亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        熱帶果蔬采后冷害研究進(jìn)展

        2020-12-09 05:37:02張丹丹屈紅霞段學(xué)武蔣躍明
        熱帶作物學(xué)報(bào) 2020年10期
        關(guān)鍵詞:處理水果蔬菜

        張丹丹 屈紅霞 段學(xué)武 蔣躍明

        摘? 要:果蔬采后冷害機(jī)制及其防控是當(dāng)前采后研究領(lǐng)域中倍受關(guān)注的科技問(wèn)題。果蔬冷害發(fā)生是由內(nèi)在因子和外部環(huán)境因素共同作用的結(jié)果。近年來(lái),隨著現(xiàn)代分子生物學(xué)技術(shù)的應(yīng)用,并借鑒模式植物擬南芥的研究成果,果蔬采后冷害發(fā)生調(diào)控機(jī)理及防控技術(shù)研究取得一系列進(jìn)展。本文綜述了熱帶果蔬采后冷害發(fā)生的生理與分子機(jī)制和冷害防控技術(shù)的最新研究成果,關(guān)注能量代謝調(diào)控果蔬采后冷害作用,重點(diǎn)介紹了生物技術(shù)在防控果蔬冷害上的應(yīng)用,并對(duì)今后研究方向作了展望。

        關(guān)鍵詞:水果;蔬菜;冷害;采后;處理

        中圖分類號(hào):TS255.3? ? ? 文獻(xiàn)標(biāo)識(shí)碼:A

        Abstract: The mechanism of chilling injury in relation to postharvest technology of fruit and vegetable during cold storage is an important scientific and technical issue in postharvest research field. The occurrence of chilling injury of fruit and vegetable during cold storage is an active process of combined internal factors and external environmental conditions. In recent years, with the application of modern molecular biology technology and the research result obtained from the model plant (Arabidopsis thaliana), the regulation mechanism and prevention technology of chilling injury of harvested fruit and vegetable during cold storage have been investigated in-depth. This article reviews the recent advances in the physiological and molecular bases of chilling injury in relation to postharvest technology, focuses on the role of energy status in regulating chilling injury, emphasizes the application of biotechnology in preventing chilling injury, and discusss the future development based on the chilling injury and its control technology of fruit and vegetable during cold storage.

        Keywords: fruit; vegetable; chilling injury; postharvest; handling

        DOI: 10.3969/j.issn.1000-2561.2020.10.013

        我國(guó)具有豐富的熱帶水果、蔬菜(簡(jiǎn)稱果蔬)資源。果蔬采后貯藏是高度協(xié)調(diào)組織的一系列生命活動(dòng)過(guò)程,包括了物質(zhì)的轉(zhuǎn)化和利用以及色澤、質(zhì)地、風(fēng)味、香氣和營(yíng)養(yǎng)成分等的變化,對(duì)品質(zhì)的形成、維持或劣變起著關(guān)鍵的作用。由于大多數(shù)熱帶果蔬在高溫、高濕條件下生長(zhǎng)、發(fā)育、成熟,并且采后仍然維持著旺盛的生理代謝;因而,低溫貯藏可降低因呼吸作用帶來(lái)的大量物質(zhì)損耗,維持品質(zhì),并延長(zhǎng)貯運(yùn)壽命。然而,對(duì)于大多數(shù)熱帶果蔬,如香蕉、芒果、番木瓜、番石榴、荔枝、龍眼、番荔枝、菠蘿、楊桃、黃瓜、苦瓜、茄子、芥菜、南瓜、青椒等,在低溫貯運(yùn)過(guò)程中易發(fā)生冷害,引起品質(zhì)劣變,造成采后損耗[1-3]。據(jù)有關(guān)數(shù)據(jù)統(tǒng)計(jì),我國(guó)銷售果蔬中約1/3屬于低溫敏感型,每年因發(fā)生冷害而受到損失占物流總量近30%??梢?jiàn),闡明果蔬采后冷害發(fā)生機(jī)制,并開(kāi)發(fā)果蔬冷害防控技術(shù)及方法,已成為當(dāng)前采后研究領(lǐng)域中備受關(guān)注的科學(xué)問(wèn)題和技術(shù)難題。近年來(lái),隨著現(xiàn)代分子生物學(xué)技術(shù)的應(yīng)用,并借鑒模式植物擬南芥(Arabidopsis thaliana)最新研究成果,科技工作者從分子生物學(xué)、基因組學(xué)、蛋白質(zhì)組學(xué)、細(xì)胞生物學(xué)和生理生化等多方面、多層次,深入開(kāi)展果蔬采后冷害發(fā)生及調(diào)控機(jī)理研究,并積極探索和研發(fā)果蔬冷害防控新技術(shù)。本文綜述了熱帶果蔬采后冷害機(jī)制和防控技術(shù)研究的最新進(jìn)展,關(guān)注能量調(diào)控冷害作用,重點(diǎn)介紹了果蔬冷害防控系列技術(shù),并對(duì)今后研究發(fā)展方向作了展望。

        1? 低溫貯藏與冷害癥狀

        溫度是影響果蔬采后貯藏質(zhì)量和貨架期的重要因素。果蔬冷害屬于在冰點(diǎn)以上低溫貯藏對(duì)組織所造成的傷害,因細(xì)胞內(nèi)部結(jié)構(gòu)性損傷而導(dǎo)致的生理機(jī)能發(fā)生障礙,作為對(duì)低溫脅迫的不良反應(yīng)。因果蔬種類或品種的不同,冷害癥狀也不一樣(表1),主要包括:(1)表皮出現(xiàn)凹陷斑塊,主要由下層細(xì)胞發(fā)生塌陷所引起,并且塌陷處顏色逐步變深;加上大量失水,凹陷程度不斷擴(kuò)大。如果皮較厚的柑橘和青椒以及表面易發(fā)生凹陷的橄欖和夏南瓜;(2)表皮組織呈水漬狀斑點(diǎn)或組織,如果皮較薄的番木瓜、番茄、黃瓜和甜椒;(3)果皮表面或內(nèi)部發(fā)生褐變,如香蕉、芒果、番荔枝、梨、桃、鳳梨和梨;(4)果蔬不能正常后熟,如芒果、番木瓜和番茄;(5)綜合癥狀,如橄欖果實(shí)冷害包括表面凹陷、皺縮、果面褐色、果肉褐變,香蕉、芒果、桃等果實(shí)在發(fā)生冷害后經(jīng)催熟會(huì)喪失部分香氣成分。另外,果蔬發(fā)生冷害后,削弱了抗病原菌能力,易遭受到病原菌侵染,迅速腐爛,并產(chǎn)生異味。

