任彩琴?馮亞莉?劉佼?何繼瑞
【摘要】 在糖尿病患者的管理中,血糖監(jiān)測(cè)是了解血糖控制情況的根本,血糖水平則是評(píng)估治療個(gè)體反應(yīng)及安全性的關(guān)鍵。血糖監(jiān)測(cè)技術(shù)在不斷發(fā)展,用于評(píng)價(jià)血糖管理效果的指標(biāo)也逐漸增多。葡萄糖目標(biāo)范圍內(nèi)時(shí)間是新興血糖評(píng)價(jià)指標(biāo),因其可為臨床醫(yī)師及患者提供更多有關(guān)血糖管理方面的信息而備受關(guān)注。目前,葡萄糖目標(biāo)范圍內(nèi)時(shí)間與糖尿病并發(fā)癥及其他血糖管理指標(biāo)相關(guān)性方面的探討相對(duì)較多,因此,該文擬對(duì)相關(guān)研究進(jìn)展作一綜述。
【關(guān)鍵詞】 目標(biāo)范圍內(nèi)時(shí)間;糖尿病;血糖管理指標(biāo)
Research progress on time in glucose target range as an indicator of blood glucose management Ren Caiqin, Feng Yali, Liu Jiao, He Jirui. Department of Geriatric, the Second Hospital of Lanzhou University, Lanzhou 730030, China
Corresponding author, He Jirui, E-mail: hjrlzys63@ 163. com
【Summary】 In the management of patients with diabetes mellitus, blood glucose monitoring is the basis for understanding blood glucose control. The blood glucose level is the key to evaluating individual response and safety of treatment. Blood glucose monitoring technology is constantly developing, and the indicators used to evaluate blood glucose management are becoming more diverse. The time in the glucose target range (time-in-range, TIR), as an emerging evaluation index for blood glucose, has attracted widespread attention since it can provide clinicians and patients with more insights on blood glucose management. At present, the correlation between TIR, and diabetes mellitus-induced complications and other blood glucose management indicators has been extensively studied. Therefore, research progress on the TIR as a blood evaluation indicator was reviewed in this article.
【Key words】 Time-in-range;Diabetes mellitus;Blood glucose management
