亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        數(shù)據(jù)挖掘課程中過程生成式啟發(fā)教學(xué)研究

        2021-01-15 06:24:27杜振鑫
        科技創(chuàng)新導(dǎo)報 2021年23期
        關(guān)鍵詞:數(shù)據(jù)挖掘

        杜振鑫

        摘 要:本科生數(shù)據(jù)挖掘和機器學(xué)習(xí)課程內(nèi)容抽象難懂,傳統(tǒng)的高等院校教材以講授式為主。目前已提出大量的案例式、項目式教學(xué)方法降低學(xué)習(xí)難度,但仍然存在抽象、不容易實施、缺少對算法原理剖析的缺點。本文首次提出在數(shù)據(jù)挖掘課程中采用過程生成式啟發(fā)教學(xué),將學(xué)生的生活經(jīng)驗原型逐步形式化為嚴謹?shù)臄?shù)據(jù)挖掘算法,降低了學(xué)習(xí)難度,有助于學(xué)生對算法的深刻理解,取得了更好的教學(xué)效果,在保證學(xué)科知識教學(xué)正確性與科學(xué)性之基礎(chǔ)上,助力學(xué)生學(xué)科素養(yǎng)與學(xué)科能力的生成。

        關(guān)鍵詞:數(shù)據(jù)挖掘 ?過程生成 生活原型 ?啟發(fā)式教學(xué)

        中圖分類號:TP312.1 ? ? ? ?文獻標識碼:A ? ? 文章編號:

        Abstract: The content of undergraduate data mining and machine learning course is abstract and difficult to understand. The traditional teaching materials of colleges and universities are mainly lecture teaching. At present, a large number of case-based and project-based teaching methods have been proposed to reduce the learning difficulty. However, there are still some shortcomings, such as abstraction, not easy to implement and lack of analysis of the principle of the algorithm. In this paper, the process generation heuristic teaching is proposed for the first time in the data mining course, and the prototype of students' life experience is gradually formalized into a rigorous data mining algorithm, which reduces the learning difficulty, contributes to students' deep understanding of the algorithm and achieves better teaching results, on the basis of ensuring the correctness and scientificity of subject knowledge teaching, help students generate subject literacy and subject ability.

        Key Words: Data mining; Processgeneration; Life prototype; Heuristic teaching

        隨著各行各業(yè)技術(shù)的發(fā)展,這個時代的數(shù)據(jù)量已經(jīng)發(fā)生跨越式的增長[1][2]。預(yù)計到 2025 年,全球天文數(shù)據(jù)采集量將達到每年 2.5×10 10 TB;僅2017 年,淘寶每天產(chǎn)生的數(shù)據(jù)都高達 7TB;物聯(lián)網(wǎng)中的每臺設(shè)備都會產(chǎn)生大量的數(shù)據(jù)[1]。 IDC 在《2020 年的“數(shù)字宇宙”》研究報告中預(yù)測,到 2020 年,全球數(shù)據(jù)量將達到 40ZB,中國在全球數(shù)據(jù)市場的份額也將由目前的 13% 上升到 22%[2]。大數(shù)據(jù)技術(shù)的出現(xiàn)很好地解決了大量數(shù)據(jù)的計算問題,數(shù)據(jù)挖掘和機器學(xué)習(xí)也成為一門非常重要的課程。但是數(shù)據(jù)挖掘和機器學(xué)習(xí)教學(xué)存在抽象、難于理解的問題。傳統(tǒng)教材大多采用算法加例題的講授模式,雖然表述嚴謹,卻不利于教學(xué)。學(xué)生突兀的接受某個算法,只見樹木不見森林,往往產(chǎn)生厭學(xué)情緒,不利于人才培養(yǎng)。覃鳳萍[1]提出問題引導(dǎo)+案例教學(xué)法,高建瓴[3]提出問題驅(qū)動教學(xué)模式,這些方法都是通過案例進行教學(xué),能夠有效降低學(xué)生的學(xué)習(xí)難度。但是這些方法也存在一定缺點:(1)學(xué)生從一個抽象的案例或者項目類比另一個抽象的算法,仍有不小的難度;(2)這些方法往往需要一定軟硬件條件或者因為學(xué)生完成進度不一致而明顯降低講課進度,只能偶爾為之,多數(shù)情況下仍然采用傳統(tǒng)的講授式教學(xué)[4];(3)案例式教學(xué)、項目教學(xué),沒有從本質(zhì)上將算法原理剖開給學(xué)生,學(xué)生只是熟練地模仿項目或案例,學(xué)生只是被動的輸入知識輸出應(yīng)用知識的技能,王積社等認為這種靜態(tài)的實體觀存在缺陷[4],因為事實上世界萬物是不斷變化的,是動態(tài)的,知識就是其生成過程,所以教學(xué)就必須模擬、展現(xiàn)知識的生成過程,學(xué)習(xí)就必須感受、理解知識的生成過程,這樣才能做到知其然而又知其所以然。近幾年來,過程生成理念開始得到較多的關(guān)注[5][6][7][8]。李文閣[9]等認為,“生成:現(xiàn)代哲學(xué)的最強音”,“生成性思維是現(xiàn)代哲學(xué)的基本精神和思維方式”。