        果蔬冷害發(fā)生程度存在貯藏溫度與貯藏時(shí)間的累積效應(yīng),即溫度越低,貯藏時(shí)間越長(zhǎng),則冷害越嚴(yán)重。不過(guò),一些果蔬經(jīng)低溫短期放置后轉(zhuǎn)至常溫,還可恢復(fù)正常代謝功能,表現(xiàn)正常的生命活動(dòng),不表現(xiàn)出冷害癥狀;但若放置時(shí)間過(guò)長(zhǎng),表現(xiàn)為代謝失調(diào),則會(huì)造成不可逆的損傷,出現(xiàn)冷害。然而,對(duì)某些果蔬品種來(lái)說(shuō),對(duì)低溫貯藏反應(yīng)有其特殊性。例如,葡萄柚在0 ℃或10 ℃兩個(gè)溫度下貯藏4~6個(gè)星期后基本沒(méi)有出現(xiàn)冷害;但在0 ℃與10 ℃中間溫度貯藏時(shí),常會(huì)出現(xiàn)表皮凹陷斑紋的冷害癥狀。另外,廣東甜橙在1~3 ℃或常溫(平均溫度為15 ℃)下貯藏4~5個(gè)月,因低溫傷害而出現(xiàn)的褐斑比在中間溫度(7~9 ℃)貯藏中要輕得多[4-6]。

        貯藏環(huán)境濕度同樣影響到果蔬冷害發(fā)生。在貯藏期間增加相對(duì)濕度能減輕冷害發(fā)生;而低濕度則加速了果蔬表面水分的蒸發(fā),影響到一系列生理代謝過(guò)程,降低了對(duì)低溫脅迫的適應(yīng)能力,從而促進(jìn)了冷害癥狀的發(fā)生[5, 7]。例如,辣椒在5 ℃低溫和60%相對(duì)濕度中貯藏12 d,大約67%出現(xiàn)冷害凹陷斑;而在相同溫度下,在90%相對(duì)濕度環(huán)境中貯藏同樣時(shí)間,只有33%出現(xiàn)了冷害凹陷斑[8]。香蕉、荔枝、黃瓜在相對(duì)濕度越高的條件下貯藏,冷害程度越輕[5, 9-10]。高濕貯藏能夠顯著抑制黃瓜果實(shí)冷害指數(shù)和失重率的升高,減少水分、葉綠素、抗壞血酸、氨基酸等物質(zhì)的損失,顯著增加抗氧化酶活性,減少活性氧自由基(ROS)對(duì)細(xì)胞膜的損傷作用,顯示出良好的發(fā)展應(yīng)用前景[9]。

        貯藏環(huán)境中氣體成分影響到果蔬采后生理代謝活動(dòng),從而也影響到癥狀對(duì)低溫敏感性及其冷害癥狀。據(jù)報(bào)道,對(duì)于油梨、番荔枝、菠蘿、梨、芒果、苦瓜、番茄等果蔬而言,應(yīng)用低O2和高CO2氣調(diào)環(huán)境能有效減輕冷害癥狀;但對(duì)香蕉、黃瓜、甜椒、石習(xí)柏來(lái)說(shuō),低O2濃度和高CO2濃度的貯藏環(huán)境反而促進(jìn)了冷害發(fā)生[11]。因此,氣調(diào)貯藏用于防止果蔬采后冷害發(fā)生因果蔬種類、氣體成分和濃度、貯藏溫度和貯藏時(shí)間等多種因素的影響,并且與采前環(huán)境條件、采收成熟度和采后預(yù)冷有關(guān)。

        2? 冷害發(fā)生的生理基礎(chǔ)

        果蔬冷害是由細(xì)胞內(nèi)部結(jié)構(gòu)性逐步損傷而引發(fā)的一系列生理功能障礙的外在表現(xiàn)。目前,關(guān)于果蔬冷害發(fā)生的生理基礎(chǔ)主要包括膜脂相變學(xué)說(shuō)、自由基傷害作用、呼吸代謝異常、能量虧損和激素作用。

        2.1? 膜脂相變學(xué)說(shuō)

        細(xì)胞膜是細(xì)胞組成的基本結(jié)構(gòu)單元,并作為細(xì)胞生命活動(dòng)賴以生存的基礎(chǔ)。一般認(rèn)為,生物膜分子結(jié)構(gòu)和構(gòu)象的改變是果蔬感受低溫的最初反應(yīng),而細(xì)胞膜系統(tǒng)一旦受到損傷,將引起細(xì)胞、組織各種生理代謝失調(diào)或紊亂。Lyons[17]基于細(xì)胞膜結(jié)構(gòu)和功能與植物冷害的關(guān)系,提出了膜脂相變學(xué)說(shuō):在正常溫度條件下,植物細(xì)胞膜呈液晶態(tài),但遭遇低溫后,膜脂逐步發(fā)生相變,成為凝膠態(tài);而這種轉(zhuǎn)變的結(jié)果引起細(xì)胞內(nèi)原生質(zhì)成為固態(tài),難以流動(dòng),細(xì)胞膜失去選擇透過(guò)性,胞內(nèi)電解質(zhì)大量滲漏,細(xì)胞內(nèi)外的離子失去平衡,進(jìn)而引發(fā)與膜相結(jié)合酶的活性發(fā)生改變,引起一系列代謝過(guò)程紊亂,并產(chǎn)生中間產(chǎn)物和有毒物質(zhì),最終損傷細(xì)胞,甚至造成細(xì)胞解體,導(dǎo)致冷害發(fā)生。值得注意,膜相變發(fā)生與溫度高低和持續(xù)時(shí)間密切相關(guān)。如果植物在低溫下持續(xù)時(shí)間較短,當(dāng)再轉(zhuǎn)移到室溫條件下,其生理失調(diào)能被完全或部分修復(fù),不出現(xiàn)冷害;但在低溫下持續(xù)時(shí)間過(guò)長(zhǎng),將導(dǎo)致膜選擇透過(guò)性和分子結(jié)構(gòu)遭到破壞,引起細(xì)胞代謝失調(diào)和功能紊亂,最終出現(xiàn)冷害癥狀。目前,在香蕉、番茄、黃瓜、甜椒、油桃、枇杷、橄欖、荔枝等已證實(shí)果蔬遭受冷害后細(xì)胞膜透性顯著增加[16, 18-23]。其中,細(xì)胞膜上的脂肪酸不飽和度與膜相變溫度相聯(lián)系,表現(xiàn)為:在低溫條件下,不飽和脂肪酸含量越高,膜流動(dòng)性越大,膜相變溫度越低,植物抗冷性越強(qiáng);并且發(fā)現(xiàn)一般耐冷型果蔬的不飽和脂肪酸含量明顯高于冷敏型果蔬的水平[24-28]。采后熱處理、低溫鍛煉和茉莉酸甲酯、水楊酸、多胺、草酸、蘋(píng)果酸、鈣等處理能通過(guò)誘導(dǎo)脂肪酸去飽和酶(FAD)的活性,抑制磷脂酶D(PLD)和脂氧合酶(LOX)的活性,增加不飽和脂肪酸/飽和脂肪酸比率(unSFA/SFA),延緩細(xì)胞膜透性增加,減少膜脂過(guò)氧化程度,提高果蔬采后抗冷性,進(jìn)而減輕冷害發(fā)生[29-33]。

