張婧 翟琳 萬(wàn)炳軍 周園 李小龍
摘 要:目的:應(yīng)用蛋白質(zhì)組學(xué)技術(shù)辨析在血清樣本中與運(yùn)動(dòng)性疲勞有關(guān)差異表達(dá)蛋白。方法:以17~21歲的10名成年男性為研究對(duì)象,建立運(yùn)動(dòng)疲勞模型。應(yīng)用蛋白質(zhì)組學(xué)技術(shù),對(duì)運(yùn)動(dòng)疲勞前后血清中的蛋白質(zhì)樣品在相同條件下進(jìn)行3次雙向電泳,利用ImageMaster 2D platinum 5.0軟件進(jìn)行圖像的強(qiáng)度校正、點(diǎn)檢測(cè)、匹配等分析。根據(jù)蛋白質(zhì)點(diǎn)表達(dá)量與所有匹配蛋白質(zhì)點(diǎn)表達(dá)量總和的比值大于2.0,且同組3塊膠圖譜中都出現(xiàn)相同變化的蛋白點(diǎn),被認(rèn)為是差異蛋白質(zhì)點(diǎn)。結(jié)果:研究發(fā)現(xiàn),運(yùn)動(dòng)疲勞前后共檢測(cè)出34個(gè)差異蛋白質(zhì)點(diǎn)。最終鑒定出運(yùn)動(dòng)疲勞后表達(dá)上調(diào)的蛋白和表達(dá)下調(diào)的蛋白分別為6種,涉及到急性相蛋白、免疫相關(guān)蛋白、脂代謝相關(guān)蛋白和神經(jīng)調(diào)節(jié)相關(guān)蛋白。結(jié)論:通過(guò)蛋白質(zhì)組學(xué)技術(shù)高通量篩選后,發(fā)現(xiàn)與運(yùn)動(dòng)性疲勞有關(guān)差異表達(dá)蛋白有12種,其中,表達(dá)下調(diào)的α1-B-糖蛋白、叢生蛋白和結(jié)合珠蛋白,表達(dá)上調(diào)的α2-HS-糖蛋白、載脂蛋白E有必要進(jìn)一步研究,確定其是否可以作為判斷運(yùn)動(dòng)性疲勞的新的分子靶標(biāo)。
關(guān)鍵詞:運(yùn)動(dòng)性疲勞;蛋白質(zhì)組;血清蛋白
中圖分類(lèi)號(hào):G804.7? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1009-9840(2021)06-0050-07
Screening of serum differential proteins associated with exercise-induced fatigue
ZHANG Jing, ZHAI Lin, WAN Bingjun, ZHOU Yuan, LI Xiaolong
(School of Physical Education, Shaanxi Normal University, Xi'an 710119, Shaanxi, China)
Abstract:Objective:The different protein expression related to exercise-induced fatigue in serum samples was discussed by using proteomics techniques. Method:In this study, 10 male students aged 17 to 21 years were the research object building the model of sports. Protein samples in serum before and after exercise fatigue were screened applying the proteomics technology. The differential protein points were enzymolyzed being analyzed by the MALDI-TOF mass spectrometry and identified through searching the SwissProt Database. Result: A total of 34 different protein spots were detected before and after exercise fatigue. Finally, 12 proteins were identified as up-regulated and down-regulated after exercise fatigue, which involves acute phase proteins, immune-related proteins, lipid metabolism-related proteins and neuroregulatory proteins. Conclusion:After high throughput screening by proteomics technique, 12 differentially expressed proteins related to exercise-induced fatigue were found, among which, the down-regulated α1-B-glycoprotein, fascicular protein and binding globin, and the up-regulated α2-hs-glycoprotein and apolipoprotein E should be further studied to determine whether they can be used as a new molecular target for the determination of exercise-induced fatigue.