        基于過程生成式理念與啟發(fā)式方法,本文首次提出在數(shù)據(jù)挖掘教學(xué)中,讓學(xué)生從最熟悉的生活經(jīng)驗出發(fā),引導(dǎo)學(xué)生將粗糙的生活經(jīng)驗經(jīng)過抽絲剝繭、去粗取精,最后得到嚴謹?shù)臄?shù)學(xué)表述,相當(dāng)于親自推導(dǎo)出相關(guān)的數(shù)據(jù)挖掘算法,既有效降低了學(xué)習(xí)難度,又加深了理解和記憶,在保證學(xué)科知識教學(xué)正確性與科學(xué)性之基礎(chǔ)上,助力學(xué)生學(xué)科素養(yǎng)與學(xué)科能力的生成,而核心素養(yǎng)已然成為推動當(dāng)代教育課程改革與促進教學(xué)模式轉(zhuǎn)型的頂層理念。采用過程生成式啟發(fā)教學(xué)法,學(xué)習(xí)過程即知識建構(gòu)的過程,能夠促進高階思維的形成[5]。

        1教學(xué)現(xiàn)狀

        數(shù)據(jù)挖掘課程需要用到線性代數(shù)、概率統(tǒng)計、機器學(xué)習(xí)等先修課,具有較高的理論難度。教學(xué)中主要存在問題是:

        (1)該課程具有知識點多和教學(xué)點分散的特點,理論學(xué)習(xí)難度較大。

        (2)實踐教學(xué)可操作性不強、主要以抽象的理論教學(xué)為主,學(xué)生難以將新知識與老知識進行遷移對照,容易遺忘、理解也不夠深刻,導(dǎo)致很多學(xué)生只能機械的照搬知識,一旦問題動態(tài)變化往往難以靈活運用學(xué)到的知識。很多學(xué)校將數(shù)據(jù)挖掘歸類為實踐課程,但是在實際操作中,需要花費大量實踐學(xué)習(xí)相關(guān)軟件的使用,造成實踐的效果大打折扣,學(xué)生對完成一套完整的數(shù)據(jù)挖掘流程是比較困難的。

        2基于過程生成理念的啟發(fā)式教學(xué)設(shè)計

        趙衛(wèi)東等[1][2][3]提出基于“問題引導(dǎo) + 案例”、項目驅(qū)動等教學(xué)模式。例如覃鳳萍[1]將關(guān)聯(lián)規(guī)則用電影推薦作為例子導(dǎo)入。但在教學(xué)中發(fā)現(xiàn),這種方法雖然有效,學(xué)生仍然感覺抽象、難以理解。