        2.2? 自由基傷害作用

        果蔬采后在正常貯藏條件下,細(xì)胞中包括活性氧自由基(ROS)在內(nèi)的活性自由基的產(chǎn)生與清除整體處于相對(duì)平衡狀態(tài);但受到低溫脅迫時(shí),這種相對(duì)平衡會(huì)發(fā)生失調(diào),導(dǎo)致大量ROS積累;而過(guò)量ROS能損傷膜脂,引發(fā)并加速膜脂過(guò)氧化過(guò)程,使細(xì)胞膜的結(jié)構(gòu)與功能受到損傷;同時(shí),影響到DNA、RNA、蛋白質(zhì)和多糖等生物大分子功能,表現(xiàn)出代謝異常和膜透性增加[34-36]。植物體內(nèi)ROS主要產(chǎn)于線粒體呼吸鏈的電子漏,并作為電子傳遞過(guò)程中的中間產(chǎn)物,在氧化磷酸化形成ATP中發(fā)揮重要作用;但當(dāng)細(xì)胞內(nèi)ROS積累超過(guò)某一閾值時(shí),將引起膜脂上不飽和鍵發(fā)生氧化和過(guò)氧化作用,進(jìn)而打破細(xì)胞中ROS產(chǎn)生和清除的動(dòng)態(tài)平衡,對(duì)整個(gè)膜系統(tǒng)的結(jié)構(gòu)產(chǎn)生傷害,甚至造成膜系統(tǒng)的解體和功能喪失[37]。細(xì)胞中ROS主要包括O2、·OH和H2O2;而植物存在著ROS清除系統(tǒng),包括由超氧化物歧化酶(SOD)、過(guò)氧化氫酶(CAT)、抗壞血酸過(guò)氧化物酶(APX)和谷胱甘肽還原酶(GR)等抗氧化酶和抗壞血酸(ASH)、VE、谷胱甘肽(GSH)、類胡蘿卜素、輔酶Q、酚類物質(zhì)、生物堿、非蛋白氨基酸等抗氧化物質(zhì)兩部分組成[38-39]。值得注意的是,ASA作為細(xì)胞內(nèi)一種小分子的抗氧化劑,除了能直接與ROS進(jìn)行還原反應(yīng),清除ROS;同時(shí)又可作為酶底物,幫助清除ROS[40]??梢?jiàn),果蔬體內(nèi)抗氧化系統(tǒng)需要協(xié)調(diào)作用,才能將ROS維持在較低水平,保持細(xì)胞膜的正常功能,從而防止對(duì)細(xì)胞膜的傷害作用(圖1)。目前,一些采后處理能抑制ROS產(chǎn)生或脅迫而減輕果蔬冷害發(fā)生己有較多報(bào)道。例如,茉莉酸甲酯、水楊酸、多胺、-氨基丁酸、低溫預(yù)處理、熱激處理等均能提高果蔬抗氧化酶活性,減少ROS積累,最終減輕果蔬采后冷害發(fā)生[41-45]。

        2.3? 蛋白質(zhì)損傷

        蛋白質(zhì)既是細(xì)胞的重要組分,又直接參與細(xì)胞代謝酶的組成。低溫可引起蛋白質(zhì)分子中的疏水鍵削弱,使氫鍵與靜電引力的相互作用加強(qiáng);同時(shí)引起包括抗氧化酶在內(nèi)的蛋白質(zhì)構(gòu)象發(fā)生變化,直接影響到酶活性,從而降低許多抗氧化酶類對(duì)于細(xì)胞內(nèi)積累的ROS清除,導(dǎo)致代謝異常[46-47]。此外,細(xì)胞中的一些對(duì)低溫敏感的多聚蛋白質(zhì)結(jié)構(gòu)(如微管、微絲等),在低溫逆境脅迫下會(huì)逐步發(fā)生解聚,從而影響到細(xì)胞內(nèi)蛋白質(zhì)的結(jié)構(gòu)與功能,引起代謝平衡失調(diào)[1]??紤]到許多酶在較小溫度波動(dòng)范圍內(nèi)對(duì)低溫脅迫存在適應(yīng)性反應(yīng),在構(gòu)象上可能并沒(méi)有發(fā)生明顯的變化,這與果蔬在冷害溫度下短時(shí)間內(nèi)貯藏不出現(xiàn)冷害癥狀相一致。近年來(lái),隨著現(xiàn)代分子生物學(xué)技術(shù)的應(yīng)用,特別是蛋白組學(xué)的發(fā)展,發(fā)現(xiàn)低溫脅迫能調(diào)控細(xì)胞內(nèi)有關(guān)ATP合成、活性氧清除系統(tǒng)、鈣離子、茉莉酸、油菜素內(nèi)酯和乙烯等信號(hào)途徑一系列蛋白的結(jié)構(gòu)與功能,進(jìn)而影響到果蔬采后冷害的發(fā)生[25, 48-49]。

        2.4? 細(xì)胞壁降解

        細(xì)胞壁成分主要包含了纖維素、半纖維素以及果膠等物質(zhì),其中以果膠物質(zhì)含量最高。在果蔬采后軟化過(guò)程中,需要一系列細(xì)胞壁降解酶的催化作用,最終生成可溶性果膠,使得果實(shí)逐步變得柔軟多汁。低溫脅迫會(huì)影響到細(xì)胞壁物質(zhì)的代謝,導(dǎo)致果蔬不能正常軟化而出現(xiàn)果肉發(fā)綿、汁液減少等一系列冷害癥狀,嚴(yán)重影響到果蔬的質(zhì)地和商品性。在一系列細(xì)胞壁降解酶中,果膠甲酯酶(PME)和多聚半乳糖醛酸酶(PG)是果膠降解的關(guān)鍵酶。在果膠降解過(guò)程中,二者間活性不協(xié)調(diào)將引起細(xì)胞壁中的果膠代謝異常,導(dǎo)致果蔬采后不能正常軟化[1, 5]。在果實(shí)冷藏過(guò)程中,PME活性提高,而PG活性降低,其結(jié)果導(dǎo)致高分子量的低甲氧基果膠不斷積累增加,束縛了果實(shí)中的游離水,從而造成果肉中果汁減少,出現(xiàn)絮敗現(xiàn)象[50-52]。在油桃果實(shí)冷藏過(guò)程中,果肉絮敗發(fā)生也是PME、PG活性的變化不協(xié)同所產(chǎn)生[5, 53]。值得注意,低溫影響到乙烯生物合成,而乙烯作用又影響到細(xì)胞壁降解酶的活性;這樣,低溫對(duì)細(xì)胞壁物質(zhì)一系列降解的影響很可能屬于間接作用的結(jié)果[54-56]。