糖尿病是一種復(fù)雜的慢性代謝性疾病,已成為世界范圍內(nèi)常見(jiàn)的公共衛(wèi)生問(wèn)題之一[1]。我國(guó)糖尿病患病率高達(dá)10.9%,是全球糖尿病患病人數(shù)最多的國(guó)家[2]。糖尿病并發(fā)癥可累及機(jī)體各個(gè)系統(tǒng),嚴(yán)重影響該病患者的生活質(zhì)量,造成巨大的社會(huì)經(jīng)濟(jì)負(fù)擔(dān)。隨著醫(yī)學(xué)界對(duì)糖尿病人群個(gè)體化、精細(xì)化管理的重視,以及血糖監(jiān)測(cè)技術(shù)的不斷進(jìn)步,可供臨床醫(yī)師及患者選擇的血糖監(jiān)測(cè)方法和評(píng)價(jià)指標(biāo)也有了突破性的進(jìn)展。有調(diào)查顯示,對(duì)1型糖尿病和使用胰島素的2型糖尿病患者來(lái)說(shuō),葡萄糖目標(biāo)范圍內(nèi)時(shí)間(TIR)對(duì)日常生活的影響比GHbA1c更重要,TIR作為新興的血糖管理指標(biāo),因其以簡(jiǎn)單、直觀的方式呈現(xiàn)血糖水平而受到醫(yī)患越來(lái)越多的關(guān)注,被認(rèn)為有可能超越GHbA1c,成為評(píng)價(jià)治療效果與血糖控制情況的“潛力”指標(biāo)[3-4]。目前,針對(duì)TIR與糖尿病并發(fā)癥、其他血糖管理指標(biāo)相關(guān)性的探討相對(duì)較多,基于此,筆者將對(duì)TIR作為血糖管理指標(biāo)的臨床效用價(jià)值作一綜述。
一、TIR出現(xiàn)的背景
在糖尿病群體的管理中,血糖監(jiān)測(cè)是了解血糖水平的根本,也是評(píng)估治療的個(gè)體反應(yīng)及安全性的關(guān)鍵。目前,臨床上常用的權(quán)衡血糖水平的方法有檢測(cè)GHbA1c、自我血糖監(jiān)測(cè)(SMBG)及持續(xù)血糖監(jiān)測(cè)(CGM) [5]。GHbA1c通常反映機(jī)體過(guò)去8 ~ 12周的平均血糖水平,是一種重要的間接血糖管理指標(biāo),臨床醫(yī)師常用GHbA1c來(lái)衡量治療的有效性,并預(yù)測(cè)糖尿病相關(guān)并發(fā)癥的發(fā)生風(fēng)險(xiǎn)。但GHbA1c會(huì)受到如貧血、血紅蛋白病、妊娠、尿毒癥、血液透析、乙醇和阿司匹林等因素的影響[4]。SMBG則反映即時(shí)血糖情況,對(duì)夜間血糖數(shù)據(jù)的獲取存在局限性。CGM通過(guò)監(jiān)測(cè)細(xì)胞間液的葡萄糖水平進(jìn)而監(jiān)測(cè)機(jī)體血糖情況,每1 ~ 5 min自動(dòng)檢測(cè)1次葡萄糖數(shù)值,可連續(xù)監(jiān)測(cè)3 ~ 14 d,將患者連續(xù)、更豐富的血糖水平信息呈現(xiàn)給臨床醫(yī)師,由此而衍生的TIR使醫(yī)務(wù)工作者對(duì)GHbA1c以及SMBG無(wú)法覆蓋的血糖漂移程度、夜間血糖水平等有更詳細(xì)的了解[5]。
二、TIR的概念及監(jiān)測(cè)方法
葡萄糖目標(biāo)范圍時(shí)間涵蓋了TIR、高于目標(biāo)范圍時(shí)間(TAR)及低于目標(biāo)范圍時(shí)間(TBR)。2017年《CGM臨床應(yīng)用國(guó)際專家共識(shí)》推薦將TIR作為CGM標(biāo)準(zhǔn)報(bào)告的主要指標(biāo)之一,并對(duì)TAR和TBR進(jìn)行了等級(jí)的細(xì)化,這有助于臨床醫(yī)師作出更加精準(zhǔn)的判斷、及時(shí)應(yīng)對(duì)診治過(guò)程中出現(xiàn)的低血糖、高血糖事件[6]。其中,TIR指的是血糖水平落在目標(biāo)范圍內(nèi)(通常為3.9 ~ 10.0 mmol/L)的時(shí)間或次數(shù)(SMBG監(jiān)測(cè)所得)占總監(jiān)測(cè)時(shí)間或次數(shù)的百分比[7]。對(duì)于糖尿病合并妊娠這一特殊糖尿病群體,依據(jù)該類患者血糖水平特點(diǎn)及相關(guān)研究所得的較為安全的血糖水平,將該類患者的血糖目標(biāo)設(shè)定為3.5 ~ 7.8 mmol/L [7-9]。對(duì)1型糖尿病和2型糖尿病患者而言,其血糖目標(biāo)上限值高于非糖尿病者血糖水平高值,與所建議的糖尿病患者餐后血糖峰值上限一致[10]。由此可見(jiàn),TIR的血糖水平范圍是切合臨床的。2019年, 國(guó)際糖尿病先進(jìn)技術(shù)與治療大會(huì)(ATTD)對(duì)不同類型糖尿病患者的葡萄糖目標(biāo)范圍時(shí)間定義做出了建議(表1),但因不同患者健康狀況、對(duì)血糖的耐受程度等存在差異,不同患者的個(gè)體化管理也是不容忽視的[7]。隨后,2020年美國(guó)糖尿病學(xué)會(huì)(ADA)也推薦將TIR作為糖尿病患者血糖管理的指標(biāo)[10]。
