亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ON THE COMPLETE 2-DIMENSIONAL λ-TRANSLATORS WITH A SECOND FUNDAMENTAL FORM OF CONSTANT LENGTH*

        2021-01-07 06:45:24XingxiaoLI李興校RuinaQIAO喬瑞娜YangyangLIU劉洋洋
        關(guān)鍵詞:洋洋

        Xingxiao LI (李興校)? Ruina QIAO(喬瑞娜) Yangyang LIU (劉洋洋)

        School of Mathematics and Information Sciences, Henan Normal University, Xinxiang 453007, China E-mail : xxl@henannu.edu.cn; 1540007578@qq.com; 820915350@qq.com

        Note that,different from what is used in[2],the translating vectorTin the present article does not need to be time-like.

        Recently,L′opez classified in[13]allλ-translators in R3that are invariant by a group of translations(cylindrical surfaces)and a group of rotations(surfaces of revolution).He also studied in[14]the shape of a compactλ-translator of R3in terms of the geometry of its boundary,obtaining some necessary conditions for the existence of two-dimensional compactλ-translators with a given closed boundary curve.In particular,he proved that there do not exist any closed(that is,compact without boundary)λ-translators of dimension two.

        On the other hand,just asλ-translating solitons are generalizations of the translators of mean curvature flow,theλ-hypersurfaces defined by Cheng and Wei in[6]are generalizations of the hypersurface self-shrinkers of mean curvature flow.Note that these kinds of self-shrinkers also sit well in the singularity theory of the mean curvature flow,corresponding to the limit flow by a proper blow-up procedure near type I singular points([10,11]).As is known,there have been many rigidity theorems and classification theorems for self-shrinkers in Euclidean space and in pseudo-Euclidean space.Also,some nice properties of the Lagrangian angle and the K¨ahler angle of immersed surfaces are discussed in[12].Furthermore,there have been several interesting and important results in the study ofλ-hypersurfaces.In particular,Cheng and Wei recently obtained a classification theorem using their own generalized maximum principle([4])specially forλ-hypersurfaces,which generalizes an interesting classification theorem in[3]for self-shrinkers.

        Theorem 1.1([5])Letx:M2→R3be a completeλ-surface in R3with the second fundamental form of a constant square norm.Then either

        2 Preliminaries

        and the(non-normalized)mean curvatureHof the hypersurfacexis defined byH=hii.Moreover,the square norm of the second fundamental formhis given byS=.Clearly,at any pointp∈Mm,

        with the equality holding if and only ifpis an umbilical point where the principal curvaturesλ1,···,λmare all equal.

        Theorem 2.1([2])Let(Mm,g)be a complete Riemannian manifold,andVaC1vector field onMm.Suppose that RicV≥?F(r)g,whereris the distance function onMmfrom a fixed point,andF:R→R is a positive continuous function satisfying that

        From now on,and when no confusion can occur,we always omit the notationsx?andx?.

        3 Proof of the Main Results

        The main idea of Cheng and Wei in[5]will be partially used in this section.We shall first consider the space-likeλ-translators in the Minkovski space.For this,we shall always takeε=?1 for the formulas that appeared in Section 2.

        Case(1)ˉΦ>0.Then there must be a subsequence P1?P such thatΦ(pk)>0 for eachpk∈P1.Denotep=pkfor an arbitrarily givenpk∈P1,and letλ1<λ2be the principal curvatures ofxnear the given pointp.Then it is easily seen that,unique up to a minus sign,there exists some oriented orthonormal frame field{e1,e2}nearpsuch thathij=λiδijfori,j=1,2.It is clear that,when the frame{e1,e2}changes by a sign,all the components of a covariant tensorTof even order keep invariant,while all the components of a covariant tensorTof odd order will change their sign.Therefore,if

        we can choosekto be the smallest number with?2k+1h(p)0,and thus the frame field{e1,e2}is uniquely given by demanding that the first nonzero component of?2k+1his positive,with respect to the natural order of the set of all the components of?2k+1h.Thus,all the components of?rh(r≥0)are also fixed.

