化合物和含硫化合物比其他分子對(duì)臭氣強(qiáng)度貢獻(xiàn)率更大,是主要致臭物質(zhì);張紅玉等[14]在生活垃圾堆肥過(guò)程中共檢測(cè)到50種VOCs,主要致臭物質(zhì)為硫化氫、二甲基硫醚、二甲基二硫醚、二硫化碳、間二甲苯、鄰二甲苯;Hanajima等[15]在糞便堆肥中檢測(cè)出了揮發(fā)性脂肪酸、含硫化合物和氨氣,其中氨氣、甲硫醇和二甲基硫醚為主要致臭物質(zhì);劉文杰等[1]在牛糞好氧發(fā)酵過(guò)程中共檢測(cè)出31種VOCs,分析發(fā)現(xiàn)氨氣、硫化氫、二甲基硫醚為主要致臭物質(zhì);張紅玉等[16]在餐廚垃圾堆肥中檢測(cè)出43種VOCs,硫化氫、甲硫醇、二甲基二硫醚、間二甲苯、鄰二甲苯和對(duì)二甲苯為主要致臭物質(zhì);趙珊等[17]在污泥堆肥過(guò)程中發(fā)現(xiàn)典型惡臭物質(zhì)為氨氣、二甲基硫醚和二甲基二硫醚等;尚斌等[18]在死豬堆肥過(guò)程中共檢測(cè)出37種VOCs,主要致臭組分為三甲胺、二甲基硫醚、二甲基二硫醚、二甲基三硫醚。
目前,有關(guān)好氧發(fā)酵VOCs的研究主要針對(duì)城市生活垃圾[19]、糞便[20-21]、污泥[22-23]等物料的無(wú)害化處理,且發(fā)酵過(guò)程中的熱量主要由微生物自身生命活動(dòng)提供;而以動(dòng)物尸體為原料的輔熱好氧發(fā)酵產(chǎn)生VOCs的文獻(xiàn)較少。因此,本研究選用病死豬作為主要發(fā)酵原料,玉米秸稈作為輔料開展病死豬輔熱好氧發(fā)酵試驗(yàn)。對(duì)發(fā)酵過(guò)程中產(chǎn)生的VOCs進(jìn)行定性分析,然后對(duì)其中的惡臭物質(zhì)進(jìn)行定量分析,以確定主要致臭物質(zhì),探究惡臭物質(zhì)的釋放規(guī)律,為后續(xù)開展病死豬輔熱好氧發(fā)酵尾氣除臭試驗(yàn)提供理論依據(jù)。
1.1.1 試驗(yàn)材料
1)病死豬:購(gòu)自湖北省天門市某養(yǎng)豬場(chǎng)的死豬胎,每頭死豬胎質(zhì)量為(1.2±0.2) kg,在?4 ℃條件下冷凍備用;
2)玉米秸稈:購(gòu)自東莞市某農(nóng)莊,粉碎后經(jīng)孔徑4.0 mm篩篩分,篩下物保留供試驗(yàn)使用;
3)BM(Biological Microbes)動(dòng)物尸體發(fā)酵菌種:購(gòu)自河南省鶴壁市某生物科技有限公司,常溫保存。
本研究以病死豬為試驗(yàn)原料,玉米秸稈為輔料開展病死豬輔熱好氧發(fā)酵試驗(yàn),病死豬尸體與輔料的理化性質(zhì)如表1所示。
表1 好氧發(fā)酵原料和輔料的特性
注:—表示該參數(shù)未測(cè)。
Note: “—” indicates that the parameter is not tested.
1.1.2 試驗(yàn)設(shè)備
1)自制發(fā)酵罐:罐體上部為圓柱形,高度為110 mm,內(nèi)徑為260 mm,底部為半球形,半球與圓柱相切,罐體總?cè)莘e約為10 L,采用夾層水浴加熱;發(fā)酵罐配置鼓風(fēng)機(jī)(XGB-550,浙江今野機(jī)電有限公司,風(fēng)機(jī)功率550 W,風(fēng)量范圍 0~100 m3/h)用于提供好氧發(fā)酵所需氧氣,配置氣體轉(zhuǎn)子流量計(jì)(LZB-10,南京順來(lái)達(dá)測(cè)控設(shè)備有限公司,測(cè)量范圍0.6~6 m3/h,精確度4%)用于對(duì)通入的風(fēng)量進(jìn)行監(jiān)測(cè)和調(diào)節(jié)。水浴溫度、攪拌軸轉(zhuǎn)速等均通過(guò)控制箱設(shè)置和調(diào)節(jié);
2)氣體采樣器:購(gòu)自江蘇鹽城天悅儀器儀表有限公司,型號(hào)FCC-1500D,量程0.1~1.5 L/min;
3)氣體吸附管:購(gòu)自英國(guó)瑪珂思公司,型號(hào)C2-CAXX-5314,內(nèi)部填充Tenax TA和Sulficarb;
4)氣質(zhì)質(zhì)聯(lián)用儀:購(gòu)自美國(guó)安捷倫公司,型號(hào)Agilent8890-7000D,用于物質(zhì)的定性和定量分析,具有氣體和液體兩種進(jìn)樣方式。氣體進(jìn)樣配有單管熱脫附儀(UNITY-xrTM),液體進(jìn)樣配有液體進(jìn)樣器;
5)四合一氣體檢測(cè)儀:購(gòu)自深圳市安帕爾科技有限公司,型號(hào)AP-S4-D,氨氣(量程0~0.1 mL/L,分辨率1×10-4mL/L,精度1%),二氧化碳(量程0~5 mL/L,分辨率1×10-3mL/L,精度1%),硫化氫(量程0~0.1 mL/L,分辨率1×10-4mL/L,精度1%),甲醛(量程0~0.1 mL/L,分辨率1×10-5mL/L,精度1%)。