        2.5? 呼吸異常

        果蔬采收后仍是活的生物體,仍然進(jìn)行呼吸作用、產(chǎn)生能量等生命活動(dòng)。呼吸作用是生物體形成生物能量(ATP)的基礎(chǔ)。當(dāng)果蔬發(fā)生冷害后,一般表現(xiàn)為呼吸作用的異常升高,這與呼吸作用的有關(guān)酶類和代謝途徑發(fā)生變化有關(guān),特別是交替氧化酶(AOX)和解耦聯(lián)蛋白(UCPs)途徑升高,以適應(yīng)低溫脅迫作用;同時(shí)預(yù)示著果蔬不可逆?zhèn)Φ膯?dòng)[57-59]。在冷害溫度下,香蕉、芒果、番木瓜、柑橘、黃瓜、番茄等果蔬的呼吸作用均出現(xiàn)類似現(xiàn)象。對(duì)于發(fā)生輕微冷害的果蔬,如能及時(shí)將其放置到正常溫度下,呼吸強(qiáng)度能回復(fù)到正常水平,并且呼吸途徑也沒(méi)有明顯改變。例如,在5 ℃下黃瓜貯藏4 d,呼吸速率突然升高,將其放置到25 ℃時(shí)可恢復(fù)到正常的呼吸水平;但在5 ℃下貯藏8~10 d后再放置到25 ℃,其呼吸速率持續(xù)上升,難以恢復(fù)到正常水平[60]。對(duì)于冷害引起果蔬呼吸強(qiáng)度升高的原因,普遍認(rèn)為:(1)低溫導(dǎo)致正常的代謝過(guò)程失調(diào),酶促反應(yīng)從平衡狀態(tài)變?yōu)椴黄胶鉅顟B(tài),呼吸效率降低;(2)無(wú)氧呼吸增強(qiáng),一些有毒產(chǎn)物如乙醇、乙醛等在細(xì)胞內(nèi)積累增加,造成呼吸鏈損傷,氧化磷酸化能力下降;(3)在冷害呼吸過(guò)程中,抗氰呼吸被活性氧所誘導(dǎo),有利于ROS的清除。

        2.6? 能量虧損

        在正常生命活動(dòng)中,植物細(xì)胞通常能夠合成足夠能量以維持組織的正常代謝過(guò)程;但在受到低溫脅迫過(guò)程中,過(guò)量的能量損耗會(huì)導(dǎo)致線粒體的呼吸活性增強(qiáng),繼而促進(jìn)ROS產(chǎn)生;而ROS積累增加可影響到線粒體上的酶和電子傳遞鏈,并打開(kāi)線粒體膜上的通透性孔道,從而間接導(dǎo)致線粒體損傷,阻斷ATP產(chǎn)生進(jìn)程而引起能量供給不足[36]。植物組織能通過(guò)提高AOX和UCP的活性及其表達(dá)水平,在一定范圍內(nèi)調(diào)控ROS水平、氧化磷酸化和ATP合成速率,從而維持能量供需動(dòng)態(tài)平衡。其中,線粒體功能異?;蚰芰坷眯氏陆邓鸬哪芰刻潛p,是導(dǎo)致果蔬采后發(fā)生冷害的直接原因[61-63]。此外,AOX和UCP運(yùn)行還有利于果蔬在高氧、厭氧、低溫、低濕等逆境條件下,調(diào)節(jié)三羧酸循環(huán)的運(yùn)行,維持能量平衡,抵抗氧化脅迫,并降低由線粒體電子傳遞鏈產(chǎn)生的ROS水平[64-65]。在冷藏過(guò)程中,桃果實(shí)隨著冷害發(fā)生,ATP、ADP 含量及能荷水平下降,膜脂過(guò)氧化加劇,細(xì)胞膜透性增加,褐變指數(shù)升高,出現(xiàn)絮敗現(xiàn)象[66];而外源ATP處理則延緩了梨果實(shí)的冷害(黑心)發(fā)生[67]。有資料表明,采后桃果實(shí)貯藏發(fā)生冷害時(shí),呼吸途徑相關(guān)三羧酸循環(huán)等代謝相關(guān)酶活性下降,線粒體結(jié)構(gòu)和功能發(fā)生受損,能量產(chǎn)生受阻,出現(xiàn)細(xì)胞能量虧缺[68]。另外,外源甜菜堿處理采后番木瓜或NO處理采后夏南瓜,能維持線粒體電子傳遞鏈正常功能,保持果實(shí)較高的能量水平,減少ROS積累增加,從而維持細(xì)胞膜結(jié)構(gòu)的相對(duì)完整性,進(jìn)而提高了果實(shí)抗冷性[69-70]??梢?jiàn),果蔬冷害發(fā)生與能量供給或自身產(chǎn)生不足有關(guān);而合適的采后處理通過(guò)調(diào)控能量代謝,幫助膜脂及細(xì)胞膜結(jié)構(gòu)與功能的修復(fù),從而發(fā)揮減輕冷害作用[71]。

        2.7? 激素影響

        在植物適應(yīng)逆境中,植物激素起著積極的作用。其中,異常增加乙烯產(chǎn)生是果蔬對(duì)低溫脅迫的一種生理反應(yīng)[72-73]。低溫抑制乙烯生物合成中的ACC(1-氨基環(huán)丙烷羧酸)合成酶和ACC氧化酶的活性,延緩果蔬后熟衰老;而果蔬遭遇低溫較長(zhǎng)時(shí)間脅迫時(shí),果蔬組織中的ACC合成酶和ACC氧化酶的活性大幅度升高,從而刺激乙烯的大量產(chǎn)生[1, 48, 74-75]。值得注意,多胺作為植物中一類含有兩個(gè)或更多氨基的化合物(腐胺、尸胺、亞精胺、精胺等),一方面能夠清除體內(nèi)O2·和H2O2等氧自由基;另一方面通過(guò)共同競(jìng)爭(zhēng)S-腺苷甲硫氨酸(乙烯合成前體物質(zhì)),抑制乙烯生物合成,在誘導(dǎo)植物抗冷性中發(fā)揮重要作用[7, 76]。外源多胺處理抑制了桃、石榴、黃瓜等果蔬貯藏冷害發(fā)生[77-79]??紤]到乙烯對(duì)果蔬后熟的引發(fā)作用,促進(jìn)可溶性糖積累[80],推測(cè)乙烯或丙烯作為預(yù)處理用于減輕果蔬貯藏冷害發(fā)生,與提高細(xì)胞內(nèi)冷害溫度有關(guān),但是否與多胺的生理作用有關(guān)還需要進(jìn)一步研究闡明。ABA作為逆境脅迫的植物激素,與植物抗冷性密切相關(guān)。低溫鍛煉和外施ABA均可改變植物體內(nèi)ABA含量和激素平衡,能提高植物抗冷能力[25]。采前或采后ABA處理均能提高內(nèi)源ABA含量,抑制柑橘、甜羅勒、西葫蘆、南瓜貯藏期內(nèi)的冷害發(fā)生[81-84]。ABA誘導(dǎo)植物抗冷性可能在于以下三個(gè)方面:(1)增加細(xì)胞膜穩(wěn)定性,減緩膜脂相變發(fā)生;(2)促進(jìn)氣孔關(guān)閉,增加植物的水分平衡能力;(3)促進(jìn)某些抗冷物質(zhì)的形成[25]。除了ABA外,低溫脅迫還與IAA、GA和CTK有關(guān)[25, 83]。據(jù)報(bào)道,減少I(mǎi)AA含量有利于提高芒果的抗冷性,降低內(nèi)源GA3含量減輕了菠蘿冷害發(fā)生;而CTK可提高抗氧化酶的活性,清除ROS積累,并影響不飽和脂肪酸組成比例,從而增強(qiáng)抗冷性[16, 25, 85-89]。總的來(lái)說(shuō),植物激素對(duì)果蔬抗冷性誘導(dǎo)是由多因素共同作用的結(jié)果,通過(guò)影響下游基因表達(dá)和蛋白功能而發(fā)揮作用。

