亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        菠蘿磷轉(zhuǎn)運(yùn)蛋白1家族基因鑒定及特征分析

        2021-01-07 05:13:07韓利紅劉潮趙明玉胡麗娟胡玉霜
        廣西植物 2021年12期

        韓利紅 劉潮 趙明玉 胡麗娟 胡玉霜

        摘 要:? 磷轉(zhuǎn)運(yùn)蛋白1 (phosphate transporter protein 1, PHT1)家族在植物對(duì)磷的吸收及再利用過程中發(fā)揮重要作用。該研究對(duì)菠蘿PHT1基因(AcoPHT1)進(jìn)行全基因組鑒定,并對(duì)基因結(jié)構(gòu)、編碼蛋白保守功能域和基因表達(dá)進(jìn)行了分析。結(jié)果表明:(1)共鑒定到9個(gè)AcoPHT1基因,位于基因組7個(gè)連鎖群上,所有基因均含有1~3個(gè)內(nèi)含子,內(nèi)含子相位類型多樣。(2)除AcoPHT1.8外,AcoPHT1蛋白均為堿性蛋白,所有蛋白屬于親水性蛋白,且含有10~13個(gè)跨膜功能域,均具有保守的PHT1蛋白標(biāo)簽序列GGDYPLSATIxSE,主要定位于葉綠體和細(xì)胞質(zhì)中。(3)AcoPHT1蛋白聚類在單子葉植物組和單雙子葉植物混合組中,相對(duì)于擬南芥,水稻PHT1與菠蘿PHT1相似度更高。(4)AcoPHT1基因啟動(dòng)子區(qū)含有P1BS、W-box等與磷吸收和響應(yīng)脅迫有關(guān)的多個(gè)順式作用元件。(5)靶基因預(yù)測分析顯示,基因AcoPHT1.2、AcoPHT1.8和AcoPHT1.9受多個(gè)miRNA調(diào)控。(6)AcoPHT1基因表達(dá)存在組織特異性和功能冗余性,不同PHT1基因可能在菠蘿不同組織或發(fā)育階段發(fā)揮作用。該研究結(jié)果為菠蘿PHT1家族基因的功能鑒定和育種應(yīng)用奠定理論基礎(chǔ)。

        關(guān)鍵詞: 菠蘿, 菠蘿磷轉(zhuǎn)運(yùn)蛋白1(PHT1), 磷吸收, 啟動(dòng)子, miRNA, 組織表達(dá)

        中圖分類號(hào):? Q943

        文獻(xiàn)標(biāo)識(shí)碼:? A

        文章編號(hào):? 1000-3142(2021)12-1955-09

        收稿日期:? 2020-11-03

        基金項(xiàng)目:? 國家自然科學(xué)基金 (32060710,31860005);云南省地方本科高?;A(chǔ)研究聯(lián)合專項(xiàng)(2017FH001-034) [Supported by the National Natural Science Foundation of China (32060710, 31860005); Yunnan Local Colleges Applied Basic Research Projects (2017FH001-034)]。

        作者簡介: 韓利紅(1981-),博士,副教授,主要從事植物系統(tǒng)發(fā)育與進(jìn)化研究,(E-mail)hanlihong9527@126.com。

        通信作者:? 劉潮,博士,副教授,主要從事植物逆境生物學(xué)研究,(E-mail)liuchao_80@163.com。

        Genomic identification and characterization analysis of the

        phosphate transporter protein 1 family gene in pineapple

        HAN Lihong, LIU Chao*, ZHAO Mingyu, HU Lijuan, HU Yushuang

        ( Qujing Normal University, College of Biological Resource and Food Engineering, Key Laboratory of Yunnan Province Universities of the

        Diversity and Ecological Adaptive Evolution for Animals and Plants on Yungui Plateau, Qujing 655011, Yunnan, China )