1.2.1 發(fā)酵
本試驗(yàn)采用輔熱好氧發(fā)酵技術(shù),取質(zhì)量為(1.2±0.2) kg的整頭死豬胎切碎,與輔料、菌種一起放入發(fā)酵罐。根據(jù)譚鶴群等[25]和汪豪[26]的研究,設(shè)定發(fā)酵時(shí)的夾層水浴溫度為60 ℃,通風(fēng)量為8 L/(L·min)(按物料占有的單位有效容積核算的單位時(shí)間流量),輔料與病死豬的干質(zhì)量比為1∶1.62,根據(jù)含水率換算成濕質(zhì)量比為1∶5.5,BM菌種與病死豬的濕重比為1∶100,病死豬、輔料和菌種三者混合均勻,放入10 L發(fā)酵罐中攪拌、發(fā)酵。
1.2.2 發(fā)酵尾氣采樣
C2-CAXX-5314吸附管一端插入發(fā)酵罐排氣口,一端接FCC-1500D型防爆大氣采樣器,在發(fā)酵后0、3、6、12、18、24、30、36、42、48、54、60、66、72 h采集氣體,同一時(shí)間平行采集3個(gè)樣品,采樣流量100 mL/min,采樣時(shí)間5 min,采樣體積500 mL。
1.2.3 尾氣成分分析
VOCs采用Agilent8890-7000D氣質(zhì)質(zhì)聯(lián)用儀進(jìn)行分析,進(jìn)樣方式:熱脫附進(jìn)樣;樣品管解析溫度:300 ℃;解析時(shí)間:5 min;冷阱低溫:-30 ℃;冷阱高溫:300 ℃;冷阱解析時(shí)間:5 min;流路溫度(熱脫附-氣相):120 ℃;分流比:5∶1。氣相色譜色譜柱:DB-sulfur SCD 60 m× 0.32 mm×0.42m;載氣:高純氮?dú)猓兌取?9.999%);流速(恒流模式):1 mL/min;程序升溫:35 ℃保持3 min,以4 ℃/min的速率升到170 ℃,保持3 min,再以4 ℃/min的速率升到210 ℃,保持15 min。MSD傳輸線溫度:220 ℃。質(zhì)譜掃描為全掃描和選擇離子掃描。分析前使用含有16種VOCs(苯、甲苯、乙苯、對(duì)二甲苯、間二甲苯、鄰二甲苯、苯乙烯、異丙苯、2-乙基甲苯、3-乙基甲苯、4-乙基甲苯、1,2,4-三甲基苯、1,3,5-三甲基苯、對(duì)甲酚、間甲酚、正己烷)混合標(biāo)準(zhǔn)溶液(深圳市博林達(dá)科技有限公司)、硫醚類(二甲基硫醚、二甲基二硫醚)混合標(biāo)準(zhǔn)溶液(深圳市博林達(dá)科技有限公司)、三甲胺(壇墨質(zhì)檢科技股份有限公司)、甲硫醇(壇墨質(zhì)檢科技股份有限公司)繪制標(biāo)準(zhǔn)曲線。通過(guò)NIST17譜庫(kù)檢索、保留指數(shù)和保留時(shí)間篩選進(jìn)行定性,使用外標(biāo)法定量。氨氣和二氧化碳采用手持式四合一檢測(cè)儀(AP-S4-D)進(jìn)行測(cè)定。
輔熱好氧發(fā)酵過(guò)程中,好氧微生物(細(xì)菌、真菌、放線菌)在有氧條件下通過(guò)自身生命活動(dòng)(氧化、還原等)將一部分有機(jī)物轉(zhuǎn)化為二氧化碳、熱量、生物量和腐殖質(zhì),為自身生長(zhǎng)提供能量,一部分有機(jī)物轉(zhuǎn)化為微生物合成新細(xì)胞的營(yíng)養(yǎng)物質(zhì)[27]。
病死豬輔熱好氧發(fā)酵過(guò)程中二氧化碳的釋放規(guī)律如圖1所示,發(fā)酵0~3 h時(shí)間段內(nèi)二氧化碳的濃度上升緩慢,原因可能為初始升溫階段物料溫度較低,不能在較短時(shí)間內(nèi)達(dá)到設(shè)定的溫度,以及含水率較高不利于微生物的生長(zhǎng)繁殖[28]。隨著發(fā)酵溫度升高和物料水分的降低,氧氣傳輸通暢[29],并且這一階段物料孔隙較小,微生物活性較強(qiáng),快速分解易降解的碳水化合物、脂肪等有機(jī)物,釋放大量二氧化碳[1],所以發(fā)酵3 h后二氧化碳濃度迅速增高,第6小時(shí)濃度達(dá)到峰值。隨后大部分難降解的蛋白質(zhì)、纖維等有機(jī)物繼續(xù)被氧化分解[30-31],并且這一階段物料含水率進(jìn)一步降低導(dǎo)致微生物活性降低[28],所以6~18 h時(shí)間段內(nèi)二氧化碳濃度快速降低。在輔熱好氧發(fā)酵后期,有機(jī)物的分解基本趨于穩(wěn)定,微生物活性降低,二氧化碳濃度隨之逐漸降低,24 h后趨于穩(wěn)定。
