陳虹旭 張斯妍 李曉坤
摘 ?要: 本文以Light Fidelity展趨勢和概念為基礎(chǔ),通過研究Light Fidelity技術(shù)在智慧城市的應(yīng)用,以推動智慧城市建設(shè)。Light Fidelity是一種以白光LED為基礎(chǔ)的新型無線通信技術(shù),主流的可見光通信系統(tǒng)采用光正交頻分復(fù)用(O-OFDM)技術(shù)來實現(xiàn),該技術(shù)可以使受到干擾的信號仍然能被可靠地接收,信號的頻帶利用率也大幅提高,非對稱限幅光正交頻分復(fù)用(ACO-OFDM)調(diào)制使得O-OFDM技術(shù)完全適用于可見光通信。本文討論濾波器組多載波(FBMC)與O-OFDM在Light Fidelity通信過程中的性能對比,通過理論分析結(jié)合仿真說明具體分析,探討FBMC及O-OFDM在通信過程中的指標比對,由此證明采用O-OFDM在Light Fidelity通信中的優(yōu)越性。
關(guān)鍵詞: Light Fidelity;智慧城市;O-OFDM;FBMC;SNR
中圖分類號: TN929.12 ???文獻標識碼: A ???DOI:10.3969/j.issn.1003-6970.2020.09.035
【Abstract】: Based on the development trend and concept of Light Fidelity technology, this paper promotes the construction of smart cities by studying the application of Light Fidelity technology in smart cities. Light Fidelity is a new type of wireless communication technology based on white LED. The mainstream visible light communication system is realized by optical orthogonal frequency division multiplexing (O-OFDM) technology, which can effectively resist multipath interference and can be subjected to the interfering signal can still be reliably received, and the frequency band utilization of the signal is also greatly improved. Asymmetrically limited optical orthogonal frequency division multiplexing (ACO-OFDM) modulation makes O-OFDM technology fully suitable for visible light communication. Considering the serious impact of noise on ACO-OFDM, the BER and SNR based on ACO-OFDM are performed. The related research, through theoretical analysis combined with simulation to analyze the specific scheme involved, this paper focuses on the study of ACO-OFDM, through the dynamic bit allocation and dynamic subchannel allocation method, make full use of the sub-channel with high signal-to-noise ratio Light Fidelity technology provides powerful power in smart city applications.
【Key words】: Light fidelity; Smart city; O-OFDM, SNR
0 ?引言
智慧城市是利用新一代信息技術(shù)來感知、監(jiān)測、分析、整合城市資源、對各種需求做出迅速、靈活、準確反應(yīng),為公眾創(chuàng)造綠色、和諧環(huán)境,提供泛在、便捷、高效服務(wù)的城市形態(tài)[1]。Li-Fi使用的協(xié)議為IEEE802.15.7[4]。通常,通過控制LED對數(shù)據(jù)進行編碼和傳輸,并將一個可以編碼的控制器植入LED中,(其中1表示燈亮,0表示燈滅),利發(fā)光二極管(LED)快速響應(yīng)的特性,形成類似于AP(WIFI熱點)的設(shè)備,以人眼無法感知的高速明暗閃光信號作為信息載體,使攜帶信息的光信號通過傳輸介質(zhì)[5]。最后,通過光電轉(zhuǎn)換裝置將接收到的光信號恢復(fù)發(fā)送的信息,該