        Abstract:? Phosphate transporter protein 1 (PHT1) family plays pivotal roles in the uptake and re-mobilization of phosphate of plants. In this study, the analysis of whole genome-wide sequence of PHT1 genes in pineapple (Ananas comosus) was conducted, and the gene structure, encoding protein conserved domain and gene expression were further investigated. The results were as follows: (1) Nine PHT1 (AcoPHT1) genes of pineapple, which were located in seven linkage groups and contained one to three introns with various intron phase types, were identified. (2) Except for AcoPHT1.8, AcoPHT1 proteins were all basic proteins, and all the AcoPHT1 proteins were hydrophilic and contained 10 to 13 transmembrane domains, which conserved PHT1 protein tag sequence GGDYPLSATIxSE, and was mainly located in chloroplasts and cytoplasm. (3) AcoPHT1 protein clusters were found in monocotyledons group and monocotyledons and dicotyledons mixed group, and compared to Arabidopsis thaliana, AcoPHT1s proteins had higher similarity with rice PHT1 proteins. (4) The promoter region of AcoPHT1 gene contained a large number of P1BS, W-box and other cis-acting elements, which were related to phosphorus absorption and response to stress. (5) Prediction analysis showed that three genes, AcoPHT1.2, AcoPHT1.8 and AcoPHT1.9 were regulated by multiple miRNAs. (6) The expression of AcoPHT1 gene had tissue-specific and functional redundancy, and different PHT1 genes might play roles in different tissues or development stages. The results provide a theoretical reference for functional identification and breeding application of PHT1 family genes in pineapple.

        Key words: pineapple, phosphate transporter protein 1 (PHT1), phosphorus absorption, promoter, miRNA, tissue expression

        磷(phosphorus,P)是生命體重要組成元素之一,在植物生命代謝活動(dòng)中發(fā)揮著必不可少的作用。植物通過根系從土壤中吸收磷酸鹽形式的磷元素,土壤缺磷嚴(yán)重影響植物的生長代謝,是限制作物高產(chǎn)的重要因素(Abel et al., 2002)。為提高對(duì)磷的吸收能力,植物采取一系列策略進(jìn)行應(yīng)對(duì),其中磷轉(zhuǎn)運(yùn)蛋白1 (phosphate transporter,PHT1)為高親和力的磷轉(zhuǎn)運(yùn)因子,在低磷條件下對(duì)土壤磷的吸收起關(guān)鍵作用(Gu et al., 2016)。自擬南芥(Arabidopsis thaliana)PHT1基因首次被克隆鑒定(Muchhal et al., 1996)以來,目前擬南芥(Mudge et al., 2002)、水稻(Oryza sativa)(Liu et al., 2011)、大豆(Glycine max)(Fan et al., 2013)、番茄(Solanum lycopersicum)(Chen et al., 2014)、馬鈴薯(Solanum tuberosum)(Liu et al., 2017)、楊樹(Populus trichocarpa)(Zhang et al., 2016)、蘋果(Malus domestica)(Sun et al., 2017)等多個(gè)物種的PHT1家族基因已被鑒定。源自梨狀孢子蟲(Piriformospora indica)的高親和力磷酸轉(zhuǎn)運(yùn)蛋白是首個(gè)被解析的PHT1晶體結(jié)構(gòu)(Pedersen et al., 2013)。

        系統(tǒng)發(fā)育研究表明,植物PHT1為主要促進(jìn)子超家族(major facilitator superfamily,MFS)典型的phosphate: H+同向轉(zhuǎn)運(yùn)子(Liu et al., 2011),與酵母PHO84磷轉(zhuǎn)運(yùn)蛋白同源,存在糖轉(zhuǎn)運(yùn)功能域(PF00083),具有12個(gè)保守的跨膜功能域(transmembrane domains,TM)、親水性N端和C端以及TM6和TM7之間的親水環(huán)結(jié)構(gòu)(Muchhal et al., 1996)。過表達(dá)擬南芥PHT1.1增加了植物對(duì)磷的吸收(Wang et al., 2014)。PHT1基因的上調(diào)表達(dá)增加了根際磷的吸收和轉(zhuǎn)運(yùn)(Raghothama, 1999)。低磷脅迫條件下,AtPHT1.1和AtPHT1.4在植物根與土壤接觸面上的表皮、根毛細(xì)胞和根冠細(xì)胞中高度表達(dá)(Mudge et al., 2002),AtPHT1.8和AtPHT1.9在磷素由根到莖的轉(zhuǎn)運(yùn)過程中起作用(Lapis-Gaza et al., 2014)。OsPHT1.6編碼高親和磷轉(zhuǎn)運(yùn)蛋白,在初生根、側(cè)根的表皮和皮層細(xì)胞中表達(dá),在水稻的磷吸收和轉(zhuǎn)運(yùn)中起作用,而OsPHT1.2編碼低親和力磷轉(zhuǎn)運(yùn)蛋白,定位于初生根和側(cè)根的中柱中,負(fù)責(zé)磷的轉(zhuǎn)運(yùn)(Ai et al., 2009)。叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)通過誘導(dǎo)真菌PHT1和植物PHT1表達(dá)提高植物磷吸收(Javot et al., 2007;Walder et al., 2015)。