GC-MS分析結(jié)果表明,病死豬輔熱好氧發(fā)酵過(guò)程中產(chǎn)生的揮發(fā)性有機(jī)物比較復(fù)雜,高達(dá)上百種。根據(jù)美國(guó)重點(diǎn)控制有毒空氣污染物[32]、日本環(huán)保署規(guī)定控制的惡臭污染物[33]、中國(guó)環(huán)保部規(guī)定控制的惡臭污染物[34]等相關(guān)文獻(xiàn),初步篩選出具有明顯臭味的物質(zhì)36種,其中能準(zhǔn)確定性與定量檢測(cè)的有18種,包括:含硫化合物3種(甲硫醇、二甲基硫醚、二甲基二硫醚),烷烴類化合物1種(正己烷),芳香烴類化合物12種(苯、甲苯、乙苯、對(duì)二甲苯、鄰二甲苯、2-乙基甲苯、3-乙基甲苯、4-乙基甲苯、1,2,4-三甲基苯、1,3,5-三甲基苯、異丙基苯、苯乙烯),酚類化合物1種(對(duì)甲酚),胺類化合物1種(三甲胺)。
此外,AP-S4-D四合一氣體檢測(cè)儀對(duì)尾氣實(shí)時(shí)監(jiān)測(cè)的結(jié)果表明,病死豬輔熱好氧發(fā)酵尾氣中未檢出硫化氫和甲醛,但氨氣濃度較高。病死豬輔熱好氧發(fā)酵過(guò)程中包括氨氣在內(nèi)的共計(jì)19種惡臭物質(zhì)排放濃度隨時(shí)間的變化如表2所示。表中每一時(shí)間點(diǎn)對(duì)應(yīng)的濃度均為同一時(shí)間3次采樣檢測(cè)結(jié)果的平均值。
表2 病死豬輔熱好氧發(fā)酵尾氣中檢出的19種惡臭物質(zhì)濃度變化
從表2可以看出,19種惡臭物質(zhì)的濃度均呈現(xiàn)先上升后下降的趨勢(shì)。對(duì)比各惡臭物質(zhì)的嗅閾值[35]發(fā)現(xiàn),發(fā)酵全程或部分時(shí)間點(diǎn)超過(guò)嗅閾值的有氨氣、甲硫醇、二甲基硫醚、二甲基二硫醚、3-乙基甲苯、4-乙基甲苯、對(duì)甲酚、三甲胺8種,這8種物質(zhì)可以被認(rèn)定是病死豬輔熱好氧發(fā)酵過(guò)程中惡臭氣味的主要來(lái)源。氣味活度值(Odor Activity Value,OAV)是物質(zhì)的濃度與其嗅閾值的比值[21],這8種主要惡臭物質(zhì)的OAV值如表3所示。
表3 主要惡臭物質(zhì)與氣味活度值
分析表2和表3發(fā)現(xiàn),在14個(gè)采樣時(shí)間點(diǎn)中,三甲胺OAV值大于1的時(shí)間點(diǎn)占比為100%,而二甲基硫醚、二甲基二硫醚、氨氣、甲硫醇都只有一個(gè)時(shí)間點(diǎn)濃度未超過(guò)閾值,OAV值大于1的時(shí)間點(diǎn)占比為92.9%。對(duì)甲酚OAV值大于1的時(shí)間點(diǎn)占比為57.1%,超過(guò)嗅閾值的時(shí)間點(diǎn)集中在發(fā)酵3~36 h時(shí)間段。3-乙基甲苯、4-乙基甲苯OAV值大于1的有2個(gè)時(shí)間點(diǎn),分別為發(fā)酵3 h和6 h,時(shí)間點(diǎn)占比均為14.3%。這表明,發(fā)酵時(shí)間0~12 h,上述8種惡臭物質(zhì)都是致臭物質(zhì);發(fā)酵12~36 h,致臭物質(zhì)是三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣和對(duì)甲酚6種;發(fā)酵36 h以后,致臭物質(zhì)是三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚和氨氣5種。
上述排放規(guī)律也可以從8種惡臭物質(zhì)的相關(guān)性分析(表4)得到驗(yàn)證。從表4可以看出,8種主要惡臭物質(zhì)明顯分為2組,一組為3-乙基甲苯、4-乙基甲苯和對(duì)甲酚,另一組為氨氣、甲硫醇、二甲基硫醚、二甲基二硫醚、三甲胺。組內(nèi)各惡臭物質(zhì)的濃度呈極顯著正相關(guān)(<0.01),組間各物質(zhì)的濃度相關(guān)性不顯著(>0.05)。這表明,3-乙基甲苯、4-乙基甲苯、對(duì)甲酚等3種物質(zhì)具有相似的排放規(guī)律,氨氣、甲硫醇、二甲基硫醚、二甲基二硫醚、三甲胺具有相似的排放規(guī)律。
表4 主要惡臭物質(zhì)的相關(guān)性分析
注:為相關(guān)系數(shù),為相關(guān)系數(shù)的顯著性概率水平;**表示在 0.01 水平上顯著相關(guān),*表示在 0.05 水平上顯著相關(guān)。
Note:is the correlation coefficient andis the significance probability level of the correlation coefficient; ** indicate significant at 0.01 level, * indicate significant at 0.05 level.