技術(shù)具有廣泛且免許可的頻譜、不受管制的帶寬、高安全性、傳輸速率高、不受電磁干擾、射頻禁區(qū)內(nèi)的可用性、高能源效率等優(yōu)點,在未來的通信領(lǐng)域中占據(jù)重要的地位并產(chǎn)生深遠影響[8]。
1 ?Li-Fi在智慧城市中的應(yīng)用
Li-Fi在智慧城市中的主要應(yīng)用集中在控制、通信和定位方面[9]。它將通信和照明結(jié)合起來,推動智慧城市建設(shè)。
1.1 ?智慧交通
在智慧交通領(lǐng)域中,數(shù)據(jù)通過交通信號燈傳送到汽車之間,實現(xiàn)車輛收費管理、戶外導航,隧道和地
下車庫定位等功能,還可以通過交通信號燈和汽車燈之間的信息交換,準確定位,Li-Fi技術(shù)還能夠減小交通事故和交通堵塞的發(fā)生,為未來的無人駕駛汽車奠定基礎(chǔ)[11]。
1.2 ?智慧家居
將天花板燈改裝成Li-Fi熱點,家用電器上安裝Li-Fi接收器,通過天花板燈將這些設(shè)備連接到互聯(lián)網(wǎng),在設(shè)置一個總開關(guān)控制各家用電器的運行[13]。由于Li-Fi的高保密性,可以有效避免黑客攻擊[14]。
1.3 ?智慧物流
智慧物流是將物聯(lián)網(wǎng)、大數(shù)據(jù)、云計算、人工智能等技術(shù)應(yīng)用在物流系統(tǒng)中的運輸配送等環(huán)節(jié)。
通過在道路的路燈和汽車燈上加裝芯片來進行Li-Fi可見光通信,在交通堵塞等惡劣條件下,通過汽車燈與路燈之間傳遞信息,引導物流通行更加暢通[15]。由于Li-Fi技術(shù)的信息傳輸速度快,能夠及時反饋物流信息,從而實現(xiàn)對貨物的實時監(jiān)控。
1.4 ?智慧醫(yī)療
在智慧醫(yī)療領(lǐng)域中,可見光沒有電磁污染,可以在電磁干擾敏感的區(qū)域進行無線接入,不受設(shè)備干擾,覆蓋范圍廣。手術(shù)室配有照明設(shè)備,所以Li-Fi可以在醫(yī)療設(shè)備之間使用,特別是在不適合射頻無線通信的醫(yī)療環(huán)境中。Li-Fi的傳輸速率高,能夠達到實時傳輸、實時監(jiān)測等功能。
智慧醫(yī)療是采用新型物聯(lián)網(wǎng)、傳感器、通信等技術(shù)的醫(yī)療理念,相信在不久的將來,Li-Fi作為新型通信技術(shù),將推動智慧醫(yī)療的繁榮發(fā)展。
2 ?O-OFDM技術(shù)
Li-Fi以LED可見光作為傳輸信息載體的一種通信方式,它不需要任何的有線傳輸媒介,就可實現(xiàn)語音、數(shù)據(jù)、多媒體圖像等高速雙向傳輸[16]。但光在空氣中傳輸會產(chǎn)生多徑效應(yīng),而正交頻分復(fù)用技術(shù)(OFDM)由于它對多徑信道的抗干擾能力可以有效解決這一問題,并且OFDM技術(shù)具有較高頻譜利用率和傳輸速率[17]。
本文研究了光OFDM技術(shù),即ACO-OFDM,圖1是O-OFDM的系統(tǒng)框架。
2.1 ?O-OFDM
其中,是子載波個數(shù),是攜帶第個子載波的數(shù)據(jù)符號、是相鄰子載波的間隔,是O-OFDM信號的周期。為了確保所有的子載波之間是相互正交的,O-OFDM的符號周期。
O-OFDM技術(shù)將信道劃分為若干相互正交子信 道[18],再將高速串行數(shù)據(jù)流轉(zhuǎn)換成低速并行子數(shù)據(jù)流發(fā)送到子信道上。每個子信道上信號帶寬小于信道的帶寬,因此每個子信道上可以看成平坦性衰落,從而降低和消除碼間串擾,如圖2所示。
2.2 ?ACO-OFDM
在ACO-OFDM系統(tǒng)中,數(shù)據(jù)只能由奇數(shù)子載波承載[19],考慮到埃爾米特(Hermitian)對稱性[20],點頻域信號可以表示為:
3 ?FBMC調(diào)制原理
給出了具有偏移正交幅度調(diào)制的濾波器組多載波(FBMC/OQAM)收發(fā)信機的框圖。FBMC/OQAM系統(tǒng)用于傳輸OQAM而不是QAM符號[22]。輸入數(shù)據(jù)在發(fā)射機側(cè),并且時刻在第個子載波上用表示,(m:子載波指數(shù),n:符號指數(shù))。
4 ?系統(tǒng)模型
闡述了本研究所考慮的系統(tǒng)模型。輸入比特映射到M元星座的正交幅度調(diào)制(QAM)符號,可知M根據(jù)SNR量化的信道條件而變化[26]。將一組K符號映射到ACO-OFDM方案的K個頻域(FD)子載波。在ACO-OFDM中,符號映射到奇數(shù)FD子載波的前半部分,其指標為,令偶數(shù)子載波置零。在此方案中,F(xiàn)D子載波的信息設(shè)置為0,并且在FD子載波的后半部分上傳輸?shù)男畔ⅲǎ┦窍鄬τ谠谇鞍氩糠种袀鬟_的信息的Hermitian對稱(1到),這種排列方式使我們能夠在逆快速傅里葉變換(IFFT)后[27],在時域(TD)得到一個實值輸出信號。