        菠蘿(Ananas comosus)屬于鳳梨科鳳梨屬多年生單子葉植物,是產(chǎn)量僅次于香蕉和芒果的第三大熱帶水果作物。目前,多個(gè)物種PHT1家族基因已被研究,而關(guān)于菠蘿PHT1家族基因的研究鮮見報(bào)道。菠蘿基因組數(shù)據(jù)的公布(Ming et al., 2015)為PHT1家族的全基因組鑒定提供了可能。本研究利用生物信息學(xué)方法對(duì)菠蘿PHT1家族基因進(jìn)行鑒定,并對(duì)PHT1家族成員基因結(jié)構(gòu)、氨基酸保守基序、聚類和基因組織特異性表達(dá)進(jìn)行分析,研究結(jié)果可為菠蘿中磷利用機(jī)制的闡明和新品種選育提供參考。

        1 材料與方法

        1.1 菠蘿PHT1家族成員的鑒定

        以擬南芥和水稻PHT1家族成員蛋白序列作為查詢序列,搜索菠蘿基因組蛋白數(shù)據(jù)庫,使用NCBI在線工具CDD和SMART軟件進(jìn)行蛋白功能域分析,剔除不含糖轉(zhuǎn)運(yùn)功能域(PF00083)的序列。

        1.2 菠蘿PHT1家族成員序列分析

        使用ProtParam工具計(jì)算蛋白序列理化特征,使用TMpred程序預(yù)測蛋白跨膜區(qū)域;使用WoLF PSORT工具預(yù)測蛋白亞細(xì)胞定位;使用GSDS軟件繪制基因外顯子和內(nèi)含子結(jié)構(gòu)示意圖;使用MEME在線程序預(yù)測氨基酸保守基序,搜索基序數(shù)目為10,其他參數(shù)默認(rèn)。

        1.3 miRNA靶標(biāo)PHT1基因的預(yù)測

        根據(jù)miRNA與其靶基因的互補(bǔ)性可預(yù)測miRNA的靶基因,使用在線軟件psRNATarget對(duì)文獻(xiàn)中菠蘿miRNA(Zheng et al., 2016)的靶標(biāo)PHT1基因進(jìn)行預(yù)測。

        1.4 PHT1家族序列比對(duì)及進(jìn)化分析

        使用MEGA 7.0選擇最大似然法和鄰接法構(gòu)建系統(tǒng)聚類樹,主要參數(shù)步長為1 000,替代模型為泊松模型,空位缺失數(shù)據(jù)的處理為部分刪除;使用EvolView軟件繪制聚類樹;使用序列相似性分析工具Circoletto對(duì)擬南芥、水稻和菠蘿PHT1蛋白序列相似性進(jìn)行分析。

        1.5 基因啟動(dòng)子區(qū)特征分析

        從菠蘿基因組數(shù)據(jù)庫下載AcoPHT1基因轉(zhuǎn)錄起始位點(diǎn)上游1.5 kb序列,使用PLACE軟件對(duì)基因啟動(dòng)子區(qū)順式作用元件進(jìn)行分析。

        1.6 基因的組織表達(dá)分析

        菠蘿PHT1基因轉(zhuǎn)錄組數(shù)據(jù)于菠蘿基因組數(shù)據(jù)庫下載,基因組織特異性表達(dá)取樣部位分別為根、葉的6個(gè)片段,花和果實(shí)的5個(gè)成熟階段。使用HemI 1.0軟件,根據(jù)log2(FPKM+1)值的轉(zhuǎn)換數(shù)據(jù)繪制基因表達(dá)熱圖。