為進(jìn)一步探究病死豬輔熱好氧發(fā)酵過(guò)程中惡臭物質(zhì)的釋放規(guī)律,對(duì)14個(gè)采樣時(shí)間點(diǎn)的8種惡臭物質(zhì)進(jìn)行主成分分析(Principal Component Analysis,PCA),14個(gè)采樣時(shí)間點(diǎn)8種惡臭物質(zhì)OAV值的主成分分析結(jié)果如表 5所示。
由表5可以看出,前兩個(gè)主成分的特征值大于1,第一個(gè)主成分方差貢獻(xiàn)率為56.766%,第二個(gè)主成分的方差貢獻(xiàn)率為33.838%,前兩個(gè)主成分累積方差貢獻(xiàn)率達(dá)到90.603%,因此,可以選擇前兩個(gè)主成分對(duì)惡臭物質(zhì)釋放規(guī)律進(jìn)行綜合分析。第一主成分和第二主成分的構(gòu)造向量如式(1)和式(2)所示。
第一主成分:
第二主成分:
式中1為第一主成分得分;2為第二主成分得分;1~8依次為3-乙基甲苯、4-乙基甲苯、對(duì)甲酚、二甲基二硫醚、甲硫醇、二甲基硫醚、三甲胺、氨氣的標(biāo)準(zhǔn)分。
表5 相關(guān)矩陣的特征值及貢獻(xiàn)率
顯然,第一主成分中,后5種物質(zhì)的特征向量系數(shù)較大,前3種物質(zhì)的特征向量系數(shù)很小或呈負(fù)值。第二個(gè)主成分中,前3種物質(zhì)的特征向量系數(shù)比較大,后5種物質(zhì)的特征向量系數(shù)很小。因此,可以認(rèn)為第一主成分主要提取二甲基二硫醚、甲硫醇、二甲基硫醚、三甲胺、氨氣的濃度信息;所以第二主成分主要從3-乙基甲苯、4-乙基甲苯、對(duì)甲酚中提取信息。
按兩個(gè)主成分的方差貢獻(xiàn)率構(gòu)造綜合評(píng)分公式,綜合得分如式(3)所示:
式中為綜合得分。
每個(gè)時(shí)間點(diǎn)的綜合得分代表這一時(shí)刻的臭氣強(qiáng)度,按臭氣強(qiáng)度衡量的惡臭物質(zhì)釋放規(guī)律如圖2所示。
可以看出,隨著發(fā)酵的進(jìn)行,0~3 h內(nèi)臭氣強(qiáng)度緩慢增強(qiáng),但在第6小時(shí)時(shí)臭氣強(qiáng)度有明顯下降,這一現(xiàn)象和表2中發(fā)酵第6 小時(shí)甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣濃度都有明顯下降相一致,下降的可能原因有三個(gè):
第一,隨著發(fā)酵的進(jìn)行,物料中的水分轉(zhuǎn)移到罐體空氣中,導(dǎo)致空氣中水分含量逐漸增大,大量的氨氣溶于水氣中,導(dǎo)致罐體內(nèi)氨氣濃度降低。第二,在第6小時(shí)時(shí)發(fā)酵罐內(nèi)二氧化碳濃度達(dá)到最高,此時(shí)可能處于局部缺氧環(huán)境,甲硫醇自發(fā)氧化為二甲基二硫醚的過(guò)程會(huì)受到影響,所以二甲基二硫醚濃度下降。第三,二甲基硫醚是通過(guò)甲硫醇的甲基化得到的,甲硫醇濃度下降,導(dǎo)致二甲基硫醚濃度也會(huì)下降[36],但甲硫醇濃度下降的原因暫未可知。
6~18 h臭氣強(qiáng)度快速增強(qiáng),第18小時(shí)達(dá)到峰值。這一階段,大部分難降解的蛋白質(zhì)、纖維等有機(jī)物被氧化分解。能產(chǎn)生蛋白酶的微生物可以把蛋白質(zhì)逐漸降解,最后形成氨基酸。氨基酸在有氧和無(wú)氧條件下都可發(fā)生氨化反應(yīng)生成氨氣[37],含硫氨基酸發(fā)生脫氨基等一系列連續(xù)反應(yīng)后生成大量的含硫化合物[38]。
隨著發(fā)酵的進(jìn)行,蛋白質(zhì)、脂肪等大分子有機(jī)物含量逐漸降低,特別是物料中水分含量逐漸降低會(huì)導(dǎo)致微生物的降解活動(dòng)逐步減弱,因此,18~30 h臭氣強(qiáng)度快速減弱,30~72 h臭氣強(qiáng)度緩慢減弱,直至穩(wěn)定。發(fā)酵全過(guò)程中,惡臭物質(zhì)的濃度經(jīng)歷了緩慢上升、短暫下降、快速上升、快速下降、緩慢下降等幾個(gè)階段。
本文研究了病死豬輔熱好氧發(fā)酵過(guò)程中產(chǎn)生和釋放的惡臭物質(zhì)組分、濃度及其變化規(guī)律。從產(chǎn)生的惡臭物質(zhì)組分來(lái)看,病死豬輔熱好氧發(fā)酵與豬糞、垃圾等其他原料好氧發(fā)酵略有不同,在豬糞[7]、垃圾[15]等原料好氧發(fā)酵過(guò)程超出嗅閾值的惡臭物質(zhì)中,本研究未檢測(cè)出硫化氫和二甲基三硫醚。局部缺氧條件下,含硫氨基酸降解的第一步會(huì)發(fā)生脫氨基作用形成氨態(tài)氮、-羥丁酸、-酮丁酸和4-甲硫基-2-氧代丁酸等。在厭氧菌的作用下,4-甲硫基-2-氧代丁酸會(huì)快速發(fā)生脫甲硫基作用轉(zhuǎn)化為甲硫醇。甲硫醇可以自發(fā)氧化生成二甲基二硫醚,但需要產(chǎn)甲烷菌的作用才能還原生成硫化氫,而甲硫醇需要與硫化氫反應(yīng)才能生成二甲三硫[36]。產(chǎn)甲烷菌對(duì)溫度、pH要求比較高[39],病死豬輔熱好氧發(fā)酵過(guò)程由于提供了外來(lái)熱源,比自然好氧發(fā)酵更易維持發(fā)酵物料的高溫狀態(tài),抑制了產(chǎn)甲烷菌的活性,這應(yīng)該是本研究未檢出硫化氫和二甲三硫的原因。