在糖尿病控制和并發(fā)癥實(shí)驗(yàn)中,7點(diǎn)SMBG曲線與TIR的分析證實(shí)了SMBG是獲取TIR的可行方式[11]。SMBG計(jì)算TIR的檢測(cè)頻次至少為7次(3餐前后+睡前) [12]。SMBG價(jià)格相對(duì)低廉、操作簡(jiǎn)單,仍是臨床廣泛使用的血糖監(jiān)測(cè)方法,但目前針對(duì)由SMBG獲取TIR方面的研究仍較少。CGM數(shù)據(jù)覆蓋更為全面,有研究者發(fā)現(xiàn)CGM 10 ~ 14 d的數(shù)據(jù)可以很好地反映近3個(gè)月的血糖水平,并建議使用最少10 d(或14 d的70%)數(shù)據(jù),以計(jì)算更準(zhǔn)確的TIR,因此CGM被認(rèn)為是計(jì)算TIR的最佳工具[3, 12-13]。
三、TIR作為臨床試驗(yàn)終點(diǎn)有效性的探究
1. TIR與糖尿病血管并發(fā)癥
國(guó)內(nèi)一項(xiàng)臨床研究顯示,由CGM數(shù)據(jù)獲取的TIR,與各階段糖尿病視網(wǎng)膜病變(DR)顯著相關(guān)[14]。隨后,該研究團(tuán)隊(duì)還探討了CGM所得的TIR與糖尿病患者頸動(dòng)脈內(nèi)膜中層厚度(CIMT)的相關(guān)性,得出TIR每增加10%,CIMT異常風(fēng)險(xiǎn)降低6.4%,且無(wú)論微血管并發(fā)癥的狀況如何,TIR與CIMT的關(guān)系仍顯著相關(guān)[15]。有研究表明,下肢動(dòng)脈病變?cè)絿?yán)重者,頸動(dòng)脈病變等級(jí)越高,且兩者均與心腦血管疾病的發(fā)生相關(guān),此結(jié)果也為TIR預(yù)判心腦血管疾病的發(fā)生提供線索[16]。Beck等[11]使用SMBG方式監(jiān)測(cè)7點(diǎn)血糖,通過(guò)隨訪評(píng)估,發(fā)現(xiàn)TIR每降低10%,DR進(jìn)展的危險(xiǎn)率增加64%,微量蛋白尿進(jìn)展的危險(xiǎn)率增加40%??梢?jiàn),不論是由CGM還是SMBG獲得的TIR,均與糖尿病血管并發(fā)癥相關(guān)。
2. TIR與神經(jīng)病變的相關(guān)性
糖尿病神經(jīng)病變是糖尿病最常見(jiàn)的并發(fā)癥之一,其繼發(fā)并發(fā)癥可嚴(yán)重降低患者的生活質(zhì)量。一項(xiàng)對(duì)TIR與心血管自主神經(jīng)病變(CAN)關(guān)系的研究顯示,CAN越嚴(yán)重者TIR越低,且兩者相關(guān)性獨(dú)立于GHbA1c及血糖變異性(GV)[17]。既往探討GV與糖尿病周圍神經(jīng)病變(DPN)關(guān)系的研究表明,GV可破壞周圍神經(jīng)結(jié)構(gòu),并誘導(dǎo)中樞神經(jīng)病變[18]。近期有研究顯示,TIR每降低10%,發(fā)生DPN的風(fēng)險(xiǎn)增加25%,這表明了改善血糖在預(yù)防DPN中的重要性[19]。目前,對(duì)TIR與腦神經(jīng)病變、急性疼痛性神經(jīng)病變關(guān)系的研究尚未見(jiàn)報(bào)道。
3. TIR與糖尿病合并妊娠