        2 結(jié)果與分析

        2.1 菠蘿PHT1家族基因的鑒定

        以擬南芥和水稻PHT1蛋白作為查詢序列搜索菠蘿蛋白數(shù)據(jù)庫,共獲得9個(gè)菠蘿PHT1蛋白,均含有保守的糖轉(zhuǎn)運(yùn)功能域Sugar_tr (PF00083)。根據(jù)搜索比對(duì)得分,依次將基因命名為AcoPHT1.1-AcoPHT1.9。這9個(gè)基因分別位于連鎖群(linkage groups,LG)1、3、6、8、14、20和22上。所有成員氨基酸數(shù)為499~602,包含10~13個(gè)TMD。除AcoPHT1.8為酸性蛋白外,其他蛋白均為堿性蛋白,等電點(diǎn)為7.99~9.03。所有蛋白平均疏水指數(shù)為0.113~0.403,均為正值,屬親水性蛋白。蛋白定位預(yù)測分析顯示,AcoPHT1.3、AcoPHT1.6、AcoPHT1.7和AcoPHT1.9主要定位于葉綠體中,AcoPHT1.4、AcoPHT1.5和AcoPHT1.8主要定位于細(xì)胞質(zhì)中,AcoPHT1.1和AcoPHT1.2主要定位于細(xì)胞膜上,部分蛋白可能定位于多個(gè)細(xì)胞器中(表1)。

        2.2 miRNA對(duì)菠蘿PHT1家族基因的調(diào)控分析

        miRNAs在轉(zhuǎn)錄水平和轉(zhuǎn)錄后水平上調(diào)節(jié)基因表達(dá),在植物生長、發(fā)育、成熟、生物和非生物脅迫反應(yīng)等方面發(fā)揮重要作用(Chen, 2009)。本研究對(duì)miRNA及其PHT1家族靶基因的互作及調(diào)控關(guān)系進(jìn)行預(yù)測。AcoPHT1.8可受到miR2275f的裂解抑制調(diào)控,受到miR2673h、miR2673i、miR2673k的轉(zhuǎn)錄抑制調(diào)控,AcoPHT1.2可受到miR2673h、miR2673i、miR2673k和miR399d的轉(zhuǎn)錄抑制調(diào)控,AcoPHT1.9可受到miR2673a、miR528a、miR528b的裂解抑制調(diào)控(表2)。

        2.3 基因結(jié)構(gòu)和氨基酸基序分析

        利用MEGA 7.0 構(gòu)建聚類樹,發(fā)現(xiàn)菠蘿PHT1主要分為三個(gè)聚類組,其中AcoPHT1.8和AcoPHT1.9聚在一組,AcoPHT1.6和AcoPHT1.7聚在一組, 其他5個(gè)菠蘿PHT蛋白聚在一組 (圖1:A)?;蚪Y(jié)構(gòu)分析顯示,AcoPHT1基因含有1~3個(gè)內(nèi)含子,其中含有1、2、3個(gè)內(nèi)含子的基因數(shù)目分別為4、3和2,內(nèi)含子相位類型(intron phase)多樣(圖1:B)。使用MEME軟件分析發(fā)現(xiàn)菠蘿PHT1蛋白含有10個(gè)保守的氨基酸基序,基序1含有保守的PHT1蛋白標(biāo)簽GGDYPLSATIxSE,存在于9個(gè)菠蘿PHT1蛋白中?;?~7編碼跨膜功能域。AcoPHT1.4缺少基序6,其跨膜功能域相對(duì)較少,AcoPHT1.5缺少基序8和基序9,AcoPHT1.8和AcoPHT1.9缺少基序10,基序8~10功能未知(圖1:C, D)。

