亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ON THE NUCLEARITY OF COMPLETELY 1-SUMMING MAPPING SPACES*

        2021-01-07 06:46:22ZheDONG

        Zhe DONG (董 浙)

        School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China E-mail : dongzhe@zju.edu.cn Yafei ZHAO (趙亞菲)

        Department of Mathematics, Zhejiang International Studies University, Hangzhou 310012, China E-mail : zhaoyafei zju@163.com

        For the ordinary systems of mapping spaces,we can give the following definition:

        Definition 1.3An operator spaceVis nuclear(in the system)if there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

        As we know,mapping spaces provide a fundamental tool for studying Banach spaces and operator spaces.In this note,we are interested primarily in the nuclearity in the system of completely 1-summing mapping spaces(Π1(·,·),π1).To our surprise,we obtain that C is the unique operator space which is nuclear in the system(Π1(·,·),π1).

        2 Nuclearity in(Π1(·,·),π1)

        Definition 2.1An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the point-norm topology:

        Lemma 2.2An operator spaceVis nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤1.

        ProofSuppose thatVis nuclear in the system of(Π1(·,·),π1);it is clear thatVis nuclear.From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1,which approximately commute in the point-norm topology:

        Corollary 13.4.2 in[5]implies thatν(ψα??α)≤π1(ψα)·π1(?α)≤1.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤1.Thusπ1(idV)≤ι(idV)≤1.

        Conversely,suppose thatVis nuclear andπ1(idV)≤1.By the nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

        Theorem 2.4An operator spaceVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if and only ifV=C.

        ProofIt is clear,by the definition ofπ1in Section 1,thatπ1(idC)=1.Thus it follows from Definition 2.1 that C is nuclear in the system of(Π1(·,·),π1).

        To prove the necessity of this,we suppose thatVis nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1).From Definition 2.1,there exists the following diagram of linear mappings withπ1(?α)≤1,π1(ψα)≤1 which approximately commute in the pointnorm topology:

        It follows from Lemma 2.2 thatπ1(idV)≤1.By Corollary 13.4.2 in[5]we have

        ThusidVis completely nuclear.Proposition 12.2.1 in[5]shows thatidVis compact in the Banach space sense,and from classical theory,Vmust be finite dimensional,and soV=V??.By Lemma 2.2 and Theorem 14.6.7 in[5],V=V??is injective.Thus,by Corollary 6.1.8 in[5]we have

        Sinceiis a complete isometry andPis a complete quotient mapping,i?is a complete quotient mapping andP?is a complete isometry.Thus it follows from(7.1.27)and Proposition 8.1.5 in[5]that the following embeddings are complete isometries:

        3λ-Nuclearity in(Π1(·,·),π1)

        Definition 3.1An operator spaceVisλ-nuclear in the system of completely 1-summing mapping spaces(Π1(·,·),π1)if there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

        It is clear from Definition 2.1 and Definition 3.1 that nuclearity in(Π1(·,·),π1)is equivalent to 1-nuclearity in(Π1(·,·),π1).

        Lemma 3.2An operator spaceVisλ-nuclear in the system of(Π1(·,·),π1)if and only ifVis nuclear andπ1(idV)≤λ.

        ProofThe proof is similar to that of Lemma 2.2.Suppose thatVisλ-nuclear in the system of(Π1(·,·),π1);it follows from Definition 3.1 and Definition 1.3 thatVis nuclear and that there exists the following diagram of complete contractions withπ1(?α)≤λ,π1(ψα)≤λ,which approximately commute in the point-norm topology:

        Thus we haveν(ψα??α)≤π1(ψα??α)≤‖ψα‖cb·π1(?α)≤λ.Since the netψα??αconverges toidVin the point-norm topology,it follows from Lemma 12.3.1 in[5]thatι(idV)≤λ.Thusπ1(idV)≤ι(idV)≤λ.

        Conversely,suppose thatVis nuclear andπ1(idV)≤λ.By nuclearity ofV,there exists the following diagram of complete contractions which approximately commute in the point-norm topology:

        人妻少妇av中文字幕乱码| 国产又色又爽又刺激视频| 区无码字幕中文色| 国产一区三区二区视频在线观看 | 香蕉久久福利院| 国产无套视频在线观看香蕉 | 午夜视频一区二区三区播放| 欧美激情在线播放| 丰满人妻妇伦又伦精品国产| 娇妻粗大高潮白浆| 手机免费高清在线观看av| 国产精品无码久久综合| 亚洲最大日夜无码中文字幕| 欧美国产伦久久久久久久| 中文字幕人妻互换av| 国产免费爽爽视频在线观看| 丰满多毛少妇做爰视频| 国产精品亚洲婷婷99久久精品| 国产精品亚洲精品国产| 中国女人内谢69xxxx免费视频| 北条麻妃在线视频观看| 国产成人综合亚洲国产 | 夜夜爽夜夜叫夜夜高潮| 久久av高潮av无码av喷吹| 亚洲免费一区二区三区视频| 国产三级韩三级日产三级| 加勒比一本heyzo高清视频| 无码专区天天躁天天躁在线| 国产男女乱婬真视频免费| 日韩精品视频在线观看无| 亚洲国产成人片在线观看无码| 亚洲国产美女在线观看 | 中文字日产幕码三区的做法步| 亚洲va中文字幕| 亚洲AV无码精品色欲av| 国产av麻豆精品第一页| 亚洲夜夜性无码| 国产一区二区三区四区五区vm| 视频精品亚洲一区二区| 洲色熟女图激情另类图区| 久久伊人色av天堂九九|