針對(duì)TIR與糖尿病合并妊娠的報(bào)道目前仍較少。有研究表明與SMBG相比,實(shí)時(shí)動(dòng)態(tài)血糖監(jiān)測(cè)(rt CGM)使用者在妊娠中晚期,TIR增長(zhǎng)5% ~ 7%,發(fā)生大胎齡兒及不良新生兒結(jié)局(肩難產(chǎn)、新生兒低血糖、入院24 h內(nèi)入新生兒重癥監(jiān)護(hù)中心)的概率將減半[8]。Kristensen等[20]對(duì)1型糖尿病合并妊娠者的研究也印證了上述觀點(diǎn),并表示糖尿病合并妊娠者使用CGM,前3個(gè)月的血糖水平改善最為理想,TIR漲幅約為15%,且TBR減少程度最大,而孕中期及孕晚期改善較弱??梢?jiàn),用TIR來(lái)評(píng)估糖尿病合并妊娠者血糖水平及新生兒結(jié)局是可行的。
4. TIR與重癥患者預(yù)后
關(guān)于TIR與重癥患者預(yù)后的關(guān)系也是值得我們關(guān)注的。有研究顯示,無(wú)論患者是否患有糖尿病,TIR > 80%與危重患者病死率降低獨(dú)立相關(guān)[21]。一項(xiàng)針對(duì)心臟手術(shù)術(shù)后患者的研究顯示,無(wú)論是否患有糖尿病,TIR(6.0 ~ 8.1 mmol/L) < 80%的個(gè)體,傷口感染率、機(jī)械通氣時(shí)間、ICU住院時(shí)間顯著差于TIR > 80%者[22]。上述研究均設(shè)立了非糖尿病患者為對(duì)照組,還設(shè)定了較目前定義的TIR更窄的血糖區(qū)間及更高的目標(biāo)時(shí)間范圍,因此,我們認(rèn)為可以通過(guò)了解TIR與危重癥患者有創(chuàng)治療的關(guān)系,預(yù)測(cè)危重患者預(yù)后、盡早權(quán)衡并完善治療。
綜上所述,TIR與微血管、大血管及神經(jīng)病變等并發(fā)癥的相關(guān)性,均體現(xiàn)了其作為臨床實(shí)驗(yàn)終點(diǎn)的效用價(jià)值,也為TIR對(duì)糖尿病遠(yuǎn)期并發(fā)癥(包括腦血管疾?。?、危重患者預(yù)后預(yù)測(cè)價(jià)值的更深入剖析提供了證據(jù)基礎(chǔ)。有研究者指出rt CGM和8點(diǎn)SMBG所得的TIR具有可比性,分別為49%和50%,而另一項(xiàng)研究卻表示間歇CGM和rt CGM獲取的TIR存在顯著差異[23-24]??梢?jiàn),用既定的TIR標(biāo)準(zhǔn)去衡量不同監(jiān)測(cè)手段所得的TIR,可能具有相應(yīng)的局限性,但將不同監(jiān)測(cè)方式所得的TIR進(jìn)行協(xié)調(diào)、對(duì)每種監(jiān)測(cè)手段均設(shè)定標(biāo)準(zhǔn)化的TIR均具有很大的挑戰(zhàn)性。
四、TIR與其他血糖評(píng)價(jià)指標(biāo)的相關(guān)性
有研究表明,TIR和TAR與GHbA1c有很強(qiáng)的相關(guān)性,另有研究者通過(guò)分析不同葡萄糖分布模型,得出當(dāng)平均血糖在6.7 ~ 11.1 mmol/L時(shí),TIR對(duì)平均血糖及GHbA1c具有可預(yù)測(cè)性,且?guī)缀醭示€性理論關(guān)系[25-26]。常規(guī)血糖測(cè)量方法獲得的TIR為50%,所對(duì)應(yīng)的GHbA1c值為8.0%,70%的TIR與7.0%的GHbA1c相當(dāng)[27]。雖然不同的研究所得的TIR與GHbA1c的相關(guān)性存在一定差異,但CGM所得65% ~ 70%的TIR與7.0%的GHbA1c水平相當(dāng)這一觀點(diǎn)卻基本一致。有研究顯示,10%的TIR變化,相當(dāng)于GHbA1c變化0.8% (9 mmol/L)[27]。而TIR不能有效估計(jì)TBR的結(jié)論對(duì)我們?cè)谂R床實(shí)踐過(guò)程中是否需要結(jié)合2個(gè)或多個(gè)指標(biāo),結(jié)合哪些指標(biāo)更有助于全面了解血糖水平奠定了研究基礎(chǔ)[27]。上述論點(diǎn)均為TIR的臨床使用、科研進(jìn)展提供了有力證據(jù),但TIR與其他血糖管理指標(biāo)更確切的關(guān)系,可能受影響因素較多,還需要我們不斷探索,為更加全面地了解血糖水平提供更多思路。