6 ?實驗結(jié)論
實驗結(jié)果得出ACO-OFDM在數(shù)據(jù)速率方面提供了更好的性能。對于在智慧城市中的Li-Fi方案的實際應(yīng)用,ACO-OFDM適合光的多徑傳播和多普勒頻移的無線移動信道中傳輸高速數(shù)據(jù),且信道利用率高。相較于新提出的FBMC,ACO-OFDM也在光通信中體現(xiàn)出更好的性能,頻譜效率和功率譜密度方面都優(yōu)于FBMC。ACO-OFDM能夠更好應(yīng)用于Li-Fi中。
7 ?結(jié)束語
智慧城市是未來城市發(fā)展的主要方向,Li-Fi技術(shù)在智慧城市中將發(fā)揮越來越重要的作用,Li-Fi技術(shù)在智慧城市各領(lǐng)域的應(yīng)用也必將隨著技術(shù)的進步和人們對智慧城市間認識的深入而更加廣泛地應(yīng)用,智慧城市、無線通信技術(shù)的蓬勃發(fā)展,將會催生新的經(jīng)濟增長點,促進物質(zhì)文明和精神文明的進步,使中國新型城鎮(zhèn)化向著健康、有序的方向發(fā)展。
參考文獻
[1]Sanchez L, Mu?oz L, Galache J A, et al. Smart Santander: IoT experimentation over a smart city testbed[J]. Computer Networks, 2014, 61(6): 217-238.
[2]Hall R E, Bowerman B, Braverman J, et al. The vision of a smart city[J]. Office of Scientific & Technical Information Technical Reports, 2000.
[3]Jin J, Gubbi J, Marusic S, et al. An Information Framework for Creating a Smart City Through Internet of Things[J]. IEEE Internet of Things Journal, 2014, 1(2): 112-121.
[4]Tsonev D, Videv S, Haas H. Light fidelity (Li-Fi): towards all-optical networking[J]. Proceedings of SPIE-The Interna tional Society for Optical Engineering, 2014, 9007(5): 900702.
[5]Haas H. High-speed wireless networking using visible light[J]. SPIE Newsroom, 2013.
[6]Kalaiselvi V K G, Sangavi A, Dhivya. Li-Fi technology in traffic light[C]//International Conference on Computing & Communications Technologies. IEEE, 2017.
[7]Mahendran R. Integrated Li-Fi (Light Fidelity) for smart communication through illumination[C]//International Con fe rence on Advanced Communication Control & Computing Technologies. IEEE, 2017.
[8]Bialic E, Nguyen D C, Vaufrey D. LED dynamic electro- optical responses and light-fidelity-application optimi za tion[J]. Applied Optics, 2014, 53(31): 7195.
[9]Alawadhi S, Scholl H J. Aspirations and Realizations: The Smart City of Seattle[C]//System Sciences (HICSS), 2013 46th Hawaii International Conference on. IEEE, 2013.
[10]Batty, M. Big data, smart cities and city planning[J]. Dialogues in Human Geography, 2013, 3(3): 274-279.