        3? 冷害發(fā)生的分子機(jī)制

        通過(guò)模式植物(擬南芥)研究,提出了通過(guò)調(diào)控C-重復(fù)結(jié)合因子(C-repeat binding factors,CBFs)作為轉(zhuǎn)錄因子負(fù)調(diào)節(jié)MYB15轉(zhuǎn)錄因子的蛋白穩(wěn)定性,闡釋了植物早期低溫應(yīng)答中CBFs基因被快速誘導(dǎo)的分子機(jī)制[90-91]。值得注意,擬南芥響應(yīng)低溫脅迫的分子機(jī)理涉及到BRASSINOSTEROID-INSENSITIVE2(BIN2)蛋白與CBFs基因上游轉(zhuǎn)錄因子INDUCER OF CBF EXPRESSION 1(ICE1)互作,作為植物低溫響應(yīng)過(guò)程的一個(gè)重要開(kāi)關(guān),絲裂原活化蛋白激酶MPK3/ MPK6通過(guò)磷酸化ICE1負(fù)調(diào)控?cái)M南芥對(duì)低溫的耐受能力,新生多肽鏈偶聯(lián)蛋白復(fù)合體亞基BTF3L(Basic transcription factor 3 like)蛋白通過(guò)間接調(diào)控CBFs基因的表達(dá)而增強(qiáng)植物的抗凍能力以及氣孔開(kāi)放因子1(1 factor Stomatal opening,OST1)參與低溫抗性誘導(dǎo)的分子作用[90-91]。這一系列研究結(jié)果為研究果蔬冷害發(fā)生的分子機(jī)制提供了重要思路。

        目前,果蔬冷害發(fā)生的分子機(jī)制研究主要圍繞乙烯作用展開(kāi),包括利用蛋白質(zhì)組學(xué)技術(shù),闡明香蕉果實(shí)的冷害機(jī)制和乙烯耐冷機(jī)制(圖2)[49];同時(shí)開(kāi)展果實(shí)在低溫貯藏過(guò)程中乙烯信號(hào)轉(zhuǎn)導(dǎo)途徑,包括冷鍛煉、丙烯、1-甲基環(huán)丙烯(1-MCP)、熱處理等不同處理對(duì)乙烯響應(yīng)因子和信號(hào)轉(zhuǎn)導(dǎo)途徑的影響,并確定了一系列轉(zhuǎn)錄調(diào)控因子(AP2/ ERF、NAC、MYB、ERFs、WRKYs、MYB、Ej4CL1、CBF1、NON-RIPENING等)功能,進(jìn)一步幫助解析果蔬冷害發(fā)生的分子機(jī)制[92-98]。另外,低溫脅迫的茉莉酸信號(hào)轉(zhuǎn)導(dǎo)和熱激蛋白的作用是當(dāng)前果蔬采后抗冷性誘導(dǎo)的研究熱點(diǎn)[3, 99]。針對(duì)不同果蔬采后冷害特性,需要結(jié)合應(yīng)用基因組學(xué)、蛋白質(zhì)組學(xué)、細(xì)胞生物學(xué)、基因工程等現(xiàn)代生物學(xué)技術(shù),同時(shí)建立高效的轉(zhuǎn)基因功能驗(yàn)證平臺(tái),為進(jìn)一步闡明果蔬冷害發(fā)生的分子機(jī)制提供技術(shù)支撐。

        4? 基于能量的冷害研究進(jìn)展

        細(xì)胞能量是調(diào)控園藝產(chǎn)品采后成熟衰老的重要因素之一。越來(lái)越多的研究表明,果蔬冷害發(fā)生與細(xì)胞能量發(fā)生虧損有關(guān),而保持高水平的ATP含量和能荷水平能有效減輕果蔬貯藏冷害癥狀。最近,Aghdam等[62]評(píng)述了不同采后處理減輕果實(shí)能量相關(guān)的脅迫,并延緩果實(shí)后熟衰老的可能作用機(jī)制(圖3)。目前,一些研究表明,外源ATP處理能抑制果蔬采后冷害發(fā)生[61, 76]。除了直接影響到細(xì)胞內(nèi)ROS產(chǎn)生和細(xì)胞膜結(jié)構(gòu)完整性外,推測(cè)ATP具有信號(hào)分子作用。在動(dòng)物中,細(xì)胞外ATP(extracellular ATP, eATP)能誘導(dǎo)特異基因表達(dá),調(diào)節(jié)神經(jīng)傳遞、免疫應(yīng)答、細(xì)胞生長(zhǎng)、細(xì)胞凋亡、分泌代謝和離子通道活性等一系列生理過(guò)程;而在植物中,eATP參與了根生長(zhǎng)、氣孔運(yùn)動(dòng)、花粉管發(fā)育、引力和非生物/生物脅迫反應(yīng)等活動(dòng)[100-101]。直到2014年,Choi等[102]首次在擬南芥中發(fā)現(xiàn)了eATP受體(DOes not Respond to Nucleotides 1, DORN1)。該受體由細(xì)胞外凝集素結(jié)構(gòu)域、跨膜結(jié)構(gòu)域和絲氨酸/蘇氨酸激酶細(xì)胞內(nèi)結(jié)構(gòu)域組成,并在凝集素受體激酶中存在活性位點(diǎn),能以高親和力與eATP結(jié)合,為eATP誘導(dǎo)表達(dá),并作為蛋白激酶活化的基因表達(dá)所必需。除了充當(dāng)細(xì)胞能源外,ATP還可能在植物中響應(yīng)低溫脅迫,通過(guò)DORN1發(fā)揮多種功能。例如,由受體DORN1識(shí)別eATP介導(dǎo),接著NADPH氧化酶對(duì)RBOHD直接磷酸化,導(dǎo)致ROS產(chǎn)生和氣孔關(guān)閉[103]。最近,Cho等[104]建議了植物中的DORN1對(duì)eATP感知受傷、觸碰以及各種生物和非生物脅迫及誘導(dǎo)ATP從胞內(nèi)釋放到胞外基質(zhì)中的可能過(guò)程。我們最近的工作[105]表明,采用1 mmol/L ATP預(yù)處理可顯著促進(jìn)采后香蕉果實(shí)成熟并增強(qiáng)耐冷性,同時(shí)迅速誘導(dǎo)MaDORN1s早期表達(dá),說(shuō)明eATP受體參與了對(duì)低溫的響應(yīng),為進(jìn)一步認(rèn)識(shí)eATP作為重要的信號(hào)分子參與果蔬采后冷害發(fā)生及作用機(jī)制提供了重要線索,包括低溫是如何引發(fā)果蔬細(xì)胞內(nèi)eATP產(chǎn)生及其調(diào)控、eATP跨膜信號(hào)轉(zhuǎn)導(dǎo)和下游基因激活以及與細(xì)胞內(nèi)能量調(diào)控的作用機(jī)制。