Key words: exercise-induced fatigue; proteomics; serum protein
收稿日期:2021-05-08
基金項(xiàng)目:陜西省科技廳區(qū)域創(chuàng)新引導(dǎo)計(jì)劃項(xiàng)目“運(yùn)動(dòng)+膳食”健康管理智能云平臺(tái)的研制與應(yīng)用(編號(hào):2020QFY01-03)。
作者簡(jiǎn)介:張婧(1975- ),女,博士,副教授,主要研究方向科學(xué)運(yùn)動(dòng)與慢性病防控。
一直以來(lái),關(guān)于運(yùn)動(dòng)性疲勞的產(chǎn)生機(jī)理和消除方法一直備受各國(guó)專家學(xué)者關(guān)注[1-3],但由于疲勞現(xiàn)象十分復(fù)雜,運(yùn)動(dòng)性疲勞涉及眾多的代謝過(guò)程和調(diào)節(jié)機(jī)制,代謝物種類(lèi)繁多,運(yùn)動(dòng)的類(lèi)型、強(qiáng)度和時(shí)間均會(huì)對(duì)其產(chǎn)生一定影響。因此,判斷疲勞的生物指標(biāo)缺乏特異性是制約運(yùn)動(dòng)性疲勞機(jī)制研究的瓶頸之一。目前研究也發(fā)現(xiàn),在運(yùn)動(dòng)疲勞發(fā)生、發(fā)展和一些間接的診斷指標(biāo)都和蛋白質(zhì)代謝有關(guān)[4]。蛋白質(zhì)組學(xué)是對(duì)細(xì)胞或生物體全部蛋白質(zhì)的系統(tǒng)鑒定、定量并闡釋其生物學(xué)功能的學(xué)科[5]。近年來(lái),蛋白質(zhì)組學(xué)已廣泛地被應(yīng)用于生物學(xué)和臨床醫(yī)學(xué)研究[6-8]。蛋白質(zhì)作為機(jī)體內(nèi)生理功能的直接執(zhí)行者,推測(cè)一定能從其中篩選出與運(yùn)動(dòng)疲勞相關(guān)的生物標(biāo)志物。本研究應(yīng)用蛋白質(zhì)組學(xué)技術(shù),通過(guò)對(duì)正常狀態(tài)及運(yùn)動(dòng)疲勞狀態(tài)下個(gè)體間的血漿蛋白質(zhì)組比較分析,篩選出與運(yùn)動(dòng)性疲勞發(fā)生、發(fā)展中相關(guān)的異常蛋白質(zhì),尋找潛在的與運(yùn)動(dòng)性疲勞密切相關(guān)的血漿特異性生物標(biāo)志物,可為運(yùn)動(dòng)性疲勞的早期診斷和科學(xué)健身的評(píng)價(jià)提供可靠的實(shí)驗(yàn)依據(jù),并為抗運(yùn)動(dòng)性疲勞藥物的開(kāi)發(fā)提供新的分子靶標(biāo)。
1 研究方法
1.1 研究對(duì)象
以年齡為17~21歲的10名成年男性為研究對(duì)象,基本特征如表1示。
1.2 疲勞模型建立
各研究對(duì)象以最大心率80%進(jìn)行平板跑臺(tái)運(yùn)動(dòng),通過(guò)《主觀體力感覺(jué)等級(jí)量表》進(jìn)行運(yùn)動(dòng)疲勞狀態(tài)的評(píng)定[9-11],至主觀體力感覺(jué)等級(jí)到12~14(即有點(diǎn)困難,見(jiàn)表2)視為疲勞。同時(shí)測(cè)定其最大吸氧量、呼吸頻率,并在運(yùn)動(dòng)前、運(yùn)動(dòng)后3分鐘分別測(cè)定受試者的心率、血壓,同時(shí)分別取血3 mL以制備血清,測(cè)定血糖(BG)、血紅蛋白(Hb)和乳酸脫氫酶(LDH)等生化指標(biāo)對(duì)疲勞程度進(jìn)行界定。
1.3 樣品的采集
運(yùn)動(dòng)前、后收集靜脈血于采血管中,待血液自然凝固后,用牙簽沿管壁輕輕剝離血凝塊,避免溶血。4℃下冷凍離心(3 000/rpm)10 min,吸取上清液(血清)于-80℃保存?zhèn)溆谩?/p>
1.4 血紅蛋白、血糖和乳酸脫氫酶的測(cè)定
1.4.1 血紅蛋白和乳酸脫氫酶的測(cè)定
采用化學(xué)比色法測(cè)定血漿游離血紅蛋白的含量和血清乳酸脫氫酶活性,按照試劑盒(購(gòu)置于南京建成生物工程研究所)說(shuō)明書(shū)操作步驟進(jìn)行測(cè)定。
1.4.2 血糖測(cè)定
采用葡萄糖氧化酶法利用耐利eB-G型血糖儀進(jìn)行測(cè)定。
1.5 蛋白質(zhì)雙向電泳
本研究中人血清蛋白的雙向電泳分析、凝膠圖像分析和質(zhì)譜檢測(cè)與分析均在廣州輝駿生物科技有限公司按試劑盒操作說(shuō)明書(shū)或常規(guī)實(shí)驗(yàn)操作方法完成。簡(jiǎn)單描述包括以下步驟:1)一向等點(diǎn)聚焦:此過(guò)程中包括蛋白質(zhì)溶解、定量、上樣、泡脹、等電聚焦等步驟。2)二向SDS-PAGE:SDS-PAGE凝膠配方如表3。這一步包括裝灌膠器、配液灌膠、準(zhǔn)備玻璃板、配置上槽液、膠條平衡、配置上槽液、垂直電泳和染色等步驟。
1.6 質(zhì)譜鑒定