        卡爾·波普爾認為:“一個人要分享人類緩慢取得的知識,我所知道的唯一方法,就是循著知識創(chuàng)造者的腳印再走一遍”.王積社認為[4]:“過程→生成”教學(xué)是由師生共同參與的知識生成過程,該過程始于某種背景,在思想、情操的層層支配下,激起對學(xué)習(xí)目標的步步追求,誘導(dǎo)已有知識、技能、方法的循循攝入,形成流變與合生?!斑^程→生成”教學(xué)的基本原則,應(yīng)該遵循:(1)動態(tài)性原則:學(xué)生主動的動手動腦參與推導(dǎo)知識的生成過程。(2)攝入性原則:攝入是過程哲學(xué)的核心范疇,是揭示事物間相互關(guān)聯(lián)的思維方法。例如本文的例題中,將學(xué)生的生活經(jīng)驗與數(shù)據(jù)挖掘算法之間的聯(lián)系揭示出來,就是遵循了攝入性原則。(3)生成性原則:類似于搭積木,避免把知識直接搬給學(xué)生,而是引導(dǎo)學(xué)生逐步構(gòu)建出知識。基于過程生成式理念,讓學(xué)生從自己粗糙的生活經(jīng)驗出發(fā),在教師引導(dǎo)下逐步求精的推導(dǎo)出數(shù)據(jù)挖掘算法,讓學(xué)生理解算法的來龍去脈,能夠降低學(xué)習(xí)難度,提高學(xué)習(xí)效率,可以分成三個主要步驟:(1)提出一種學(xué)生熟悉的生活原型,可以比較好的吻合相應(yīng)的數(shù)據(jù)挖掘算法。(2)將粗糙的生活經(jīng)驗提煉,用嚴密的數(shù)學(xué)語言進行描述,推導(dǎo)出相應(yīng)的數(shù)據(jù)挖掘算法;(3)將學(xué)生根據(jù)生活經(jīng)驗推導(dǎo)的數(shù)據(jù)挖掘算法與教材的數(shù)據(jù)挖掘算法進行對比,揭示兩種算法之間的聯(lián)系。

        張良[10]認為,知識即創(chuàng)造或生成。其內(nèi)在信條即主體與客體關(guān)系的關(guān)系論、知識與世界關(guān)系的生成論以及個人與知識關(guān)系的參與論與互動論,因此讓課程煥發(fā)新生其實踐原則體現(xiàn)為:課程知識與生活世界的結(jié)合。拯救課程危機有必要基于生成主義認識論[10]。張茗[11]也認為,所謂認知指的是生成自己的"意義世界"的過程。根據(jù)此理論,過程產(chǎn)生式教學(xué)法是在動態(tài)的感知運動環(huán)路中主動構(gòu)建知識。

        下面將以數(shù)據(jù)挖掘中經(jīng)典的貝葉斯算法與密度聚類作為例子來說明過程生成理念引導(dǎo)的啟發(fā)式教學(xué)方法的應(yīng)用。

        2.1過程生成式啟發(fā)教學(xué)方法在貝葉斯算法中的應(yīng)用

        傳統(tǒng)的貝葉斯分類的教學(xué)大多只關(guān)注后驗概率公式的計算過程,學(xué)生普遍反映這部分的教學(xué)內(nèi)容抽象枯燥,理論與實際相脫離。 樸素貝葉斯分類基于一個簡單的假定:在給定分類特征條件下,描述屬性值之間是相互條件獨立的。樸素貝葉斯分類思想是:假設(shè)每個樣本用一個n維特征向量X={x1,x2,…,xn}來表示,描述屬性為A1、A2、…、An(Ai之間相互獨立)。類別屬性為C,假設(shè)樣本中共有m個類即C1、C2、…、Cm,給定一個未知類別的樣本X,樸素貝葉斯分類將預(yù)測X屬于具有最高后驗概率P(Ci|X)的類,也就是說,將X分配給類Ci,當(dāng)且僅當(dāng):P(Ci|X)>P(Cj|X),1≤j≤m,i≠j。根據(jù)貝葉斯定理有:

        如果僅僅按照上面的公式講解,學(xué)生比較難以理解。我們從基本的生活經(jīng)驗出發(fā),采用過程生成式啟發(fā)方法教學(xué),引導(dǎo)學(xué)生自己推導(dǎo)出貝葉斯算法。

        例:已知某電腦店銷售數(shù)據(jù)如表1所示,現(xiàn)在有一個新顧客X={“年齡='≤30',收入='中',學(xué)生='是',信譽='中'},試判斷X是否應(yīng)該購買計算機?

        過程產(chǎn)生式分析:(1)提出生活原型:運用生活經(jīng)驗類比法,我們根據(jù)X的年齡=‘≤30’,收入=‘中’,學(xué)生=‘是’,信譽=‘中’,首先憑生活經(jīng)驗判斷,這個人是否應(yīng)該購買計算機?經(jīng)過對學(xué)生提問,發(fā)現(xiàn)90%以上的學(xué)生都能憑直覺得出正確答案:顧客X應(yīng)該購買計算機。教師進一步啟發(fā)學(xué)生思考,為什么會得到這個結(jié)果?如果沒有生活經(jīng)驗,你會得出這樣的結(jié)論嗎?如果是沒有生活經(jīng)驗的幼兒園的學(xué)生,能得出這樣的結(jié)論嗎?學(xué)生經(jīng)過思索,回答:是因為X是學(xué)生,而且收入是’中’,而計算機并不貴,中等收入足夠購買計算機了,所以根據(jù)生活經(jīng)驗判斷,X多數(shù)會購買計算機。教師進一步啟發(fā)學(xué)生,要用數(shù)據(jù)說話才更加可信。學(xué)生仔細觀察已知數(shù)據(jù),終于找出規(guī)律:提供的銷售記錄共有14個顧客,其中9個人購買了計算機;再仔細觀察這9個人,購買計算機的人中,有6個是學(xué)生,概率是6/9=0.67,這說明,多數(shù)學(xué)生都買了計算機,而X恰好是學(xué)生,因此購買計算機的概率比較大。