        5? 冷害控制技術(shù)

        隨著對(duì)果蔬采后冷害發(fā)生及調(diào)控機(jī)理的研究深入,在果蔬冷害防控技術(shù)方面也取得了進(jìn)展,其中一些技術(shù)已在生產(chǎn)上推廣應(yīng)用(表2)。冷害防控措施主要包括物理方法、化學(xué)方法和生物技術(shù)等三個(gè)方面。

        5.1? 物理方法

        5.1.1? 熱處理? 采后熱處理是指將采后果蔬置于35~60 ℃的熱空氣、熱蒸汽或熱水中進(jìn)行預(yù)處理。熱處理可維持細(xì)胞膜不飽和脂肪酸/飽和脂肪酸比率,保持細(xì)胞膜相對(duì)完整性,促進(jìn)熱激蛋白(HSP)基因表達(dá)和熱激蛋白積累,提高組織抗氧化能力,增強(qiáng)精氨酸途徑,促進(jìn)多胺合成,并影響糖代謝促進(jìn)可溶性糖積累,提高果蔬耐冷性[2-3, 106-107]。有資料表明,采用熱預(yù)處理能有效抑制芒果、枇杷、番茄、黃瓜、桃、李等果蔬冷害發(fā)生;但熱處理不當(dāng)也會(huì)促進(jìn)果蔬在貯藏過(guò)程中后熟衰老、品質(zhì)劣變[3, 108]。例如,經(jīng)不合適熱處理后,果蔬會(huì)出現(xiàn)褐變、點(diǎn)蝕、黃化、軟化異常、異味產(chǎn)生等癥狀[3]。另外,熱處理還可與化學(xué)處理(如氯化鈣、茉莉酸甲酯、水楊酸等)復(fù)合使用,進(jìn)一步提高冷害防控效果[3, 109-111]。

        5.1.2? 冷鍛煉? 冷鍛煉是指果蔬冷藏前采用稍高于冷害臨界溫度的溫度預(yù)貯藏一段時(shí)間,通過(guò)誘導(dǎo)果蔬自身抗冷性系統(tǒng)啟動(dòng),增強(qiáng)果蔬對(duì)低溫脅迫適應(yīng)能力,從而減輕果蔬冷害的溫度調(diào)控方法。其中,溫度、溫差和預(yù)處理時(shí)間是冷鍛煉的關(guān)鍵因素。適宜冷鍛煉因果蔬種類和品種而異。冷鍛煉提高了細(xì)胞保水能力,促進(jìn)了果蔬成熟,維持了細(xì)胞能量水平,減少了細(xì)胞膜的損傷和冷害誘導(dǎo)的磷脂水解,從而降低了果蔬對(duì)低溫的敏感性,減少果蔬冷害發(fā)生[112-116]。另外,發(fā)現(xiàn)冷鍛煉誘導(dǎo)的果實(shí)抗冷性與提高多胺含量有關(guān)[78]。大部分研究表明,冷鍛煉減輕果蔬冷害的作用機(jī)制與其抗氧化體系增強(qiáng)、增強(qiáng)精氨酸途徑、促進(jìn)多胺合成、誘導(dǎo)抗冷基因表達(dá)以及抗冷相關(guān)蛋白形成有關(guān)[2, 11]。

        5.1.3? 逐步降溫? 逐步降溫是使果蔬逐步適應(yīng)低溫的生理代謝過(guò)程,通過(guò)啟動(dòng)果蔬自身抗冷性,進(jìn)而減輕冷鍛煉過(guò)程的傷害。番茄、香蕉、桃、芒果、番木瓜等呼吸躍變型果蔬,特別是果實(shí)經(jīng)催熟后在低溫貯藏,在冷害防控效果方面尤為明顯[11]。其中,冷害防控效果取決于溫度、溫差和降溫時(shí)間三者的共同作用結(jié)果,并且取決于果蔬種類和品種以及生長(zhǎng)環(huán)境條件。

        5.1.4? 間歇升溫? 間歇升溫是指用一次或多次短期升溫來(lái)中斷低溫對(duì)冷敏感果蔬的傷害。一些研究表明,間歇升溫提高了芒果、黃瓜、柑橘、桃、油桃、甘薯、番茄和秋葵等果蔬耐冷性,降低果蔬貨架期間的乙烯釋放率、離子滲出,減緩果實(shí)表面的凹陷和腐爛發(fā)生[117-120]。另外,間歇升溫可以提高組織代謝活動(dòng),減少在冷害過(guò)程中有害物質(zhì)(如乙醇、乙醛)累積而帶來(lái)的對(duì)細(xì)胞的傷害作用。

        5.1.5? 近冰點(diǎn)貯藏? 在果蔬不產(chǎn)生冷害的情況下,降低低溫貯藏溫度,抑制呼吸作用,采用近結(jié)冰點(diǎn)溫度貯藏。近冰點(diǎn)貯藏技術(shù)已應(yīng)用在杏、草莓、蘋(píng)果、葡萄、冬棗、黃金梨、櫻桃、甘藍(lán)、麻竹筍和藕帶等果蔬的貯藏[4]。其中,蘋(píng)果、梨、桃、獼猴桃、甘藍(lán)、胡蘿卜、甜玉米等比較適合0 ℃左右貯藏。近冰點(diǎn)貯藏技術(shù)是建立在待貯的果蔬冰點(diǎn)溫度已確定的基礎(chǔ)上進(jìn)行,并且需要精準(zhǔn)控制貯藏溫度變動(dòng)范圍,否則將導(dǎo)致果蔬在貯藏過(guò)程中發(fā)生凍害。因果蔬冰點(diǎn)溫度測(cè)定較為復(fù)雜,需要專門(mén)儀器并耗費(fèi)較長(zhǎng)測(cè)定時(shí)間,加上即使同一品種也存在差異,一些研究正考慮建立果蔬可溶性固形物含量與冰點(diǎn)溫度的數(shù)學(xué)模型,能根據(jù)速測(cè)的可溶性固形物含量快速估算出果蔬的冰點(diǎn)溫度,進(jìn)而指導(dǎo)生產(chǎn)貯運(yùn)。