首先要進(jìn)行質(zhì)譜前處理,包括挖點(diǎn)、酶切、肽段抽提和點(diǎn)靶。然后利用德國(guó)布魯克MALDI-TOF-TOF質(zhì)譜儀進(jìn)行質(zhì)譜鑒定。利用軟件flexAnalysis(Bruker Dalton)對(duì)質(zhì)譜峰進(jìn)行處理后,再利用BioTools(Bruker Dalton)軟件通過(guò)搜索NCBI數(shù)據(jù)庫(kù),查詢匹配的相關(guān)蛋白質(zhì),并查詢其功能,以鑒定的蛋白質(zhì)名稱或種類(lèi)。
2 結(jié)果與分析
2.1 運(yùn)動(dòng)疲勞前后血紅蛋白、血糖和乳酸脫氫酶的變化
本研究結(jié)果顯示(如圖1所示),運(yùn)動(dòng)疲勞后血紅蛋白(Hb)、血糖(BG)和乳酸脫氫酶(LDH)分別下降了約24%、31%和16%。
長(zhǎng)時(shí)間大運(yùn)動(dòng)負(fù)荷訓(xùn)練可導(dǎo)致機(jī)體Hb降低,形成運(yùn)動(dòng)性Hb低下?tīng)顟B(tài)[12-13],進(jìn)而引起紅細(xì)胞運(yùn)輸氧和二氧化碳能力及物質(zhì)代謝能力的下降,進(jìn)而影響運(yùn)動(dòng)能力,可能導(dǎo)致疲勞的發(fā)生。本研究結(jié)果顯示運(yùn)動(dòng)后Hb下降了約24%。如果按照運(yùn)動(dòng)前正常Hb的最低濃度120 g/L計(jì)算,運(yùn)動(dòng)后Hb的濃度就為91.2 g/L,按照男性貧血的臨床判斷標(biāo)準(zhǔn)(<120g/L), 這已經(jīng)接近中度貧血(<90g/L),提示疲勞模型建立成功。
機(jī)體在進(jìn)行長(zhǎng)時(shí)間較大強(qiáng)度運(yùn)動(dòng)時(shí),為了維持運(yùn)動(dòng)肌肉不間斷的能量需求,BG經(jīng)血液循環(huán)被輸送到骨骼肌中以滿足機(jī)體運(yùn)動(dòng)的能量需求。一般情況下,機(jī)體BG水平處在一個(gè)相對(duì)穩(wěn)定的水平。但是,當(dāng)機(jī)體激烈運(yùn)動(dòng)時(shí),肌糖原、BG大量消耗,而肝糖原分解和糖異生作用又不能保證BG的及時(shí)補(bǔ)充時(shí),BG水平就會(huì)降低。同時(shí),由于BG還是中樞神經(jīng)系統(tǒng)、紅細(xì)胞等組織必需的能源物質(zhì),所以一旦BG降低,可能會(huì)出現(xiàn)頭暈、惡心等癥狀。文鏡[14]等研究發(fā)現(xiàn),小鼠游泳70 min時(shí),血糖水平、血糖下降值和血糖下降速率能夠較好地反映小鼠在長(zhǎng)時(shí)間運(yùn)動(dòng)中體內(nèi)糖儲(chǔ)備的變化情況,測(cè)定安靜值的負(fù)重(體重3%)游泳70 min時(shí)血糖值,能夠作為評(píng)價(jià)影響糖代謝抗疲勞保健食品的一項(xiàng)指標(biāo)。本研究結(jié)果顯示(如圖1所示),運(yùn)動(dòng)后BG下降了約31%,如果按照運(yùn)動(dòng)前正常BG的最高濃度6.1 mmol/L計(jì)算,運(yùn)動(dòng)后BG的濃度就為4.2 mmol/L,接近正常BG的最低濃度3.9mmol/L,說(shuō)明本研究運(yùn)動(dòng)疲勞模型建立時(shí),血糖濃度大幅度降低,疲勞可能已經(jīng)出現(xiàn)。
LDH是糖酵解過(guò)程中催化丙酮酸和乳酸轉(zhuǎn)化的一種酶。大強(qiáng)度運(yùn)動(dòng)后血清中LDH的活性會(huì)升高,其機(jī)制一方面是因?yàn)榇髲?qiáng)度運(yùn)動(dòng)過(guò)程中,糖酵解功能系統(tǒng)占主導(dǎo)地位,另一方面可能是因?yàn)檫\(yùn)動(dòng)時(shí)由于機(jī)械牽拉或損傷使得細(xì)胞膜通透性增加。但是本研究結(jié)果顯示(如圖1所示),運(yùn)動(dòng)后血清LDH下降了約16%,其原因可能是,本研究在模型建立時(shí)采取的運(yùn)動(dòng)方案屬于中等強(qiáng)度的運(yùn)動(dòng),其主要以有氧代謝供能為主,而在有氧代謝過(guò)程中丙酮酸會(huì)在丙酮酸脫氫酶系的作用下進(jìn)入三羧酸循,所以乳酸脫氫酶活性會(huì)下降。
2.2 雙向電泳和質(zhì)譜分析結(jié)果
2.2.1 運(yùn)動(dòng)疲勞前血清蛋白質(zhì)組的雙向電泳分離
對(duì)蛋白質(zhì)樣品在相同條件下進(jìn)行3次雙向電泳,利用ImageMaster 2D platinum 5.0軟件進(jìn)行圖像的強(qiáng)度校正、點(diǎn)檢測(cè)、匹配等分析。根據(jù)蛋白質(zhì)點(diǎn)表達(dá)量與所有匹配蛋白質(zhì)點(diǎn)表達(dá)量總和的比值大于2.0,且同組3塊膠圖譜中都出現(xiàn)相同變化的蛋白點(diǎn),被認(rèn)為是差異蛋白質(zhì)點(diǎn)。比較結(jié)果發(fā)現(xiàn),運(yùn)動(dòng)疲勞前后共檢測(cè)出34個(gè)差異蛋白質(zhì)點(diǎn)。具體雙向電泳圖譜及差異蛋白點(diǎn)的位置如圖2所示,A1~A56為運(yùn)動(dòng)疲勞后表達(dá)下降的蛋白質(zhì)點(diǎn);如圖3所示,B1~B33為運(yùn)動(dòng)疲勞后表達(dá)升高的蛋白質(zhì)點(diǎn)。
2.2.2 運(yùn)動(dòng)疲勞前后差異蛋白點(diǎn)的質(zhì)譜鑒定結(jié)果