從惡臭物質(zhì)的濃度來(lái)看,病死豬輔熱好氧發(fā)酵與豬糞、垃圾等其他原料好氧發(fā)酵也存在很大的差異。本文檢測(cè)出的最高濃度為氨氣69.063 mg/m3、三甲胺0.033 2 mg/m3、甲硫醇0.314 2 mg/m3、二甲基硫醚0.280 mg/m3、二甲基二硫醚0.246 9 mg/m3;餐廚垃圾發(fā)酵過(guò)程各物質(zhì)最高濃度為氨氣116.67 mg/m3、甲硫醇8.9 mg/m3、二甲基硫醚20.95 mg/m3、二甲基二硫醚66.0 mg/m3[16];豬糞高溫好氧發(fā)酵中檢測(cè)到惡臭物質(zhì)最高濃度為氨氣3 736 mg/m3、三甲胺7.34 mg/m3、甲硫醇0.088 2 mg/m3、二甲基硫醚1.063 7 mg/m3、二甲基二硫醚26.638 6 mg/m3[4]。由此可以看出,以病死豬為原料的輔熱好氧發(fā)酵產(chǎn)生的惡臭物質(zhì)濃度遠(yuǎn)遠(yuǎn)低于餐廚垃圾和豬糞。
綜上所述,病死豬輔熱好氧發(fā)酵尾氣中超出嗅閾值的惡臭物質(zhì)種類較少,濃度較低,但其中一些物質(zhì)的OAV值仍然較高,且各發(fā)酵階段致臭物質(zhì)的成分存在差異。所以在不同的發(fā)酵階段,需要針對(duì)不同的致臭物質(zhì)進(jìn)行病死豬輔熱好氧發(fā)酵尾氣除臭試驗(yàn)。
1)病死豬輔熱好氧發(fā)酵尾氣中能準(zhǔn)確定性和定量檢測(cè)的共19種惡臭物質(zhì),其中,硫醇硫醚類3種、烷烴類1種、芳香烴類12種、酚類1種、胺類1種、無(wú)機(jī)氣體1種。OAV大于1的8種物質(zhì)可以分為兩組,3-乙基甲苯、4-乙基甲苯、對(duì)甲酚為一組,氨氣、甲硫醇、二甲基硫醚、二甲基二硫醚、三甲胺為一組,組內(nèi)物質(zhì)的OAV值呈極顯著相關(guān)(<0.01),具有相似的排放規(guī)律,不同組間的物質(zhì)OAV值相關(guān)性不顯著(>0.05)。
2)病死豬輔熱好氧發(fā)酵尾氣中,各階段致臭物質(zhì)成分存在差異,在發(fā)酵12小時(shí)以內(nèi)階段,三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣、對(duì)甲酚、3-乙基甲苯、4-乙基甲苯為主要致臭物質(zhì);在12~36 h發(fā)酵階段,主要致臭物質(zhì)是三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚、氨氣和對(duì)甲酚6種;在36~72 h發(fā)酵階段,主要致臭物質(zhì)為三甲胺、甲硫醇、二甲基硫醚、二甲基二硫醚和氨氣5種。
3)不同發(fā)酵階段的臭氣強(qiáng)度不同。在0~72 h內(nèi)的發(fā)酵過(guò)程中,0~3 h內(nèi)臭氣強(qiáng)度緩慢增強(qiáng),但在第6小時(shí)時(shí)臭氣強(qiáng)度有明顯下降,6~18 h內(nèi)臭氣強(qiáng)度快速增強(qiáng),第18小時(shí)達(dá)到峰值,18~30 h內(nèi)臭氣強(qiáng)度快速減弱,30~72 h內(nèi)臭氣強(qiáng)度緩慢減弱,直至穩(wěn)定。
[1] 劉文杰,沈玉君,孟海波,等. 牛糞好氧發(fā)酵揮發(fā)性物質(zhì)排放特征及惡臭物質(zhì)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(22):222-230.
Liu Wenjie, Shen Yujun, Meng Haibo, et al. Emission characteristics of volatile matter and identification of odor substances during aerobic fermentation of cattle manure[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 222-230. (in Chinese with English abstract)
[2] Shen Y J, Chen T B, Gao D, et al. Online monitoring of volatile organic compound production and emission during sewage sludge composting[J]. Bioresource Technology, 2012, 123: 463-470.
[3] 張曦,孟海波,劉文杰,等. 蔬菜廢棄物與畜禽糞便聯(lián)合好氧發(fā)酵揮發(fā)性有機(jī)物排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(22):193-199.