        (2)將生活經(jīng)驗提煉:教師進一步引導(dǎo),用數(shù)學(xué)公式表述上面的經(jīng)驗,P(學(xué)生='是'|購買計算機='是')=6/9=0.67;同理,我們可以得出不買計算機的概率是P(學(xué)生='是'|購買計算機='否')=1/5=0.2。上面只分析了X的一個屬性“學(xué)生“,我們同理分析X的其他屬性,得出:P(年齡='≤30'|購買計算機='是')=2/9=0.22;P(年齡='≤30'|購買計算機='否')=3/5=0.6;P(信譽='中'|購買計算機='是')=6/9=0.67;P(信譽='中'|購買計算機='否')=2/5=0.4;P(收入='中'|購買計算機='是')=4/9=0.44;P(收入='中'|購買計算機='否')=2/5=0.4。

        假設(shè)條件獨立性,使用以上概率得到:P(X|購買計算機='是')=P(年齡='≤30'|購買計算機='是')×P(收入='中'|購買計算機='是')×P(學(xué)生='是'|購買計算機='是')×P(信譽='中'|購買計算機='是')=0.22×0.44×0.67×0.67=0.04;P(X|購買計算機='否')= P(年齡='≤30'|購買計算機='否')×P(收入='中'|購買計算機='否')×P(學(xué)生='是'|購買計算機='否')×P(信譽='中'|購買計算機='否')=0.6×0.4×0.2×0.4=0.02。

        到此,我們得出解題需要的兩個關(guān)鍵概率:P(X|購買計算機='是')=0.04,P(X|購買計算機='否')=0.02;

        進一步的,根據(jù)概率統(tǒng)計的知識,考慮“購買計算機='是'”的類:P(X|購買計算機='是')×P(購買計算機='是')=0.04×0.64=0.03;考慮“購買計算機='否'”的類:P(X|購買計算機='否')×P(購買計算機='否')=0.02×0.36=0.01。

        因此,對于樣本X預(yù)測為“購買計算機='是'”。

        在上面的教學(xué)過程中,我們首先引導(dǎo)學(xué)生用生活經(jīng)驗自己推導(dǎo),逐步去粗取精、然后用數(shù)學(xué)語言加以嚴謹描述,最終自己推導(dǎo)出貝葉斯分類算法。經(jīng)過對比,學(xué)生發(fā)現(xiàn)自己推導(dǎo)的貝葉斯算法與教材中的貝葉斯算法的原理一模一樣,從而很快就牢牢理解了貝葉斯算法的思想,并形成了深刻印象,在此過程中,很多同學(xué)能夠自己推導(dǎo)出經(jīng)典的算法而產(chǎn)生了濃厚的學(xué)習(xí)興趣,建立了學(xué)習(xí)的自信。多數(shù)學(xué)生感覺這種類比法有明顯的效果,克服了案例法或者項目法過于抽象、學(xué)生快慢不一的缺點,知識已經(jīng)內(nèi)化為思維的一部分,更加容易理解和接受。

        2.2 過程生成式啟發(fā)教學(xué)方法在密度聚類中的應(yīng)用

        密度聚類是2014年著名期刊Science上提出的一種新的聚類方法,雖然公式較少,但是理解比較抽象。其關(guān)鍵步驟是確定聚類中心,其嚴謹描述是:聚類中心被局部密度較低的近鄰數(shù)據(jù)點包圍。