最終從電泳圖譜中選取16個(gè)差異蛋白點(diǎn)進(jìn)行膠內(nèi)酶解,MALDI-TOF/TOF質(zhì)譜分析顯示,大多數(shù)肽質(zhì)量指紋圖譜背景低,峰信號(hào)較強(qiáng)。通過(guò)Mascot軟件檢索SwissProt數(shù)據(jù)庫(kù)鑒定蛋白,去除鑒定結(jié)果相同的蛋白點(diǎn),共鑒定出12種蛋白質(zhì),蛋白質(zhì)評(píng)分均大于56(P<0.05),說(shuō)明鑒定結(jié)果高度可信。具體蛋白質(zhì)質(zhì)譜鑒定和搜庫(kù)結(jié)果見(jiàn)表4。
2.3 運(yùn)動(dòng)疲勞前后血清蛋白質(zhì)組差異性變化
通過(guò)雙向電泳(two dimentional electrophoresis, 2DE)聯(lián)合質(zhì)譜分析技術(shù),對(duì)運(yùn)動(dòng)疲勞前后血清蛋白質(zhì)組進(jìn)行差異性研究,得到了分辨率較高、重復(fù)性較好的電泳圖譜,經(jīng)過(guò)分析比較及質(zhì)譜鑒定,最終鑒定出16個(gè)差異蛋白點(diǎn),去除結(jié)果相同的蛋白,共包含12種蛋白,其中運(yùn)動(dòng)疲勞后表達(dá)上調(diào)的蛋白和表達(dá)下調(diào)的蛋白各為6種(如表4所示)。
2.3.1 運(yùn)動(dòng)疲勞后血清中表達(dá)下調(diào)的蛋白質(zhì)
表達(dá)下調(diào)的蛋白有α1-B-糖蛋白、叢生蛋白、免疫球蛋白α1鏈C結(jié)構(gòu)域、血管緊張素原、補(bǔ)體C4-A和結(jié)合珠蛋白。
董凌月[15]等研究認(rèn)為人α-1B糖蛋白是免疫球蛋白超家族的一個(gè)新成員,可能和金屬蛋白酶抑制因子一樣具有蛋白酶抑制劑作用,推斷α-1B糖蛋白可能在細(xì)胞識(shí)別和細(xì)胞行為的調(diào)節(jié)方面起作用[16]。Doherty et al[17]研究發(fā)現(xiàn),患有類(lèi)風(fēng)濕性關(guān)節(jié)炎的人血漿α-1B糖蛋白水平降低,但其具體的生物學(xué)功能還不清楚。叢生蛋白(CLU, clusterin)與許多生理和病理過(guò)程有關(guān)[18],包括補(bǔ)體抑制[19]、炎癥調(diào)節(jié)[20]、脂質(zhì)轉(zhuǎn)運(yùn)[21]、細(xì)胞凋亡[22]、細(xì)胞分化[23]、食欲調(diào)節(jié)[24]和蛋白質(zhì)量控制[25]等。最新研究發(fā)現(xiàn),在模擬神經(jīng)退行性疾病的特異性特征的條件下,增加叢生蛋白的表達(dá)可以為細(xì)胞內(nèi)的蛋白質(zhì)毒性提供重要的防御作用[26]。
免疫球蛋白α1鏈(IGHG1)屬于免疫球蛋白重鏈之一。運(yùn)動(dòng)后有關(guān)Ig的變化報(bào)道不一致,有的是增加[27-28],有的是降低[29],也有的是不變[30-31]。血管緊張素原(Angiotensinogen)是一種血清球蛋白,是合成血管緊張素的前體,也是腎素-血管緊張素系統(tǒng) ( renin- angiotensin system,RAS)的一種限速底物。RAS的主要功能是調(diào)節(jié)人體血壓、水分、電解質(zhì)和保持人體內(nèi)環(huán)境的穩(wěn)定性。Groban等研究發(fā)現(xiàn),中樞RAS 對(duì)中年人舒張功能和運(yùn)動(dòng)耐受性的維持起著重要作用[32]。補(bǔ)體C4(Complement C4)是一種多功能β1-球蛋白,存在于血漿中。Ernst等研究發(fā)現(xiàn),運(yùn)動(dòng)后補(bǔ)體C4略有上升,無(wú)統(tǒng)計(jì)學(xué)意義[33]。已有報(bào)道,C4通過(guò)樹(shù)突細(xì)胞參與T細(xì)胞分化為調(diào)節(jié)性T細(xì)胞( regulatory T cells,Tregs) [34]。Tregs是一類(lèi)控制宿主自身免疫反應(yīng)且具有抑制作用的 T 細(xì)胞亞群,在自身免疫穩(wěn)態(tài)的維持及移植物免疫耐受中發(fā)揮重要作用,同時(shí)也對(duì)宿主抗腫瘤免疫起到一定程度的抑制作用[35]。觸珠蛋白(Haptoglobin, Hp)是血清α2球蛋白組分中的一種酸性糖蛋白,在參與宿主抗感染、損傷組織的修復(fù)以及維持內(nèi)環(huán)境穩(wěn)定等方面起著重要作用[36]。Hp的主要功能是通過(guò)捕捉血紅蛋白保護(hù)組織免受抗氧化損傷[37-39]。最新研究表明,在腎移植患者中,Hp和代謝綜合癥有關(guān),獨(dú)立于炎性反應(yīng),并且高、低水平的Hp都會(huì)增加死亡率的風(fēng)險(xiǎn),尤其心血管;其中高水平的Hp可以作為腎移植患者炎性反應(yīng)的標(biāo)志物,低水平的Hp是死亡率的獨(dú)立風(fēng)險(xiǎn)因素[40]。運(yùn)動(dòng)疲勞后,Hp表達(dá)下調(diào),是否和運(yùn)動(dòng)疲勞后血紅蛋白下降和心血管機(jī)能有關(guān),還需進(jìn)一步實(shí)驗(yàn)研究。
2.3.2 運(yùn)動(dòng)疲勞后血清中表達(dá)上調(diào)的蛋白質(zhì)
表達(dá)上調(diào)的蛋白有α2-HS-糖蛋白、抗凝血酶-Ⅲ、血清白蛋白、CD5抗原、結(jié)合珠蛋白相關(guān)蛋白、載脂蛋白E。