        2.4 聚類分析

        為了解植物PHT1家族的聚類及進(jìn)化,使用擬南芥、水稻、玉米、大豆、楊樹和菠蘿的PHT1全長蛋

        白序列,利用MEGA 7.0軟件應(yīng)用最大似然法和鄰接法構(gòu)建系統(tǒng)發(fā)育樹,兩種進(jìn)化樹結(jié)果相似,文中選擇最大似然法的結(jié)果進(jìn)行展示(圖2)。結(jié)果顯示,植物PHT1蛋白共歸為3組,分別為雙子葉植物組、單子葉植物組和單雙子葉植物混合組。菠蘿PHT1主要分布在單子葉植物組中的亞組b、c和e以及單雙子葉混合組的亞組b和c中。為了解菠蘿PHT1蛋白的起源和進(jìn)化,使用Circoletto軟件對(duì)擬南芥、水稻和菠蘿PHT1蛋白序列相似性進(jìn)行分析,圖3結(jié)果顯示,絕大多數(shù)菠蘿PHT1蛋白與水稻PHT1蛋白相似度較高,這些蛋白可能具有共同的起源,如AcoPHT1.1/AcoPHT1.2與OsPHT1.6,AcoPHT1.3/AcoPHT1.5與OsPHT1.2,AcoPHT1.8/AcoPHT1.9與OsPHT1.10,AcoPHT1.4與OsPHT1.4,AcoPHT1.6與OsPHT1.11具有較高的相似性,而AcoPHT1.7與AtPHT1.3具有較高的相似性。

        2.5 菠蘿PHT1家族基因啟動(dòng)子順式作用元件分析

        使用PLACE軟件對(duì)AcoPHT1基因上游1.5 kb序列順式作用元件進(jìn)行分析(圖4),結(jié)果發(fā)現(xiàn)180個(gè)順式作用元件,這些元件參與植物生長發(fā)育、響應(yīng)激素和脅迫信號(hào)等生物過程。AcoPHT1.1、AcoPHT1.5、AcoPHT1.6和AcoPHT1.7的啟動(dòng)子中存在2~4個(gè)P1BS元件(PHR1-binding site,GNATATNC)。OSE1ROOTNODULE(organ-specific elements of root nodules,AAAGAT)存在于AcoPHT1.1、AcoPHT1.3、AcoPHT1.4、AcoPHT1.6、AcoPHT1.7和AcoPHT1.8的啟動(dòng)子中,OSE2ROOTNODULE(CTCTT)存在于9個(gè)AcoPHT1基因啟動(dòng)子中。除AcoPHT1.5外,AcoPHT1基因均含有至少1個(gè)W-box。此外,菠蘿PHT1家族基因啟動(dòng)子中還存在ABRELATERD1 (ACGTG)、CACGTGMOTIF (CACGTG)、LTRE1HVBLT49 (CCGAAA)、ELRECOREPCRP1(W-box,TTGACC)等脅迫響應(yīng)和激素響應(yīng)相關(guān)元件。

        2.6 菠蘿PHT1家族基因的組織表達(dá)分析

        為了解菠蘿PHT1家族基因在植物不同組織器官中的表達(dá),從菠蘿基因組數(shù)據(jù)庫中下載并分析PHT1家族基因在根、葉、花和果實(shí)等器官的表達(dá)(圖5)。發(fā)現(xiàn)除AcoPHT1.6外,其余8個(gè)AcoPHT1基因在不同組織中均有表達(dá)。其中,AcoPHT1.4和AcoPHT1.9在4類組織中均有表達(dá),AcoPHT1.1在除部分葉片節(jié)段外的組織中有表達(dá),AcoPHT1.7和AcoPHT1.8主要在葉組織中有表達(dá),AcoPHT1.7在花組織中有表達(dá),AcoPHT1.2僅在花組織中有較高表達(dá),AcoPHT1.3和AcoPHT1.5主要在花、葉部分節(jié)段以及根和果實(shí)成熟不同階段的組織中有表達(dá)。這些特征表明,菠蘿PHT1家族基因具有組織表達(dá)特異性,且存在功能冗余,不同的PHT1基因可能在不同的組織或發(fā)育階段發(fā)揮作用。