        5.1.6? 氣調(diào)貯藏? 氣調(diào)貯藏是在現(xiàn)有冷藏基礎(chǔ)上發(fā)展起來(lái),采用改變貯藏環(huán)境的氣體成分和濃度,抑制果蔬呼吸作用,達(dá)到保持果蔬產(chǎn)品質(zhì)量,延長(zhǎng)貯藏期的一種技術(shù)。氣調(diào)貯藏可分為人工氣調(diào)貯藏和自發(fā)氣調(diào)包裝貯藏。人工氣調(diào)貯藏是通過(guò)計(jì)算機(jī)輔助,實(shí)現(xiàn)精確控制貯藏環(huán)境的溫度、濕度和氣體濃度,創(chuàng)造最適宜的氣體環(huán)境,維持果蔬品質(zhì)、減輕冷害和延長(zhǎng)貯藏期,已在全世界果蔬保鮮中得到廣泛應(yīng)用;缺點(diǎn)是裝備造價(jià)高,適合規(guī)?;叨斯弋a(chǎn)品貯藏保鮮。自發(fā)氣調(diào)包裝貯藏是將果蔬密封在具有透氣性的塑料包裝袋中,利用果蔬的自身呼吸代謝與薄膜的透氣性能,創(chuàng)造一個(gè)低O2高CO2的環(huán)境,其優(yōu)點(diǎn)是能有效降低成本,同時(shí)能維持果蔬較好的品質(zhì),延長(zhǎng)貨架期[2, 121-122];缺點(diǎn)是當(dāng)包裝袋中O2濃度過(guò)低、CO2濃度過(guò)高時(shí),會(huì)造成無(wú)氧呼吸,促進(jìn)乙醇、乙醛等物質(zhì)的生成,影響果蔬品質(zhì),不利于果蔬長(zhǎng)期貯藏[123-128]。目前,國(guó)內(nèi)外的氣調(diào)貯藏大多是針對(duì)自發(fā)氣調(diào)包裝貯運(yùn)。另外,高氧環(huán)境阻止厭氧發(fā)酵反應(yīng)及水分和氣味的損失,有利于抑制酶促褐變,同時(shí)降低果實(shí)冷害發(fā)生[129]。

        5.1.7? 可食性被膜? 主要為改性的殼聚糖、烷基苷、蟲(chóng)膠、淀粉等一類高分子化合物。最近,也開(kāi)發(fā)了基于蛋白質(zhì)、多糖為主要成分的可食性被膜。一些研究表明,采用殼聚糖處理能有效延長(zhǎng)果實(shí)低溫貯藏期,并且可食性被膜結(jié)合水楊酸、蘋(píng)果酸和草酸等使用,增強(qiáng)了果實(shí)抗冷性[130-134]。另外,研究還發(fā)現(xiàn),蠶絲蛋白涂膜處理能減輕香蕉果皮褐變、凹陷等冷害癥狀發(fā)生[135]。

        5.2? 化學(xué)方法

        5.2.1? 1-甲基環(huán)丙稀? 1-MCP能不可逆作用于膜上的乙稀受體,導(dǎo)致內(nèi)源乙稀無(wú)法與正常的乙烯受體相結(jié)合,能有效抑制乙烯對(duì)呼吸躍變型果實(shí)的催熟作用,從而延長(zhǎng)了果實(shí)采后貨架期。經(jīng)1-MCP處理后的鱷梨、梨和菠蘿在低溫貯藏過(guò)程中,冷害程度明顯減輕,表現(xiàn)為果肉褐變減少[136-137];但在一些果實(shí)中,應(yīng)用1-MCP處理反而加重了果實(shí)褐變[138-139]。這是否與乙烯促進(jìn)果實(shí)后熟或者與不同果實(shí)的生理特性有關(guān),還需要進(jìn)一步驗(yàn)證。

        5.2.2? 茉莉酸甲酯? 外源茉莉酸甲酯(MeJA)處理抑制果蔬冷害發(fā)生已有大量報(bào)道。MeJA處理可有效減輕番茄、茄子、甜椒、黃瓜、姜根莖、橙子、桃、菠蘿、枇杷、番木瓜和芒果等果蔬冷害癥狀的發(fā)生,并減少果蔬腐爛,保持較好品質(zhì)[140-147]。MeJA對(duì)果蔬的抗冷防控作用,主要是誘導(dǎo)果蔬自身抗冷性系統(tǒng),屬于多方面的作用結(jié)果。除了直接調(diào)節(jié)果實(shí)抗氧化酶的活性和抗氧化物質(zhì)含量、膜脂和細(xì)胞壁代謝、影響脯氨酸和γ-氨基丁酸等物質(zhì)含量,增加果蔬抗冷性,還可能由其自身作為信號(hào)分子,通過(guò)信號(hào)轉(zhuǎn)導(dǎo)作用和相關(guān)基因的誘導(dǎo)表達(dá),間接調(diào)控采后果蔬對(duì)低溫的適應(yīng)能力。

        5.2.3? 水楊酸? 水楊酸除了調(diào)節(jié)植物的生長(zhǎng)、發(fā)育、成熟和衰老,還可作為植物脅迫反應(yīng)中的信號(hào)分子。水楊酸處理影響到一系列生理代謝過(guò)程。例如,提高了多胺含量,誘導(dǎo)熱激蛋白的表達(dá)和產(chǎn)生,增強(qiáng)抗壞血酸-谷胱甘肽循環(huán)效率,提高組織抗氧化酶活性,減緩ROS產(chǎn)生積累,進(jìn)而減輕番茄、香蕉、火龍果、山竹、檸檬和獼猴桃的冷害癥狀[148-155];并且經(jīng)水楊酸與茉莉酸甲酯復(fù)合處理后,果蔬冷害程度更低,具有一定的協(xié)同效應(yīng)[153-155]。

        5.2.4? 一氧化氮? 一氧化氮(NO)可能作為一種信號(hào)物質(zhì),能夠調(diào)節(jié)植物激素平衡,緩解低溫脅迫對(duì)果蔬所造成的傷害作用。一般認(rèn)為,應(yīng)用外源NO處理(通常硝普鈉作為NO供體)能提高內(nèi)源NO含量,啟動(dòng)細(xì)胞內(nèi)抗氧化系統(tǒng),調(diào)節(jié)細(xì)胞壁代謝相關(guān)酶活性,減輕ROS積累而引起對(duì)細(xì)胞膜氧化傷害,能有效抑制黃瓜、香蕉、李、獼猴桃、芒果等果蔬冷害發(fā)生[156-159]。