Zhang Xi, Meng Haibo, Liu Wenjie, et al. Emission characteristics of volatile organic compounds during vegetable residues and livestock manure combined aerobic fermentation[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 193-199. (in Chinese with English abstract)
[4] Higgins M J, Adams G, Chen Y C, et al. Role of protein, amino acids, and enzyme activity on odor production from anaerobically digested and dewatered biosolids[J]. Water Environment Research, 2008, 80(2): 127-135.
[5] 夏湘勤,席北斗,黃彩紅,等. 畜禽糞便堆肥臭氣控制研究進(jìn)展[J]. 環(huán)境工程技術(shù)學(xué)報(bào),2019,9(6):649-657.
Xia Xiangqin, Xi Beidou, Huang Caihong, et al. Review on odor control of livestock and poultry manure composting[J]. Journal of Environmental Engineering Technology, 2019, 9(6): 649-657. (in Chinese with English abstract)
[6] 沈玉君,張朋月,趙立欣,等. 豬糞好氧發(fā)酵過(guò)程中揮發(fā)性有機(jī)物組分分析及致臭因子的確定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(4):205-210. Shen Yujun, Zhang Pengyue, Zhao Lixin, et al. Component analysis of volatile organic compounds and determination of key odor in pig manure aerobic fermentation process[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 205-210. (in Chinese with English abstract)
[7] Schiavon M, Martini L M, Corra C, et al. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices[J]. Environmental Pollution, 2017, 231: 845-853.
[8] Komilis D P, Ham R K, Park J K. Emission of volatile organic compounds during composting of municipal solid wastes[J]. Water Research, 2004, 38(7): 1707-1704.
[9] Pagans E, Font X, Sánchez A. Emission of volatile organic compounds from composting of different solid wastes: abatement by biofiltration[J]. Journal of Hazardous Materials, 2006, 131(1/2/3): 179-186.
[10] 趙占楠,趙繼紅,馬闖,等. 污泥堆肥過(guò)程中揮發(fā)性有機(jī)物(VOCs)的研究進(jìn)展[J]. 環(huán)境工程,2014,32(11):93-97.
Zhao Zhannan, Zhao Jihong, Ma Chuang, et al. Research progress of volatile organic compounds(VOCs) generated in sewage sludge composting[J]. Environmental Engineering, 2014, 32(11): 93-97. (in Chinese with English abstract)
[11] Chung Y C. Evaluation of gas removal and bacterial community diversity in a biofilter developed to treat composting exhaust gases[J]. Journal of Hazardous Materials, 2007, 144(1): 377-385.
[12] He P J, Tang J F, Yang N, et al. The emission patterns of volatile organic compounds during aerobic biotreatment of municipal solid waste using continuous and intermittent aeration[J]. Journal of the Air & Waste Management Association, 2012, 62(4): 461-470.
[13] Scaglia B, Orzi V, Artola A, et al. Odours and volatile organic compounds emitted from municipal solid waste at different stage of decomposition and relationship with biological stability[J]. Bioresource Technology, 2011, 102(7): 4638-4645.
[14] 張紅玉,李國(guó)學(xué),楊青原. 生活垃圾堆肥過(guò)程中惡臭物質(zhì)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(9):192-199.
Zhang Hongyu, Li Guoxue, Yang Qingyuan. Odor pollutants analyzing during Municipal Solid Waste (MSW) composting[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(9): 192-199. (in Chinese with English abstract)
[15] Hanajima D, Kuroda K, Morishita K, et al. Key odor components responsible for the impact on olfactory sense during swine feces composting[J]. Bioresource technology, 2010, 101(7): 2306-2310.
[16] 張紅玉,鄒克華,楊金兵,等. 廚余垃圾堆肥過(guò)程中惡臭物質(zhì)分析[J]. 環(huán)境科學(xué),2012,33(8):2563-2568.
Zhang Hongyu, Zou Kehua, Yang Jinbing, et al. Analysis of odor pollutants in kitchen waste composting[J]. Environmental Science, 2012, 33(8): 2563-2568. (in Chinese with English abstract)
[17] 趙珊,郭學(xué)彬,楊曉芳,等. 市政污泥堆肥過(guò)程中揮發(fā)性硫化物(VSC)和NH3釋放規(guī)律[J]. 環(huán)境工程,2021,39(2):82-88.
Zhao Shan, Guo Xuebin, Yang Xiaofang, et al. Research on Volatile Sulfide(VSC) and ammonia emission law in process of municipal sludge composting[J]. Environmental Engineering, 2021, 39(2): 82-88. (in Chinese with English abstract)
[18] 尚斌,周談龍,董紅敏,等. 生物過(guò)濾法去除死豬堆肥排放臭氣效果的中試[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(11):226-232.
Shang Bin, Zhou Tanlong, Dong Hongmin, et al. Pilot scale test on removal effect of odor from pig manure and carcass composting by biofiltration[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(11): 226-232. (in Chinese with English abstract)
[19] Liu Q, Li M, Chen R, et al. Biofiltration treatment of odors from municipal solid waste treatment plants[J]. Waste Management, 2009, 29(7): 2051-2058.
[20] Turan N G, Akdemir A, Ergun O N. Emission of volatile organic compounds during composting of poultry litter[J]. Water Air & Soil Pollution, 2007, 184(1/2/3/4): 177-182.
[21] 周談龍,尚斌,董紅敏,等. 中試規(guī)模豬糞堆肥揮發(fā)性有機(jī)物排放特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(6):192-198.