α2-HS-糖蛋白(Alpha-2-HS-glycoprotein, A2HSG)在機(jī)體內(nèi)主要參與血管鈣化、骨代謝調(diào)節(jié)、胰島素抵抗、蛋白酶活性調(diào)控、角質(zhì)形成細(xì)胞遷移及乳腺腫瘤細(xì)胞增殖的信號(hào)轉(zhuǎn)導(dǎo)等生理病理過(guò)程[41-45],同時(shí)也被確定為神經(jīng)退行性疾病的生物標(biāo)志物[46]。Kanno 等[47]研究表明A2HSG和血液結(jié)合素是調(diào)節(jié)小分子化合物進(jìn)行神經(jīng)保護(hù)作用的內(nèi)源性因子。在本研究中,運(yùn)動(dòng)疲勞后血漿蛋白組學(xué)結(jié)果表明,A2HSG表達(dá)上升,這可能主要與胰島素抵抗、蛋白酶活性調(diào)控有關(guān);另外,也可能是機(jī)體在疲勞狀態(tài)下對(duì)神經(jīng)的保護(hù)性作用??鼓涪螅ˋT Ⅲ)通過(guò)抑制凝血酶發(fā)揮其功能,并參與凝血調(diào)控[48]。AT Ⅲ的血清濃度與體脂質(zhì)量和HbA1c有關(guān),與年齡、性別無(wú)關(guān)。然而,實(shí)施兩種干預(yù)策略后,發(fā)現(xiàn)健康肥胖者體內(nèi)脂肪量的變化與AT Ⅲ的變化無(wú)關(guān),這表明體脂質(zhì)量不會(huì)直接導(dǎo)致AT Ⅲ循環(huán)加快[49]。運(yùn)動(dòng)疲勞后AT Ⅲ表達(dá)上調(diào),可能與運(yùn)動(dòng)引起血液循環(huán)加速有關(guān)。血清白蛋白(ALB)是人血漿中的蛋白質(zhì),約占血漿總蛋白的60%。具有結(jié)合和運(yùn)輸內(nèi)源性與外源性物質(zhì)的性質(zhì),維持血液膠體滲透壓,清除自由基,抑制血小板聚集和抗凝血等生理功能。在體液中可以運(yùn)輸脂肪酸、膽色素、氨基酸、類(lèi)固醇激素、金屬離子和許多治療分子等。其表達(dá)上調(diào),可能是由于運(yùn)動(dòng)疲勞引起Hb下降,其代謝產(chǎn)物膽紅素升高以及自由基等產(chǎn)生增多引起的機(jī)體代償性的反應(yīng)。CD5L也被認(rèn)為是巨噬細(xì)胞凋亡抑制劑,是富“含半胱氨酸結(jié)構(gòu)域的清道夫受體”超家族蛋白之一,最初被認(rèn)為是一種保護(hù)吞噬細(xì)胞的循環(huán)蛋白[50-52](circulating protein)。已經(jīng)證實(shí)其可以通過(guò)管狀內(nèi)皮細(xì)胞加強(qiáng)急性腎損傷時(shí)管腔內(nèi)碎片的清除[53],也可以通過(guò)引起細(xì)菌或真菌的聚集來(lái)發(fā)揮抗菌作用[54-56]。目前的研究已經(jīng)確定CD5L是預(yù)測(cè)Ⅱ型糖尿病腎功能快速下降的新型的血漿生物標(biāo)志物之一,并且獨(dú)立于臨床已經(jīng)公認(rèn)的糖尿病危險(xiǎn)因子[57],也是未確診的銀屑病關(guān)節(jié)炎血漿生物標(biāo)志物之一[58]。另外,運(yùn)動(dòng)刺激會(huì)引起交感神經(jīng)系統(tǒng)活動(dòng)增加,兒茶酚胺水平提高,兒茶酚胺(catecholamines)能誘導(dǎo)脂肪分解。Camell等[59]研究發(fā)現(xiàn),巨噬細(xì)胞能分解兒茶酚胺,這樣會(huì)導(dǎo)致兒茶酚胺無(wú)法發(fā)揮誘導(dǎo)脂肪分解的效應(yīng)。在運(yùn)動(dòng)過(guò)程中細(xì)胞代謝加快,同時(shí)機(jī)體代謝產(chǎn)生的細(xì)胞“垃圾”增多可以誘導(dǎo)巨噬細(xì)胞增多。由此可見(jiàn),本研究中運(yùn)動(dòng)疲勞后血清CD5L水平升高可以抑制巨噬細(xì)胞凋亡,加強(qiáng)了兒茶酚胺分解,致使脂肪分解效應(yīng)降低,能量代謝不足,這可能是疲勞發(fā)生的機(jī)制之一。
結(jié)合珠蛋白相關(guān)蛋白(Haptoglobin-related protein,Hpr)是高密度脂蛋白(HDL)小亞種的組成成分,與先天性免疫性有關(guān)[60],是靈長(zhǎng)類(lèi)特有的通過(guò)Hp基因復(fù)制蛋白逐漸進(jìn)化而來(lái)[61],其氨基酸序列與Hp的同源性大于90%[62],不同的是Hpr中保留了一個(gè)N-末端分泌信號(hào)序列[63]。HDL水平的改變將導(dǎo)致Hpr水平的變化[64]。Hpr和載脂蛋白L1(ApoL1)構(gòu)成了基因編碼)構(gòu)成了溶錐蟲(chóng)因子TLF-1。ApoL1是近年來(lái)發(fā)現(xiàn)的新型載脂蛋白,具有抗非洲錐蟲(chóng)病的人血清蛋白,其某些突變體可增加漸進(jìn)性腎臟疾病的易感性[65];它可以選擇性滲透氯離子到未成形的磷脂囊泡中,并且這種選擇滲透性具有很強(qiáng)的pH敏感性,pH=5時(shí)選擇滲透性最強(qiáng),pH=7時(shí)選擇滲透性最小;在pH降低時(shí)ApoL1和脂質(zhì)相互作用使pH值呈中性,氯離子的滲透性被抑制,而鉀離子的滲透性被激活;這種可轉(zhuǎn)換的離子選擇滲透性可能解釋了已經(jīng)報(bào)道的ApoL1在細(xì)胞內(nèi)和等離子膜環(huán)境中的不同作用[66]。