        3 討論與結(jié)論

        植物根系通過PHT蛋白調(diào)控土壤磷素吸收,并轉(zhuǎn)運(yùn)到其他部分。本研究從菠蘿基因組中鑒定到9個(gè)PHT1家族基因。菠蘿中PHT1家族基因數(shù)目與擬南芥(9個(gè))(Mudge et al., 2002)、番茄(8個(gè))(Chen et al., 2014)相當(dāng),略少于水稻(13個(gè))(Liu et al., 2011)、大豆(14個(gè))(Fan et al., 2013)、蘋果(14 個(gè))(Sun et al., 2017)、楊樹(14個(gè))(Zhang et al., 2016)、陸地棉(Gossypium hirsutum)(17個(gè))(晁毛妮等,2017),明顯少于小麥(Triticum aestivum)(36個(gè))(Teng et al., 2017)。一些物種中大量PHT1基因的存在,反映了在進(jìn)化過程中發(fā)生的廣泛的基因重復(fù)和多樣化,是基因組不斷擴(kuò)展和重新排列的結(jié)果。系統(tǒng)發(fā)育可以作為推斷物種間蛋白結(jié)構(gòu)和功能變化的依據(jù)。本研究中,植物PHT1主要分為單子葉植物組、雙子葉植物組和單雙子葉混合組三類,植物PHT1家族進(jìn)化分組與物種有明顯的相關(guān)性。大多數(shù)菠蘿PHT1蛋白與水稻PHT1蛋白相似度較高,親緣關(guān)系較近。單雙子葉植物混合組中的PHT1成員可能屬于更古老的基因,在單雙子葉植物進(jìn)化分開后,通過基因復(fù)制進(jìn)一步擴(kuò)展出雙子葉植物組或單子葉植物組新成員。

        順式作用元件通過與反式調(diào)節(jié)因子的相互作用調(diào)節(jié)基因的表達(dá),在基因功能發(fā)揮中起決定作用。P1BS為植物基因上游的PHR1識(shí)別序列,控制磷脅迫響應(yīng)基因在根中的表達(dá)和對(duì)低磷脅迫的響應(yīng)(Rubio et al., 2001)。OSE1ROOTNODULE和OSE2ROOTNODULE為根瘤感染細(xì)胞中基因啟動(dòng)的兩個(gè)器官特異性元件(Vieweg et al., 2004),這兩個(gè)基序是根瘤感染細(xì)胞啟動(dòng)子活性所必需的(Stougaard et al., 1990)。WBOXNTERF3 (W-box,TGACY)在植物磷吸收和響應(yīng)脅迫過程中起作用(Nishiuchi et al., 2004;Devaiah et al., 2007)。ABRELATERD1、CACGTGMOTIF、LTRE1HVBLT49、ELRECOREPCRP1屬于脅迫響應(yīng)和激素響應(yīng)相關(guān)元件(Dunn et al., 1998;Eulgem et al., 1999;Chakravarthy et al., 2003)。本研究分析發(fā)現(xiàn),一些AcoPHT1基因啟動(dòng)子區(qū)含有磷脅迫相關(guān)元件P1BS,這些基因受PHR1轉(zhuǎn)錄因子調(diào)控,可能在磷的吸收和利用過程中起作用(Rubio et al., 2001)。一些基因啟動(dòng)子區(qū)含有元件OSEROOTNODULE,這些元件存在于根瘤活化的基因啟動(dòng)子中,可能在菌根真菌與植物共生過程中促進(jìn)植物營養(yǎng)元素吸收有關(guān)。大部分菠蘿PHT1基因啟動(dòng)子區(qū)含有多個(gè)W-box,WRKY轉(zhuǎn)錄因子能通過結(jié)合W-box啟動(dòng)基因的表達(dá),在植物的磷饑餓響應(yīng)和應(yīng)對(duì)多種脅迫過程中起作用(Devaiah et al., 2007;Xie et al., 2018)。菠蘿PHT1家族基因啟動(dòng)子區(qū)含有大量與植物生長發(fā)育、響應(yīng)激素和脅迫信號(hào)相關(guān)的順式作用元件,說明該家族基因受多種信號(hào)調(diào)控,在植物生長發(fā)育、應(yīng)對(duì)環(huán)境脅迫過程中發(fā)揮作用。

        基因組織特異性表達(dá)與基因的功能密切相關(guān)。菠蘿PHT1家族蛋白均含有多個(gè)跨膜結(jié)構(gòu)域,可定位于多種細(xì)胞器膜上,其在特定組織中的表達(dá),表明其功能的特異性與多樣性。植物PHT1基因表達(dá)受環(huán)境磷素含量和水分條件影響(Mudge et al., 2002;Sun et al., 2017)。研究表明,PHT1家族基因受低磷誘導(dǎo)表達(dá),在植物營養(yǎng)元素吸收過程中起作用。OsPHT1.3受OsPHR2直接調(diào)控,低磷脅迫下,其在幼葉和莖基部的表達(dá)高于根和老葉,OsPHT1.3介導(dǎo)了水稻對(duì)磷的吸收、轉(zhuǎn)運(yùn)和再利用,過表達(dá)OsPHT1.3增強(qiáng)了植物根和莖對(duì)磷的吸收(Chang et al., 2019)。OsPHT1.2和OsPHT1.3在植物體內(nèi)存在物理互作關(guān)系(Chang et al., 2019)。AcoPHT1.1、AcoPHT1.3、AcoPHT1.5和AcoPHT1.9在菠蘿根組織中檢測到表達(dá),這些基因可能在根的生長或某些功能的發(fā)揮中起作用,如磷的吸收。AcoPHT1.1、AcoPHT1.4和AcoPHT1.9在菠蘿多個(gè)組織器官中均檢測到表達(dá),這些基因可能參與了植物多種生命過程。