Zhou Tanlong, Shang Bin, Dong Hongmin, et al. Emission characteristics of volatile organic compounds during pilot swine manure composting[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(6): 192-198. (in Chinese with English abstract)
[22] Nie E Q, Zheng G D, Gao D, et al. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant[J]. Science of the Total Environment, 2019, 659: 664-672.
[23] 沈玉君. 污泥好氧發(fā)酵過(guò)程臭氣及揮發(fā)性有機(jī)物的產(chǎn)生與釋放[D]. 北京:中國(guó)科學(xué)院大學(xué),2012.
Shen Yujun. Study on Production and Emission of Odor and Volatile Organic Compounds during Sewage Sludge Composting[D]. Beijing: University of Chinese Academy of Sciences, 2012. (in Chinese with English abstract)
[24] 牛文娟. 主要農(nóng)作物秸稈組成成分和能源利用潛力[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015.
Niu Wenjuan. Physicochemical Composition and Energy Potential of Main Crop Straw and Stalk[D]. Beijing: China Agricultural University 2015. (in Chinese with English abstract)
[25] 譚鶴群,聶杰,萬(wàn)鵬,等. 病死豬輔熱快速好氧發(fā)酵工藝參數(shù)優(yōu)化與裝備研制[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2019,35(8):262-268.
Tan Hequn, Nie Jie, Wan Peng, et al. Process parameter optimization and equipment development of thermophilic aerobic fermentation of dead pigs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 262-268. (in Chinese with English abstract)
[26] 汪豪. 病死豬高溫好氧發(fā)酵工藝研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2020.
Wang Hao. Study on Thermophilic Aerobic Fermentation Technology of Dead Pigs[D]. Wuhan: Huazhong Agricultural University 2020. (in Chinese with English abstract)
[27] 姜瑩. 高溫好氧發(fā)酵堆肥處理技術(shù)研究[J]. 黑龍江農(nóng)業(yè)科學(xué),2010(3):106-107.
Jiang Ying. Research on technology of thermophilic aerobic fermentation composting[J]. Heilongjiang Agricultural Sciences, 2010(3): 106-107. (in Chinese with English abstract)
[28] 李丹陽(yáng),馬若男,亓傳仁,等. 含水率對(duì)羊糞堆肥腐熟度及污染氣體排放的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2020,36(20):254-262.
Li Danyang, Ma Ruonan, Qi Chuanren, et al. Effects of moisture content on maturity and pollution gas emissions during sheep manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 254-262. (in Chinese with English abstract)
[29] Richard T L, Hamelers H V M, Veeken A, et al. Moisture relationships in composting processes[J]. Compost Science & Utilization, 2002, 10(4): 286-302.
[30] 王晉剛. 固體廢物處理與處置[M]. 北京:化學(xué)工業(yè)出版社,2018.
[31] 席北斗,黨秋玲,魏自民,等. 生活垃圾微生物強(qiáng)化堆肥對(duì)放線菌群落的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(增刊. 1):227-232.
Xi Beidou, Dang Qiuling, Wei Zimin, et al. Effects of microbial inoculants on actinomycetes communities diversity during municipal solid waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(Supp. 1): 227-232. (in Chinese with English abstract)
[32] US. Environmental Protection Agency. Initial list of hazardous air pollutants with modifications[EB/OL]. [2021-09-03]. https: //www. epa. gov/haps/initial-list- hazardous-air-pollutants-modifications
[33] 日本惡臭防治法[Z]. [2021-09-03]. 1995.
[34] 國(guó)家環(huán)境保護(hù)局. 惡臭污染物排放標(biāo)準(zhǔn),GB 14554—1993[S]. 北京:中國(guó)標(biāo)準(zhǔn)出版社,1994.
[35] Nagata Y, Takeuchi N. Measurement of odor threshold by triangle odor bag method[J]. Odor Mmeasurement Review, 2003, 118: 118-127.
[36] 盧信,劉成,尹洪斌,等. 生源性湖泛水體主要含硫致臭物及其產(chǎn)生機(jī)制[J]. 湖泊科學(xué),2015,27(4):583-590.
Lu Xin, Liu Cheng, Yin Hongbin, et al. The main sulfur-containing odorous compounds and their forming mechanisms in waters during bio-induced black bloom[J]. Journal of Lake Sciences, 2015, 27(4): 583-590. (in Chinese with English abstract)
[37] 馬麗紅. 牛糞高溫堆肥化中氮素轉(zhuǎn)化的微生物機(jī)理研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2009.
Ma Lihong. Study on Microbial Mechanism of Nitrogen Transformation during Cow Manure Composting[J]. Yangling: Northwest A&F University, 2009. (in Chinese with English abstract)
[38] 陳敏. 填埋垃圾厭氧降解過(guò)程中含硫化合物的轉(zhuǎn)化和CH3SH產(chǎn)生潛能研究[D]. 杭州:浙江大學(xué),2017.
Chen Min. The Conversion of Sulfur Compounds and CH3SH Production Potential during the Anaerobic of Degradation Landfilled Waste[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)
[39] 裴占江,王大慰,張楠,等. 溫度對(duì)產(chǎn)甲烷菌群發(fā)酵性能的影響[J]. 黑龍江農(nóng)業(yè)科學(xué),2009(5):128-129.