五、TIR在臨床應(yīng)用中的限制性及影響因素
國(guó)外一項(xiàng)研究顯示,與正?;蚋呤杖肴巳罕容^,低收入人群CGM的使用率更低,該研究團(tuán)隊(duì)倡導(dǎo)將CGM的醫(yī)療支持?jǐn)U大到低收入人群[28]。目前,糖尿病患者主要的血糖監(jiān)測(cè)方式仍然為SMBG,這可能與CGM價(jià)格相對(duì)昂貴、醫(yī)保納入范圍、較高的管理技能、患者接受程度等相關(guān),這也間接反映出TIR在臨床工作中的受重視程度仍需提高。血糖監(jiān)測(cè)方法不同以及CGM的類型、工廠校準(zhǔn)、用戶校準(zhǔn)、評(píng)估程序、異物反應(yīng)、佩戴時(shí)間和醫(yī)患執(zhí)行能力等,均為影響TIR結(jié)果準(zhǔn)確性的因素[23-24, 29-30]。
六、總結(jié)與展望
綜上所述,TIR在臨床診療過(guò)程中對(duì)糖尿病患者并發(fā)癥、重癥患者預(yù)后的預(yù)測(cè),以及與其他血糖管理指標(biāo)的關(guān)系均反映了其在糖尿病患者管理中的效用價(jià)值,在眾多血糖評(píng)價(jià)指標(biāo)中,TIR以更直觀、更簡(jiǎn)單的方式呈現(xiàn)血糖水平,更易于被患者理解。隨著對(duì)CGM指標(biāo)和動(dòng)態(tài)葡萄糖圖譜報(bào)告的標(biāo)準(zhǔn)化執(zhí)行、不同血糖評(píng)價(jià)指標(biāo)的結(jié)合以及用更清晰的可視化方式呈現(xiàn)血糖水平,TIR在臨床診療中的價(jià)值可能會(huì)獲得更多的肯定[7-8]。在未來(lái),我們?nèi)孕枰粩嗵接憣?duì)SBMG如何更大程度地模擬TIR所需的數(shù)據(jù)、CGM系統(tǒng)傳感器與機(jī)體免疫反應(yīng)、TIR效益成本、不同評(píng)價(jià)指標(biāo)協(xié)調(diào)轉(zhuǎn)化等方面的問(wèn)題,TIR與糖尿病并發(fā)癥的相關(guān)性及其對(duì)患者治療的指導(dǎo)意義還需要大量前瞻性研究去闡明,TIR在糖尿病患者個(gè)體化、精細(xì)化管理中的更高價(jià)值值得期待。
參 考 文 獻(xiàn)
[1] Paing AC, McMillan KA, Kirk AF, Collier A, Hewitt A, Chastin SFM. Impact of free-living pattern of sedentary behaviour on intra-day glucose regulation in type 2 diabetes. Eur J Appl Physiol, 2020,120(1):171-179.
[2] Wang LM, Gao P, Zhang M, Huang ZJ, Zhang DD, Deng Q, Li YC, Zhao ZP, Qin XY, Jin DY, Zhou MG, Tang X, Hu YH, Wang LH. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013. JAMA, 2017,317(24):2515-2523.
[3] Carlson AL, Criego AB, Martens TW, Bergenstal RM. HbA1c: The glucose management indicator, time in range, and standardization of continuous glucose monitoring reports in clinical practice. Endocrinol Metab Clin North Am, 2020,49 (1):95-107.
[4] Vigersky RA. Going beyond HbA1c to understand the benefits of advanced diabetes therapies. J Diabetes, 2019,11(1):23-31.