        下面演示采用過程生成式啟發(fā)教學(xué)方法講授密度聚類算法的過程。

        (1)提出生活原型:觀察中國地圖5分鐘,回答問題:你認為中國的哪些城市可以作為區(qū)域中心城市?學(xué)生自習(xí)觀察后,多數(shù)回答是北京、上海、廣州、拉薩、烏魯木齊等城市。然后教師提問:你為什么認為這些城市是區(qū)域中心城市,為什么不選擇北京周邊的廊坊、上海周邊的嘉興作為中心城市?請給出理由。學(xué)生各抒己見,最后有學(xué)生回答:北京、上海、廣州比較大。教師反問:拉薩不如嘉興大,但是拉薩顯然可以作為區(qū)域中心,但是嘉興卻不是,因為嘉興相鄰的上海遠比嘉興大的多,嘉興周邊已經(jīng)有了上海這個區(qū)域中心城市,嘉興就不可能再成為區(qū)域中心城市。學(xué)生再次深入思考,認為僅憑一個城市的大小,不能作為區(qū)域中心城市的標準。最后有學(xué)生仔細觀察地圖后發(fā)現(xiàn),區(qū)域中心城市的交通是這個區(qū)域最發(fā)達的,而且再也找不出反例,教師予以肯定,經(jīng)過學(xué)生的主動思考,學(xué)生終于生成了正確的知識。(2)引導(dǎo)學(xué)生如何用數(shù)學(xué)形式化描述這個原理:如果某個城市K可以作為區(qū)域中心城市,那么K的鄰居的數(shù)目一定是該區(qū)域最多的,換句話說,假設(shè)M、N、P等是區(qū)域中心城市K的鄰居,那么M、N、P的相鄰城市的數(shù)目都比K的相鄰城市數(shù)目要少。(3)與教材對照:學(xué)生通過一個最熟悉的生活原型,推導(dǎo)出聚類中心應(yīng)該具備的性質(zhì),此時教師公布教材中的密度聚類中心的定義,發(fā)現(xiàn)與學(xué)生自己推導(dǎo)的結(jié)論基本一致,因此磨刀不誤砍柴工,推導(dǎo)的過程即是知識生成的過程,知識生成完畢也就學(xué)習(xí)完畢。學(xué)生在一瞬間就對這個算法的思想豁然開朗。如果采用案例教學(xué)法或者項目教學(xué)法,學(xué)生雖然可以熟練掌握如何用算法解決問題,卻難以深刻理解算法的原理;而采用過程生成式啟發(fā)教學(xué)方法,學(xué)生親自構(gòu)建了知識,對算法的生成過程有更深刻的理解,因此能夠很快學(xué)會算法的應(yīng)用并形成持久的記憶。

        在其他很多數(shù)據(jù)挖掘算法中,都可以運用生活經(jīng)驗類比法。例如K近鄰分類,讓學(xué)生回答:假設(shè)對某個人一無所知,但是知道他的K個朋友學(xué)習(xí)都很好,請問此人學(xué)習(xí)是否也很好?學(xué)生很容易自己推導(dǎo)出K近鄰算法,得出此人學(xué)習(xí)很好的結(jié)論。再如:集成學(xué)習(xí)可以用生活中的投票的經(jīng)驗進行類比等等。復(fù)雜的算法,往往都是由簡單的問題加以延伸而成,因此多數(shù)能夠找到問題的原型,用過程生成式教學(xué)方法加以推導(dǎo),就可以得到相應(yīng)的算法。

        3結(jié)語

        數(shù)據(jù)挖掘的學(xué)習(xí)難度較高,以往的案例驅(qū)動、項目驅(qū)動教學(xué)法仍然存在過于抽象、影響教學(xué)進度的缺點而導(dǎo)致難以實施;而大量的主動學(xué)習(xí)、合作學(xué)習(xí)、研究性學(xué)習(xí)雖然有其優(yōu)點,在實際課堂講授中往往受到軟硬件條件限制或者影響課程進度,導(dǎo)致實際上課堂講授法仍然占據(jù)主流。本文首次提出在數(shù)據(jù)挖掘中引入過程生成式啟發(fā)教學(xué)方法,克服了上述缺點,引導(dǎo)學(xué)生從熟悉的生活經(jīng)驗出發(fā)推導(dǎo)出相應(yīng)的算法,讓學(xué)生知其然更知其所以然,使得學(xué)生很容易將熟悉的知識遷移到對數(shù)據(jù)挖掘算法的理解中去,具有較高的課堂應(yīng)用價值。

        參考文獻

        [1] 覃鳳萍,陳佳.基于“問題引導(dǎo)+案例”的數(shù)據(jù)挖掘課程教學(xué)模式設(shè)計[J]教育現(xiàn)代化,2020,7(45):169-171.