Hpr定位的HDL亞種獨(dú)特地含有載脂蛋白L-1[67],所以本研究中Hpr表達(dá)上升可能與運(yùn)動(dòng)疲勞后血液pH值下降有關(guān)。載脂蛋白E(apolipoprotein E,ApoE)是一種多態(tài)性蛋白,在脂質(zhì)和膽固醇代謝中起著重要作用。推測(cè)本研究中載脂蛋白E的上調(diào)可能與運(yùn)動(dòng)引起脂肪供能比例增加、脂肪動(dòng)員加速、血漿甘油三酯含量上升有關(guān)。ApoE也是大腦中最豐富的載脂蛋白之一,主要是由星形膠質(zhì)細(xì)胞合成,已經(jīng)有證據(jù)表明它具有神經(jīng)營(yíng)養(yǎng)、免疫調(diào)節(jié)和抗氧化效應(yīng)[68],參與許多神經(jīng)系統(tǒng)疾病的生理病理過(guò)程[69-70],運(yùn)動(dòng)疲勞后ApoE表達(dá)上升可能是機(jī)體代償性保護(hù)機(jī)制之一。
3 結(jié)論
通過(guò)蛋白質(zhì)組學(xué)技術(shù)高通量篩選研究發(fā)現(xiàn),與運(yùn)動(dòng)性疲勞相關(guān)差異表達(dá)蛋白涉及到急性相蛋白、免疫相關(guān)蛋白、脂代謝相關(guān)蛋白和神經(jīng)調(diào)節(jié)相關(guān)蛋白。如果后期研究利用其他生物學(xué)方法如ELISA、Western-blotting等進(jìn)行蛋白功能和擴(kuò)大樣本例數(shù)進(jìn)行驗(yàn)證,有望從這些蛋白中篩選出與運(yùn)動(dòng)性疲勞密切相關(guān)的血漿特異性標(biāo)志物,為運(yùn)動(dòng)性疲勞的早期診斷和科學(xué)健身的評(píng)價(jià)提供可靠的實(shí)驗(yàn)依據(jù),并為抗運(yùn)動(dòng)性疲勞藥物的開(kāi)發(fā)提供新的分子靶標(biāo)。
參考文獻(xiàn):
[1]Sheean GL, Murray NM, Rothwell JC, et al.An electrophysiological study of the mechanism of fatigue in multiple sclerosis[J].Brain,1997,120(2):299-315.
[2]McCann GP, Cahill H, Knipe S, et al. Sumatriptan reduces exercise capacity in healthy males: a peripheral effect of 5-hydroxytryptamine agonism[J].Clin Sci (Lond), 2000, 98(6):643-648.
[3]Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans[J].Med Sci Sports Exerc,2011,43(11):2039-2045.
[4]王雅一,李同建,金明男,等.拳擊運(yùn)動(dòng)員備戰(zhàn)第12屆全運(yùn)會(huì)尿十項(xiàng)指標(biāo)分析 [J].體育科學(xué)研究,2015,19(2):63-67.
[5]李衍常,李寧,徐忠偉,等.中國(guó)蛋白質(zhì)組學(xué)研究進(jìn)展——以人類(lèi)肝臟蛋白質(zhì)組計(jì)劃和蛋白質(zhì)組學(xué)技術(shù)發(fā)展為主題[J].中國(guó)科學(xué):生命科學(xué),2014,44(11):1099-1112.
[6]Karamanos Y,Gosselet F,Dehouck M P,et al.Blood-Brain Barrier Proteomics:Towards the Understanding of Neurodegenerative Diseases[J].Archives of Medical Research,2014,45(8):730-737.
[7]張墨,陳驪珠,宋永勝.定量蛋白質(zhì)組學(xué)技術(shù)篩選前列腺癌患者尿液中差異表達(dá)蛋白價(jià)值[J].中華實(shí)用診斷與治療雜志,2018,32(2):109-119.
[8] 許潔,王紅旗,孔德康.基于iTRAQ技術(shù)熒蒽降解菌的比較蛋白質(zhì)組學(xué)分析[J].中國(guó)環(huán)境科學(xué),2018,38(1):284-292.
[9] Borg GA. Perceived exertion as an indicator of somatic stress [J].? Scandinavian journal of rehabilitation medicine, 1970, 2(2): 92-98.
[10]Borg G A.Perceived exertion:A note on“history”and methods[J].Medcine science sports,1973,5(2):90-93.
[11]Borg G A.Psychophysical bases of perceived exertion[J].Medcine science sports,1982,14(5):377-381.
[12] 翁錫全,余群,林文弢,等.低氧暴露對(duì)運(yùn)動(dòng)誘導(dǎo)的血紅蛋白低下大鼠紅細(xì)胞參數(shù)和某些造血因子的影響[J].中國(guó)運(yùn)動(dòng)醫(yī)學(xué)雜志,2006,25(5):538-542.