Pei Zhanjiang, Wang Dawei, Zhang Nan, et al. Effect of temperature on the efficiency of methanogenic bacteria[J]. Heilongjiang Agricultural Sciences, 2009(5): 128-129. (in Chinese with English abstract)
Analysis of odor pollutants in the exhaust gas from thermophilic aerobic fermentation of dead pigs
Tan Hequn1,2,3, Huang Zhonghao1,2, Li Yaping1,2
(1.,,430070,; 2.,,430070,;3.,430070,)
Thermophilic aerobic fermentation (composting) has been emerged as an important approach to dispose of the organic solid wastes. The dead pigs can also be recycled and utilized properly using this biotechnology for resource treatment. However, a large amount of odor gas can be always generated concomitantly in this process, particularly posing a great threat to both air environment and human health as a kind of air contamination. There were some differences in the component and concentration from the odor pollutants produced by thermophilic aerobic fermentation, due to various participating organic wastes. The manure and waste have still been the two most focused raw materials about odor pollutants so far. But there is a rare reference with dead pigs.The purpose of this work was to explore the types and the emitting regularity of odor gas produced from thermophilic aerobic fermentation for dead pigs, in order to control the concentration of odor pollutants for less air contamination during nonhazardous dead pig processing. A three-day experiment was carried out, where 1.2 kg chopped body tissue sample of the dead pig was taken as the raw material, while 0.218 kg crushed maize stovers and 12 g strains were taken as auxiliary materials. The raw material, auxiliary materials, and strains were then mixed well and put together into a 10 L fermenter equipped with a stirring device, further to start fermenting with such an experimental condition that the temperature of interlayer water bath during fermentation was kept at 60℃ and the ventilation rate was retained to 8L/(L·min). After that, 14 times of gas sampling were conducted from the tail gas tank, where three samples were collected each time, and 500 ml of fermentation gas was collected for each sample acting. As such, the primary odorants and the release regularity of odor pollutants were determined in the process of thermophilic aerobic fermentation during a 72-hour fermentation period. Specifically, the sampling interval was set as 3 hours during the first 6 hours, but it changed to 6 hours from the 6th to the 72ed hour. The organic odor components and the concentration of sampling gas were analyzed to determine the concentration of ammonia. Besides, the correlation analysis and principal component analysis were performed on those odor pollutants with the odor activity greater than 1 during fermentation. The results showed that 36 odor pollutants in total were detected during the thermophilic aerobic fermentation of dead pigs, 19 of which were accurately detected qualitatively and quantitatively—including 3 sulfur compounds (methanethiol, dimethyl sulfide, and dimethyl disulfide), 1 alkane compound (n-hexane), 12 aromatic hydrocarbon (benzene, toluene, ethyl benzene, p-xylene, o-xylene, 2-ethyltoluene, 3-ethyltoluene, 4-ethyltoluene, 1,2 ,4-trimethylbenzene, 1,3,5-trimethylbenzene, cumene, and styrene), 1 phenolic compound (p-cresol), 1 amine compound (trimethylamine), and 1 inorganic compound (ammonia). According to the standard and odor activity of odor pollutants, 3-ethyltoluene, 4-ethyltoluene, dimethyl disulfide, dimethyl sulfide, ammonia, p-cresol, methanethiol, and trimethylamine were the main odor pollutants in the exhaust gas of thermophilic aerobic fermentation of dead pigs. The highest concentrations of these eight main odor pollutants reached up to 0.241, 0.350, 0.247, 0.280, 69.063, 0.041, 0.314 and 0.033 mg/m3, respectively, the ratio of which to olfactory thresholds were 2.746, 8.635, 29.326, 36.982, 66.669, 173.315, 374.77 and 432.471, respectively. The OAV of the main odor pollutants also changed with the changing period of fermentation. The correlation analysis demonstrated that the components of the primary odorants were different in the different fermentation periods: trimethylamine, methanethiol, dimethyl sulfide, dimethyl disulfide, ammonia, p-cresol, 3-ethyl toluene, and 4-ethyl toluene were the primary odorants in the fermentation periods of 0-12 h, trimethylamine, methanethiol, dimethyl sulfide, dimethyl disulfide, ammonia, and p-cresol were the primary odorants in the fermentation periods of 12-36 h, while the trimethylamine, methanethiol, dimethyl sulfide, dimethyl disulfide, and ammonia were the primary odorants in the fermentation periods of 36-72 h. Meanwhile, the odor intensity changed a lot with the different stages of fermentation: it increased slowly in the stage of the first 3 hours, but there was a significant drop when it reached the point of the 6th hour, then went up again from the 6th to 18th hour, up to the peak in the 18th hour, and turned stable to the end. This work can provide a strong reference to reduce and control the odor pollutants during the thermophilic aerobic fermentation of dead pigs.
odor control; fermentation; dead pig; thermophilic aerobic fermentation; the primary odorants; release regularity
10.11975/j.issn.1002-6819.2021.24.023
S126
A
1002-6819(2021)-24-0208-08
2021-09-15
2021-11-24
中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(107/11041910103)
譚鶴群,博士,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)產(chǎn)品加工機(jī)械與畜牧機(jī)械。Email:thq@mail.hzau.edu.cn
譚鶴群,黃忠浩,李亞蘋. 病死豬輔熱好氧發(fā)酵尾氣中的惡臭物質(zhì)分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(24):208-215. doi:10.11975/j.issn.1002-6819.2021.24.023 http://www.tcsae.org
Tan Hequn, Huang Zhonghao, Li Yaping. Analysis of odor pollutants in the exhaust gas from thermophilic aerobic fermentation of dead pigs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(24): 208-215. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.24.023 http://www.tcsae.org
中國(guó)農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:譚鶴群(E041200575S)