[5] 中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì). 中國(guó)持續(xù)葡萄糖監(jiān)測(cè)臨床應(yīng)用指南(2017年版).中華糖尿病雜志,2017,9(11):667-675.
[6] Danne T, Nimri R, Battelino T, Bergenstal RM, Close KL, DeVries JH, Garg S, Heinemann L, Hirsch I, Amiel SA, Beck R, Bosi E, Buckingham B, Cobelli C, Dassau E, Doyle FJ, Heller S, Hovorka R, Jia W, Jones T, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Maahs D, Murphy HR, N?rgaard K, Parkin CG, Renard E, Saboo B, Scharf M, Tamborlane WV, Weinzimer SA, Phillip M. International Consensus on Use of Continuous Glucose Monitoring . Diabetes Care, 2017,40(12):1631-1640.
[7] Battelino T, Danne T, Bergenstal RM, Amiel SA, Beck R, Biester T, Bosi E, Buckingham BA, Cefalu WT, Close KL, Cobelli C, Dassau E, DeVries JH, Donaghue KC, Dovc K, Doyle FJ, Garg S, Grunberger G, Heller S, Heinemann L, Hirsch IB, Hovorka R, Jia W, Kordonouri O, Kovatchev B, Kowalski A, Laffel L, Levine B, Mayorov A, Mathieu C, Murphy HR, Nimri R, N?rgaard K, Parkin CG, Renard E, Rodbard D, Saboo B, Schatz D, Stoner K, Urakami T, Weinzimer SA., Phillip M. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range. Diabetes Care, 2019, 42(8):1593-1603.
[8] American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2019. Diabetes Care, 2019,42(Suppl 1): S61-S70.
[9] Feig DS, Donovan LE, Corcoy R, Murphy KE, Amiel SA, Hunt KF, Asztalos E, Barrett JFR, Sanchez JJ, de Leiva A, Hod M, Jovanovic L, Keely E, McManus R, Hutton EK, Meek CL, Stewart ZA, Wysocki T, OBrien R, Ruedy K, Kollman C, Tomlinson G, Murphy HR; CONCEPTT Collaborative Group. Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT): a multicentre international randomised controlled trial. Lancet, 2017, 390(10110):2347-2359.
[10] American Diabetes Association. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2020. Diabetes Care, 2020,43(Suppl 1): S66-S76.
[11] Beck RW, Bergenstal RM, Riddlesworth TD, Kollman C, Li Z, Brown AS, Close KL. Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care, 2019, 42 (3):400-405.
[12] 戴冬君,陸靜毅,周健.持續(xù)葡萄糖監(jiān)測(cè)新指標(biāo):葡萄糖在目標(biāo)范圍內(nèi)時(shí)間的臨床意義解析.中華糖尿病雜志,2019,11(2):139-142.
[13] Riddlesworth TD, Beck RW, Gal RL, Connor CG, Bergenstal RM, Lee S, Willi SM. Optimal sampling duration for continuous glucose monitoring to determine long-term glycemic control. Diabetes Technol Ther, 2018,20(4):314-316.
[14] Lu JY, Ma XJ, Zhou J, Zhang L, Mo YF, Ying LW, Lu W, Zhu W, Bao YQ, Vigersky RA, Jia WP. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care, 2018,41(11):2370-2376.
[15] Lu JY, Ma XJ, Shen Y, Wu Q, Wang R, Zhang L, Mo YF, Lu W, Zhu W, Bao YQ, Vigersky RA, Jia WP, Zhou J. Time in range is associated with carotid intima-media thickness in type 2 diabetes. Diabetes Technol Ther, 2020,22(2):72-78.
[16] 溫志剛,趙昶,何相成,陳麗娟,張暉,呂麗珍.2型糖尿病患者下肢動(dòng)脈病變與頸動(dòng)脈病變及心腦血管疾病的相關(guān)性研究.新醫(yī)學(xué),2019,50(4):298-302.