[11]Xu B, Yu G, Dai J, et al. Li-Fi: Light fidelity-a survey[J]. Wireless Networks, 2004, 21(6): 1879-1889.
[12]Su K, Li J, Fu H. Smart city and the applica tions[C]// International Conference on Electronics. IEEE, 2011.
[13]Swami N V, Sirsat N B, Holambe P R. Light Fidelity (Li-Fi): In Mobile Communication and Ubiquitous Computing App lications[M]//Advances in Computing Applications. Springer Singapore, 2016.
[14]Singh S, Kakamanshadi G, Gupta S. Visible Light Comm uni cation-an emerging wireless communication technology[C]// International Conference on Recent Advances in Engineering & Computational Sciences. IEEE, 2016.
[15]Centenaro M, Vangelista L, Zanella A, et al. Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios[J]. IEEE Wireless Communi cations, 2016, 23(5): 60-67.
[16]Wei C C. Small-signal analysis of OOFDM signal transmis sion with directly modulated laser and direct detection[J]. Optics Letters, 2011, 36(2): 151-153.
[17]Nadal L, Svaluto Moreolo M, Fàbrega, Josep M, et al. Low complexity PAPR reduction techniques for clipping and quantization noise mitigation in direct-detection O-OFDM systems[J]. Optical Fiber Technology, 2014, 20(3): 208-216.
[18]Sun G, Wang R, Pu T, et al. Research of nonlinearity in OOFDM communication[C]//Optical Transmission Systems, Switching, and Subsystems VII. International Society for Optics and Photonics, 2009.
[19]Dissanayake S D, Armstrong J. Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems[J]. Journal of Lightwave Technology, 2013, 31(7): 1063-1072.
[20]Liu, Tao. A novel scheme for demodulation of ACO-OFDM in the presence of DC offset[J]. Journal of the Franklin Institute, 2015, 352(3): 802-812.
[21]Zhang T, Zhou J, Zhang Z, et al. A performance impro vement and cost-efficient ACO-OFDM scheme for visible light communications[J]. Optics Communications, 2017, 402: 199-205.
[22]Qu D, Lu S, Jiang T. Multi-Block Joint Optimization for the Peak-to-Average Power Ratio Reduction of FBMC-OQAM Signals[J]. IEEE Transactions on Signal Processing, 2013, 61(7): 1605-1613.
[23]Zhang H, Le Ruyet D, Roviras D, et al. Spectral Efficiency Comparison of OFDM/FBMC for Uplink Cognitive Radio Networks[J]. EURASIP Journal on Advances in Signal Pro ce ssing, 2010, 2010: 1-15.
[24]Shaat M, Bader F. Computationally Efficient Power Allo cation Algorithm in Multicarrier-Based Cognitive Radio Networks: OFDM and FBMC Systems[J]. EURASIP Journal on Advances in Signal Processing, 2010, 2010: 1-14.
[25]Medjahdi Y, M. Terré, Ruyet D L, et al. Inter-Cell Interference Analysis for OFDM/FBMC Systems[C]//IEEE Workshop on Signal Processing Advances in Wireless Communications. IEEE, 2009.
[26]Xu J, Xu W, Zhang H, et al. Asymmetrically Reconstructed Optical OFDM for Visible Light Communications[J]. IEEE Photonics Journal, 2016: 1-1.
[27]Asadzadeh K, Dabbo A, Hranilovic S. Receiver design for asymmetrically clipped optical OFDM. [C]//IEEE Globecom Workshops. IEEE, 2011.
[28]Mondal M R H, Faruque R B. Hybrid diversity combined OFDM for LiFi[C]//IEEE International Conference on Telecommunications & Photonics. IEEE, 2018.
[29]Alaka S, Narasimhan L T, Chockalingam A. Coded Index Modulation for Non-DC-Biased OFDM in Multiple LED Visible Light Communication[J]. 2015.
[30]Saengudomlert P, Panta J, Sripimanwat K. Optimal sizing of QAM constellation for indoor optical wireless OFDM transmissions without bandwidth limitation[C]//Electrical Engineering Congress. IEEE, 2014.