        參考文獻(xiàn):

        ABEL S, TICCONI CA, DELATORRE CA,2002. Phosphate sensing in higher plants [J]. Physiol Plant, 115(1): 1-8.

        AI PH, SUN SB, ZHAO JN, et al., 2009. Two rice phosphate transporters, OsPht1; 2 and OsPht1; 6, have different functions and kinetic properties in uptake and translocation [J]. Plant J, 57(5): 798-809.

        CHAKRAVARTHY S, TUORI RP, D’ASCENZO MD, et al., 2003. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements [J]. Plant Cell, 15(12): 3033-3050.

        CHANG MX, GU M, XIA YW,et al., 2019. OsPHT1; 3 mediates uptake, translocation, and remobilization of phosphate under extremely low phosphate regimes [J]. Plant Physiol, 179(2): 656-670.

        CHAO MN, ZHANG ZY, SONG HN, et al., 2017. Genome-wide identification and expression analysis of Pht1 family genes in cotton (Gossypium hirsutum L.)? [J]. Cotton Sci, 29(1): 59-69.? [晁毛妮, 張志勇, 宋海娜, 等, 2017. 陸地棉Pht1家族成員的全基因組鑒定及表達(dá)分析 [J]. 棉花學(xué)報(bào), 29(1): 59-69.]

        CHEN AQ, CHEN X, WANG HM, et al., 2014. Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Pht1 family genes in response to Pi deficiency in tomato [J]. Plant Biol, 14(1): 61.

        CHEN XM, 2009. Small RNAs and their roles in plant development [J]. Ann Rev Cell Dev Biol, 25: 21-44.

        DEVAIAH BN, KARTHIKEYAN AS, RAGHOTHAMA KG, 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis [J]. Plant Physiol, 143(4): 1789-1801.

        DUNN MA, WHITE AJ, VURAL S, et al., 1998. Identification of promoter elements in a low-temperature-responsive gene (blt4.9) from barley (Hordeum vulgare L.) [J]. Plant Mol Biol, 38(4): 551-564.

        EULGEM T, RUSHTON PJ, SCHMELZER E, et al., 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors [J]. EMBO J, 18(17): 4689-4699.

        FAN CM, WANG X, HU RB, et al., 2013. The pattern of Phosphate transporter 1 genes evolutionary divergence in Glycine max L. [J]. Plant Biol, 13(1): 48.

        GU M, CHEN AQ, SUN SB, et al., 2016. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application: what is missing? [J]. Mol Plant, 9(3): 396-416.

        JAVOT H, PUMPLIN N, HARRISON MJ, 2007. Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles [J]. Plant Cell Environ, 30(3): 310-322.

        LAPIS-GAZA HR, JOST R, FINNEGAN PM, 2014. Arabidopsis PHOSPHATE TRANSPORTER1 genes PHT1; 8 and PHT1; 9 are involved in root-to-shoot translocation of orthophosphate [J]. Plant Biol, 14(1): 334.

        LIU BL, ZHAO S, WU XF, et al., 2017. Identification and characterization of phosphate transporter genes in potato [J]. J Biotechnol, 264: 17-28.

        LIU F, CHANG XJ, YE Y, et al., 2011. Comprehensive sequence and whole-life-cycle expression profile analysis of the phosphate transporter gene family in rice [J]. Mol Plant, 4(6): 1105-1122.

        MING R, VANBUREN R, WAI CM, et al., 2015. The pineapple genome and the evolution of CAM photosynthesis [J]. Nat Genet, 47(12): 1435-1442.