[13]Magalhaes J,Ascensao A,Soares JMC,et al.Acute and severe hypobaric hypoxia-induced muscle oxidative stress in mice:the role of glutathione against oxidative damage [J].European journal of applied physiology,2004,91(2/3):185-191.
[14]文鏡,陳文,金宗鐮.用血糖動(dòng)態(tài)變化評(píng)價(jià)抗疲勞功能食品可行性的研 [J].食品科學(xué),1997,18(11):6-10.
[15]董凌月.α-1B糖蛋白前體基因的表達(dá)調(diào)控分析[D].沈陽(yáng):中國(guó)醫(yī)科大學(xué), 2003.
[16]孫迪,趙彥艷,戴書(shū)萍,等.人類(lèi)免疫球蛋白超家族一個(gè)新成員:A-1B糖蛋白前體基因的克隆和分析[J].遺傳學(xué)報(bào),2002,29(4):299-302.
[17]Doherty N S,Littman B H,Reilly K,et al.Analysis of changes in acute-phase plasma proteins in an acute inflammatory response and in rheumatoid arthritis using two-dimensional gel electrophoresis[J].Electrophoresis,1998,19(2):355-363.
[18]馬曉,李鶴成.Clusterin在惡性腫瘤治療中的研究進(jìn)展[J].腫瘤,2013, 33(4):368-371.
[19]McDonald J F,Nelsestuen G L.Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization[J].Biochemistry,1997,36(24):7464-7473.
[20]Falgarone G,Chiocchia G.Clusterin:A multifacet protein at the crossroad of inflammation and autoimmunity [J].Advances in cancer research,2009(104):139-170.
[21]De Silva H V, Stuart W D, Duvic C R, et al. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins[J].Journal of Biological Chemistry,1990,265(22):13240-13247.
[22]Kim N,Yoo J C,Han J Y,et al.Human nuclear clusterin mediates apoptosis by interacting with Bcl-XL through C-terminal coiled coil domain[J].Journal of cellular physiology,2012,227(3):1157-1167.
[23]Ahuja H S,Tenniswood M,Lockshin R,et al.Expression of clusterin in cell differentiation and cell death[J].Biochemistry and cell biology,1994,72(11/12):523-530.
[24]Bajari T M,Strasser V,Nimpf J,et al.A model for modulation of leptin activity by association with clusterin[J].The FASEB journal,2003,17(11):1505-1507.
[25]Carver J A,Rekas A,Thorn D C,et al.Small Heat-shock Proteins and Clusterin:Intra-and Extracellular Molecular Chaperones with a Common Mechanism of Action and Function?[J].IUBMB life,2003,55(12):661-668.
[26]Gregory J M,Whiten D R,Brown R A,Barros T P,et al.Clusterin protects neurons against intracellular proteotoxicity[J].Acta Neuropathol Commun,2017,5(1):81.
[27]Nieman D C,Nehlsen-Cannarella S L. The effects of acute and chronic exercise on immunoglobulins[J].Sports Medicine,1991,11(3):183-201.
[28]Nehlsen-Cannarella S L,Nieman D C,Balk-Lamberton A J,et al.The effects of moderate exercise training on immune response[J].Medicine Science Sports Exercise,1991,23(1):64-70.
[29] Mackinnon L T,Hooper S.Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining[J].International Journal of Sports Medicine,1994,15(S3):S179-S183.
[30]Poortmans J R.Serum protein determination during short exhaustive physical activity[J].Journal of applied physiology,1971,30(2):190-192.
[31]Nieman D C,Tan S A,Lee J W,et al.Complement and immunoglobulin levels in athletes and sedentary controls[J].International journal of sports medicine,1989,10(2):124-128.
[32]Groban L,Wang H,Machado F S,Trask A J,et al.Low glial angiotensinogen improves body habitus, diastolic function,and exercise tolerance in aging male rats.Cardiovasc Endocrinol.2012,1(3):49-58.
[33]Ernst E,Saradeth T,Achhammer G.n-3 fatty acids and acute-phase proteins[J].European journal of clinical investigation,1991,21(1):77-82.
[34]Cheng H B,Chen R Y,Wu J P,Chen L,et al.Complement C4 induces regulatory T cells differentiation through dendritic cell in systemic lupus erythematosus[J].Cell Biosci,2015(5):73.
[35]Sakaguchi S,Setoguch R,Yagi H,et al.Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in self-tolerance and autoimmune disease[J].Curr Top Microbiol Immunol,2006(305):51-66.
[36]Tseng C F,Lin C C,Huang H Y,et al.Antioxidant role of human haptoglobin[J].Proteomics,2004,4(8):2221-2228.
[37]Dobryszycka W.Biological functions of haptoglobin-new pieces to an old puzzle[J].European journal of clinical chemistry and clinical biochemistry,1997,35(9):647-654.
[38] Lim Y K,Jenner A,Ali A B,et al.Haptoglobin reduces renal oxidative DNA and tissue damage during phenylhydrazine-induced hemolysis[J]. Kidney international,2000,58(3):1033-1044.
[39]Ghafouri B,Carlsson A,Holmberg S,et al.Biomarkers of systemic inflammation in farmers with musculoskeletal disorders;a plasma proteomic study[J].BMC musculoskeletal disorders,2016,17(1):206-216.
[40]Minovi? I,Eisenga M F,Riphagen I J,van den Berg E,et al.Circulating Haptoglobin and Metabolic Syndrome in Renal Transplant Recipients[J].Sci Rep,2017,7(1):14264.
[41]Clerc F,Reiding K R,Jansen B C,et al.Human plasma protein N[J].Glycoconjugate Journal,2016,33(3):309-343.