[17] Guo QY, Zang P, Xu SY, Song WJ, Zhang Z, Liu CY, Guo ZH, Chen J, Lu B, Gu P, Shao JQ. Time in range, as a novel metric of glycemic control, is reversely associated with presence of diabetic cardiovascular autonomic neuropathy independent of HbA1c in Chinese type 2 diabetes. J Diabetes Res, 2020,2020:5817074.
[18] Yang JP, Zhao ZG, Yuan HJ, Ma XX, Li Y, Wang H, Ma XJ, Qin GJ. The mechanisms of glycemic variability accelerate diabetic central neuropathy and diabetic peripheral neuropathy in diabetic rats. Biochem Biophys Res Commun, 2019,510(1):35-41.
[19] Mayeda L, Katz R, Ahmad I, Bansal N, Batacchi Z, Hirsch IB, Robinson N, Trence DL, Zelnick L, de Boer IH. Glucose time in range and peripheral neuropathy in type 2 diabetes mellitus and chronic kidney disease. BMJ Open Diabetes Res Care, 2020,8(1): e000991.
[20] Kristensen K, ?gge LE, Sengpiel V, Kj?lhede K, Dotevall A, Elfvin A, Knop FK, Wiberg N, Katsarou A, Shaat N, Kristensen L, Berntorp K. Continuous glucose monitoring in pregnant women with type 1 diabetes: an observational cohort study of 186 pregnancies. Diabetologia, 2019,62(7):1143-1153.
[21] Lanspa MJ, Krinsley JS, Hersh AM, Wilson EL, Holmen JR, Orme JF, Morris AH, Hirshberg EL. Percentage of time in range 70 to 139 mg/dL is associated with reduced mortality among critically ill patients receiving IV insulin infusion. Chest, 2019,156(5):878-886.
[22] Omar AS, Salama A, Allam M, Elgohary Y, Mohammed S, Tuli AK, Singh R. Association of time in blood glucose range with outcomes following cardiac surgery. BMC Anesthesiol, 2015,15(1):14.
[23] Calhoun P, Price D, Beck RW. Glycemic improvement using continuous glucose monitoring by baseline time in range: subgroup analyses from the DIAMOND type 1 diabetes study. Diabetes Technol Ther, 2020 Oct 20. doi: 10.1089/dia.2020.0471. Epub ahead of print.
[24] Michalak A, Pagacz K, M?ynarski W, Szadkowska A, Fendler W. Discrepancies between methods of continuous glucose monitoring in key metrics of glucose control in children with type 1 diabetes. Pediatr Diabetes, 2019,20(5):604-612.
[25] Petersson J, ?kesson K, Sundberg F, S?rnblad S. Translating glycated hemoglobin A1c into time spent in glucose target range: a multicenter study. Ped Diab, 2019,20(3):339-344.
[26] Rodbard D. Glucose time in range, time above range, and time below range depend on mean or median glucose or HbA1c, glucose coefficient of variation, and shape of the glucose distribution. Diabetes Technol Ther, 2020,22(7):492- 500.
[27] Vigersky RA, McMahon C. The relationship of hemoglobin A1C to time-in-range in patients with diabetes. Diabetes Technol Ther, 2019,21(2):81-85.
[28] Ravi SJ, Coakley A, Vigers T, Pyle L, Forlenza GP, Alonso T. Pediatric medicaid patients with type 1 diabetes benefit from continuous glucose monitor technology. J Diabetes Sci Technol, 2020,14:1932296820906214.
[29] Avari P, Uduku C, George D, Herrero P, Reddy M, Oliver N. Differences for percentage times in glycaemic range between continuous glucose monitoring and capillary blood glucose monitoring in adults with type 1 diabetes: analysis of the REPLACE-BG dataset. Diabetes Technol Ther, 2020,22(3):222-227.
[30] Heinemann L, Freckmann G, Müller-Wieland D, Kellerer M. Critical reappraisal of the time-in-range: alternative or useful addition to glycated hemoglobin? J Diabetes Sci Technol, 2020,14(5): 922-927.
(收稿日期:2020-10-13)
(本文編輯:洪悅民)