        MUCHHAL US, PARDO JM, RAGHOTHAMA KG, 1996. Phosphate transporters from the higher plant Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 93(19): 10519-10523.

        MUDGE SR, RAE AL, DIATLOFF E, et al., 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis [J]. Plant J, 31(3): 341-353.

        NISHIUCHI T, SHINSHI H, SUZUKI K, 2004. Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves possible involvement of NtWRKYs and autorepression [J]. J Biol Chem, 279(53): 55355-55361.

        PEDERSEN BP, KUMAR H, WAIGHT AB, et al., 2013. Crystal structure of a eukaryotic phosphate transporter [J]. Nature, 496(7446): 533-536.

        RAGHOTHAMA KG,1999. Phosphate acquisition [J]. Ann Rev Plant Biol, 50(1): 665-693.

        RUBIO V, LINHARES F, SOLANO R, et al., 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae [J]. Gene Dev, 15(16): 2122-2133.

        STOUGAARD J, JRGENSEN JE, CHRISTENSEN T, et al., 1990. Interdependence and nodule specificity of cis-acting regulatory elements in the soybean leghemoglobin lbc 3 and N23 gene promoters [J]. Mol Gen Genet, 220(3): 353-360.

        SUN TT, LI MJ, SHAO Y, et al., 2017. Comprehensive genomic identification and expression analysis of the phosphate transporter (PHT) gene family in apple [J]. Front Plant Sci, 8: 426.

        TENG W, ZHAO YY, ZHAO XQ, et al., 2017. Genome-wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat [J]. Front Plant Sci, 8: 543.

        VIEWEG MF, FRHLING M, QUANDT HJ, et al., 2004. The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and nonlegume plants [J]. Mol Plant Microb Interact, 17(1): 62-69.

        WALDER F, BRUL D, KOEGEL S, et al., 2015. Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax [J]. New Phytol, 205(4): 1632-1645.

        WANG H, XU Q, KONG YH, et al., 2014. Arabidopsis WRKY45 transcription factor activates PHOSPHATE TRANSPORTER1;1 expression in response to phosphate starvation [J]. Plant Physiol, 164(4): 2020-2029.

        XIE T, CHEN CJ, LI CH, et al., 2018. Genome-wide investigation of WRKY gene family in pineapple: evolution and expression profiles during development and stress [J]. BMC genomics, 19(1): 490.

        ZHANG CX, MENG S, LI MJ, et al., 2016. Genomic identification and expression analysis of the phosphate transporter gene family in poplar [J]. Front Plant Sci, 7: 1398.

        ZHENG Y, LI T, XU ZN, et al., 2016. Identification of microRNAs, phasiRNAs and their targets in pineapple [J]. Trop Plant Biol, 9(3): 176-186.

        (責(zé)任編輯 周翠鳴)

        人妻在卧室被老板疯狂进入国产 | 乳乱中文字幕熟女熟妇| 伊人久久精品无码av一区| 国产成人精品电影在线观看| 亚洲高清无码第一| 亚洲黄色一插一抽动态图在线看| 97色综合| 午夜桃色视频在线观看| 三级全黄裸体| 亚洲欧洲偷自拍图片区| 精品一区二区三区四区少妇| 少妇人妻一区二区三飞| av手机在线观看不卡| 人妻少妇精品视频专区| 精品久久久久久国产| 放荡人妻一区二区三区| 亚洲国产中文字幕精品| 无码国产精品一区二区免费式直播| 亚州综合激情另类久久久| 丰满少妇高潮在线观看| 看国产亚洲美女黄色一级片 | 精品国产亚洲人成在线观看| 97cp在线视频免费观看| 国产综合精品一区二区三区| 高潮毛片无遮挡高清免费| 亚洲黄片久久| 亚洲无人区乱码中文字幕能看| 久久久久久久97| 国产精品第1页在线观看| 玖玖资源网站最新网站| 免费a级毛片又大又粗又黑| 亚洲av综合色区无码一二三区| 久久与欧美视频| 日本按摩偷拍在线观看| 久久99精品久久久久久9蜜桃| 天天爽夜夜爽人人爽曰喷水| 偷拍区亚洲区一区二区| 国产一区二三区中文字幕| 亚洲av一二三区成人影片| 人人妻人人澡人人爽曰本| 白白青青视频在线免费观看|