[42]Brylka L,Jahnen-Dechent W.The role of fetuin-A in physiological and pathological mineralization[J].Calcified tissue international,2013,93(4): 355-364.
[43]Jahnen-Dechent W,Heiss A,Schfer C,et al.Fetuin-A regulation of calcified matrix metabolism[J].Circulation research,2011,108(12):1494-1509.
[44]Ray S,Lukyanov P,Ochieng J.Members of the cystatin superfamily interact with MMP-9 and protect it from autolytic degradation without affecting its gelatinolytic activities[J].Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics,2003,1652(2):91-102.
[45]Mathews S T,Chellam N,Srinivas P R,et al.α2-HSG,a specific inhibitor of insulin receptor autophosphorylation, interacts with the insulin receptor[J].Molecular and cellular endocrinology,2000,164(1):87-98.
[46]Mori K,Emoto M,Inaba M.Fetuin-A: a multifunctional protein[J].Recent Pat Endocrine Metabolism Immune Drug Discover,2011,5(2):124-146.
[47]T Kanno K, Yasutake K, Tanaka S, et al. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection [J]. PLos One, 2017, 12(10): e0186227.
[48]Carr M E. Diabetes mellitus: a hypercoagulable state [J].Diabetes Complications,2001,15(1):44-54.
[49]Oberbach A, Blüher M, Wirth H, et al. Combined proteomic and metabolomic profiling of serum reveals association of the complement system with obesity and identifies novel markers of body fat mass changes [J]. Proteome Res,2011,10(10):4769-4788.
[50]Tissot J D, Sanchez J C, Vuadens F, et al. IgM are associated to Sp alpha (CD5 antigen-like) [J]. Electrophoresis,2002,23(7/8):1203-1206.
[51]Miyazaki T, Hirokami Y, Matsuhashi N, et al. Increased susceptibility of thymocytes to apoptosis in mice lacking AIM, a novel murine macrophage-derived soluble factor belonging to the scavenger receptor cysteine-rich domain superfamily[J].Exp Med,1999,189(2):413-422.
[52]Arai S,Shelton J M,Chen M,et al.A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development[J].Cell Metab, 2005,1(3):201-213.
[53]Arai S, Kitada K, Yamazaki T, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice [J].Nat Med,2016,22(2):183-193.
[54]Sarrias,M R,Roselló S,Sánchez-Barbero F,et al. A role for human Sp alpha as a pattern recognition receptor [J].Biol Chem,2005,280(42):35391-35398.
[55]Joseph S B, Bradley M N, Castrillo A, et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response[J].Cell,2004,119(2):299-309.
[56]Martinez V G,Escoda-Ferran C,Tadeu Simes I,et al.The macrophage soluble receptor AIM/Api6/CD5L displays a broad pathogen recognition spectrum and is involved in early response to microbial aggression[J].Cell Mol Immunol,2014,11(4):343-354.
[57]Peters K E,Davis W A,Ito J,et al.Identification of Novel Circulating Biomarkers Predicting Rapid Decline in Renal Function in Type 2 Diabetes: The Fremantle Diabetes Study Phase II[J].Diabetes Care,2017 40(11):1548-1555.
[58]Cretu D, Gao L, Liang K, et al. Novel serum biomarkers differentiate psoriatic arthritis from psoriasis without psoriatic arthritis [J]. Arthritis Care Res(Hoboken),2017,doi:10.1002/acr.23298.
[59]Camell C D, Sander J, Spadaro O, et al. Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing [J]. Nature,2017,550(7674):119-123.
[60]Harrington J M, Nishanova T, Pena SR, et al. A retained secretory signal peptide mediates high density lipoprotein (HDL) assembly and function of haptoglobin-related protein[J].J Biol Chem,2014,289(36):24811-24820.
[61]Hajduk S L,Moore D R,Vasudevacharya J,et al.Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein[J].J Biol.Chem,1989,264(9):5210-5217.
[62]Nielsen, M J, Petersen S V, Jacobsen C,et al.Haptoglobin-related protein is a highaffinity hemoglobin-binding plasma protein[J].Blood,2006,108(8):2846-2849.
[63]Smith A B, Esko J D, Hajduk S L. Killing of trypanosomes by the human haptoglobin-related protein [J].Science,1995,268(5208):284-286.
[64]Imrie H J, Fowkes F J, Migot-Nabias F, et al. Individual variation in levels of haptoglobin-related protein in children from Gabon [J]. PLoS One,2012,7(11):e49816.
[65]Hardwick R J, Ménard A, Sironi M, et al. Haptoglobin (HP) and Haptoglobin-related protein (HPR) copy number variation, natural selection, and trypanosomiasis [J].Hum Genet,2014,133(1):69-83.
[66]Bruno J, Pozzi N, Oliva J, et al. Apolipoprotein L1 confers pH-switchable ion permeability to phospholipid vesicles [J]. J Biol Chem,2017,292(44):18344-18353.
[67]Shiflett A M, Bishop J R, Pahwa A, et al. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes[J].J Biol? Chem,2005,280(38):32578-32585.
[68]Laskowitz D T,Horsburgh K,Roses A D. Apolipoprotein E and the CNS response to injury[J].J Cereb Blood Flow Metab.1998,18(5):465-471.
[69]Giau V V,Bagyinszky E, An S S, et al.Role of apolipoprotein E in neurodegenerative diseases. Neuropsychiatr Dis Treat,2015(11):1723-1737.
[70]Mahley R W.Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders [J].J Mol Med(Berl.),2016,94(7):739-746.