        Case(2)There is a subsequence P1?P,consisting of only umbilical points.Then we haveλ1(pk)=λ2(pk).Writep:=pk.Let{e1,e2}be an arbitrary oriented orthonormal tangent frame field aroundp.Thenhij(p)≡h(ei,ej)(p)=λi(p)δij.

        Moreover,by(3.1),it holds atpthat

        In particular,all the componentshi1i2···ir+2(pk)of?rh(pk),r≥0 are well-defined for eachk,giving well-defined sequences accordingly.

        Case 2There are only a finite number of umbilical points in the sequence{pk}.Then we have a subsequence of{pk},still denoted by{pk},consisting of non-umbilical points.It then easily follows from Proposition 3.2(see Case(1)in the proof)that we can choose a certain basis{e1(pk),e2(pk)}such that

        and all the componentshi1i2···ir+2(pk)of?rh(pk),r≥0 are well-defined for eachk,giving again well-defined sequences,accordingly.

        To sum up,without loss of generality,we can assume that there exists a good choice of tangent frame field{e1,e2}nearpkfor eachksuch that

        Proof of the second main theorem(Theorem 1.3)

        A careful check tells us that Theorem 1.3 can be proved via the same argument,similar computations as to those in the proof of Theorem 1.2(takingε=1 in the relevant formulas of Section 2),and a replacement of Lemma 3.1 by the following proposition:

        Proposition 3.7(cf.Lemma 3.1)Letx:M2→R3be a 2-dimensional completeλtranslator in R3with the second fundamental formhof constant square normS.IfS>0,then infH2>0.

        ProofChoose a sequence{pk}onM2such that

        By using the argument in the proof of Proposition 3.2 one can show that,passing to a suitable subsequence,all the sequences{hij(pk)},{hijl(pk)}and{hijlm(pk)}can be made welldefined by suitable choices of local frame fields around each pointpk,with

        fork=1,2,···.The constancy ofSguarantees that they are all bounded.Thus,without loss of generality,we can also assume the existence of the limits of these sequences and use a bar to denote the corresponding limits.For example,

        猜你喜歡
        洋洋
        臘八節(jié)——過(guò)了臘八就是年
        迷失之城
        讓rànɡ 更ɡènɡ方fānɡ便biàn的de標(biāo)bi?。稂c(diǎn)diǎn符fú號(hào)hào
        春節(jié)
        宋就澆瓜
        小天使·五年級(jí)語(yǔ)數(shù)英綜合(2018年10期)2018-10-22 10:05:56
        洋洋兔 編繪
        一鳴驚人
        竭澤而漁(下)
        讀寫算·高年級(jí)(2009年5期)2009-06-15 09:35:10
        国产主播无套内射一区| 亚洲精品成人网站在线播放| 国产精品视频露脸| 一区二区三区中文字幕| 亚洲美国产亚洲av| 亚洲AVAv电影AV天堂18禁| 精品亚洲在线一区二区| 小说区激情另类春色| 国产无遮挡又黄又爽又色| 亚洲一区二区久久青草| 日本黄色一区二区三区视频| 亚洲国产精品中文字幕久久| 亚洲国产天堂久久综合| 理论片午午伦夜理片影院 | 亚洲国产一区二区中文字幕| 欧美肥婆性猛交xxxx| 成人亚洲性情网站www在线观看| 国产一起色一起爱| 日韩中文字幕久久久老色批| 天天碰免费上传视频| 99精品视频69V精品视频| 亚洲日韩中文字幕在线播放| 白白在线免费观看视频| 99精品视频69v精品视频| 久久棈精品久久久久久噜噜| 国产成人久久精品77777综合| 日本一区二区三区经典视频| 欧美成人aaa片一区国产精品| 国模精品无码一区二区二区| 日韩久久免费精品视频| 亚洲天堂丰满人妻av| 免费人成视频x8x8入口| 亚洲一级毛片免费在线观看| 一本久道视频无线视频试看| 欧美a级毛欧美1级a大片| 国自产偷精品不卡在线| 午夜无码无遮挡在线视频| 一区二区在线观看精品在线观看| 国产精品186在线观看在线播放| 初尝黑人巨砲波多野结衣| 日本亚洲一级中文字幕|