        [2] 趙衛(wèi)東,袁雪茹.基于項目實踐的機器學(xué)習(xí)課程改革[J] 計算機教育,2019(9):151-154.

        [3] 高建瓴,潘成成.以“問題驅(qū)動”為基礎(chǔ)的“數(shù)據(jù)挖掘及應(yīng)用”課程教學(xué)實踐[J].新型工業(yè)化,2020,10(9):187-189.

        [4] 王積社.論“過程→生成”教學(xué)——面向基礎(chǔ)與創(chuàng)新的數(shù)學(xué)教學(xué)模式研究[J].韓山師范學(xué)院學(xué)報,2013,34(3):98-104.

        [5] 胡翰林,沈書生.生成認知促進高階思維的形成——從概念的發(fā)展談起[J].電化教育研究,2021,42(6):27-33.

        [6] 王小根,單必英.生成性理念指導(dǎo)下的探究式教學(xué)活動設(shè)計[J].軟件導(dǎo)刊,2019,18(12):263-266.

        [7] 扈春榮,王輝.體育學(xué)習(xí)自主生成應(yīng)對研究[J].當(dāng)代體育科技,2018,8(20):62-63.

        [8] 楊建梅.淺析高中歷史課堂生成性教學(xué)實施策略[J].科技資訊,2020,18(14):136-137.

        [9] 李文閣.生成性思維:現(xiàn)代哲學(xué)的思維方式[J].中國社會科學(xué),2000(6):45-53+206.

        [10] 張良. 課程知識觀研究[D].上海:華東師范大學(xué),2015.

        [11] 張茗.生成知覺觀研究[D].南京:南京大學(xué),2016.

        猜你喜歡
        數(shù)據(jù)挖掘
        基于數(shù)據(jù)挖掘的船舶通信網(wǎng)絡(luò)流量異常識別方法
        探討人工智能與數(shù)據(jù)挖掘發(fā)展趨勢
        數(shù)據(jù)挖掘技術(shù)在打擊倒賣OBU逃費中的應(yīng)用淺析
        基于并行計算的大數(shù)據(jù)挖掘在電網(wǎng)中的應(yīng)用
        電力與能源(2017年6期)2017-05-14 06:19:37
        數(shù)據(jù)挖掘技術(shù)在中醫(yī)診療數(shù)據(jù)分析中的應(yīng)用
        一種基于Hadoop的大數(shù)據(jù)挖掘云服務(wù)及應(yīng)用
        數(shù)據(jù)挖掘在高校圖書館中的應(yīng)用
        數(shù)據(jù)挖掘的分析與探索
        河南科技(2014年23期)2014-02-27 14:18:43
        基于GPGPU的離散數(shù)據(jù)挖掘研究
        利用數(shù)據(jù)挖掘技術(shù)實現(xiàn)LIS數(shù)據(jù)共享的開發(fā)實踐
        男人天堂av在线成人av| 亚洲欧美色一区二区三区| 狠狠色噜噜狠狠狠狠米奇777| 首页动漫亚洲欧美日韩| 精品人妻免费看一区二区三区| 亚洲国产一区一区毛片a| 日韩一二三四区免费观看 | 怡红院av一区二区三区 | 免费女女同黄毛片av网站| 黑人大群体交免费视频| 中文国产日韩欧美二视频| 日本手机在线| 日本av一区二区三区四区| 国色天香社区视频在线| 国产精品亚洲二区在线观看| 国产成人久久蜜一区二区| 久久久精品少妇—二区| 国产情侣真实露脸在线| 丰满少妇三级全黄| 亚洲人成影院在线无码观看| 亚洲福利av一区二区| 精品国产亚洲级一区二区| 久久久久久人妻一区精品 | 国产男女乱婬真视频免费| 国产高清一区二区三区三州| 在线一区二区三区国产精品| 美女视频黄的全免费视频网站| 国产精品视频一区日韩丝袜| 亚洲国产日韩综一区二区在性色 | 亚洲国产精品自拍成人| 正在播放强揉爆乳女教师| 六月婷婷国产精品综合| 亚州韩国日本区一区二区片| 午夜视频国产在线观看| 艳妇臀荡乳欲伦交换在线播放| 国产在线精品福利大全| 免费人成黄页网站在线一区二区| 国产免费三级av在线| 国产精品亚洲αv天堂无码| 国产欧美va欧美va香蕉在线观 | 亚洲a∨国产av综合av下载|