        5.2.5? 油菜素內(nèi)酯? 油菜素內(nèi)酯作為信號(hào)分子能調(diào)節(jié)植物對(duì)逆境脅迫的響應(yīng),并提高抗性。據(jù)報(bào)道,采用外源油菜素內(nèi)酯處理,減輕了豇豆、甜椒、竹筍、番茄等蔬菜在貯藏中的冷害癥狀[160-163]。油菜素內(nèi)酯能通過(guò)信號(hào)轉(zhuǎn)導(dǎo)途徑,包括BIN2蛋白與CBFs基因上游轉(zhuǎn)錄因子,表現(xiàn)為增強(qiáng)抗氧化防御系統(tǒng),提高組織抗氧化能力,抑制細(xì)胞壁降解相關(guān)酶活性。

        5.2.6? 草酸? 一些研究表明,草酸處理抑制了果實(shí)采后呼吸作用,調(diào)節(jié)組織能量代謝和不飽和脂肪酸含量,延緩了石榴、桃、芒果的冷害發(fā)生[134, 164-165]。另外,Huang等[166]報(bào)道,草酸處理還能抑制香蕉果實(shí)在貯藏過(guò)程中的CTK氧化酶活性,并保持組織中較高CTK水平,可能與維持細(xì)胞壁代謝平衡、防止果實(shí)冷害發(fā)生有關(guān)。

        5.2.7? 甜菜堿? 外源甜菜堿處理明顯減輕了香蕉、番木瓜、桃、枇杷、甜椒、山楂、黃瓜等果蔬在低溫貯藏過(guò)程中的冷害發(fā)生[167-170]。進(jìn)一步研究表明,外源甜菜堿處理有助于提高細(xì)胞的抗氧化能力,增加脯氨酸和-氨基丁酸等物質(zhì)含量,維持細(xì)胞膜相對(duì)完整性,并保持細(xì)胞壁代謝平衡[168, 171]。經(jīng)甜菜堿處理后,番木瓜果實(shí)在低溫貯藏后轉(zhuǎn)到常溫,能基本正常后熟,并能維持良好的品質(zhì)[168]。

        5.2.8? 褪黑素? 褪黑素可能作為信號(hào)分子調(diào)節(jié)植物對(duì)逆境脅迫的抗性。環(huán)境脅迫(如低溫、高溫、高CO2)會(huì)導(dǎo)致植物體內(nèi)褪黑素含量明顯上升。最近一些研究發(fā)現(xiàn),外源褪黑素處理上調(diào)了冷害相關(guān)的ZAT2/6/12基因表達(dá),促進(jìn)組織內(nèi)源多胺、脯氨酸和一氧化氮的積累,誘導(dǎo)熱激蛋白形成,調(diào)節(jié)膜脂和酚類代謝,增強(qiáng)抗壞血酸-谷胱甘肽循環(huán),提高抗氧化能力,從而減輕番茄、人心果、荔枝和桃果實(shí)在低溫貯藏的冷害癥狀[172-176]。

        5.2.9? 硫化氫? 目前,已證實(shí)硫化氫參與了采后果蔬一系列生理反應(yīng),具有多種信號(hào)途徑的調(diào)控作用,可能作為一種信號(hào)氣體分子。目前,硫化氫在延長(zhǎng)采后果蔬貯藏保鮮方面已取得了一些進(jìn)展。研究表明,硫化氫處理能有效提高抗氧化酶類的活性,促進(jìn)組織內(nèi)源多胺合成,減緩ROS過(guò)度積累對(duì)細(xì)胞膜造成的損傷,進(jìn)而提高果蔬抗冷性[177-180]。胡樹(shù)立[181]采用硫化氫處理草莓, 發(fā)現(xiàn)能提高游離脯氨酸含量,保持較高的抗氧化酶活性,增強(qiáng)果實(shí)抗逆性,有效抑制冷害及腐爛發(fā)生,其中0.8 mmol/L硫化氫溶液處理最為有效。

        5.2.10? 鈣處理? Ca2+作為植物必須營(yíng)養(yǎng)元素之一,能與細(xì)胞膜上的蛋白質(zhì)及磷脂相結(jié)合,并通過(guò)鈣調(diào)蛋白起作用。采用鈣處理能維持細(xì)胞膜相對(duì)完整性,降低細(xì)胞膜的透性,調(diào)節(jié)細(xì)胞壁降解酶和抗氧化系統(tǒng)酶的活性,從而延緩果實(shí)采后軟化,并增強(qiáng)果實(shí)抗冷性[182]。經(jīng)鈣處理后,梨、芒果、火龍果、枇杷等果實(shí)在低溫貯藏中的冷害癥狀得到明顯改善,并具有良好的商品性[177, 183-184]。

        5.3? 生物技術(shù)

        通過(guò)生物技術(shù)將抗冷基因轉(zhuǎn)入冷敏性果蔬中,以提高組織抗冷性,從而達(dá)到減輕果蔬冷害發(fā)生的目的[185-188]。目前,已確定調(diào)控植物抗冷性基因主要包括:抗凍蛋白基因,冷誘導(dǎo)基因,脂肪酸去飽和代謝關(guān)鍵酶的基因,細(xì)胞合成脯氨酸、甜菜堿、小分于糖類等滲透物質(zhì)的酶基因,SOD、APX、GR、CAT、GR活性等抗氧化酶的基因,ASH、VE、GSH等抗氧化物質(zhì)合成的酶基因,能量合成基因,乙烯合成相關(guān)基因以及CBFs途徑基因和LEA、COR、HSP等其它功能蛋白基因等。這些基因均能提高植物的抗冷性,尤其是轉(zhuǎn)入抗冷基因的轉(zhuǎn)錄因子使植物不需要經(jīng)過(guò)冷馴化就具有高抗冷性,這為從遺傳上獲得抗冷果蔬品種成為可能,具有潛在發(fā)展前景。

        6? ?展望

        我國(guó)果蔬產(chǎn)量位居世界第一。在果蔬貯藏和物流過(guò)程中,常因采后溫度控制不當(dāng)而引起冷害,造成了重大的經(jīng)濟(jì)損失;因此,研發(fā)果蔬冷害防控技術(shù)對(duì)提高果蔬貯藏品質(zhì)、延長(zhǎng)貯藏壽命至關(guān)重要。其中,闡明果蔬冷害機(jī)制是開(kāi)發(fā)果蔬冷害控制新技術(shù)的理論基礎(chǔ)??傮w來(lái)講,基于現(xiàn)有的研究成果,對(duì)果蔬采后冷害發(fā)生機(jī)理的確切認(rèn)識(shí)仍然不是十分清楚。現(xiàn)有膜脂相變理論、蛋白質(zhì)傷害理論、自由基傷害理論、植物激素理論等可部分解釋果蔬冷害發(fā)生的作用機(jī)制,多屬于框架式,缺乏有效的數(shù)據(jù)支撐,如膜脂相變理論;這可能與果蔬低溫貯藏的復(fù)雜性、冷害發(fā)生多因素有關(guān)??紤]到果蔬冷害發(fā)生是由內(nèi)在因子和外部環(huán)境因素所誘導(dǎo)的一種主動(dòng)過(guò)程,特別是組織對(duì)低溫環(huán)境的感受、信號(hào)傳導(dǎo)與生理響應(yīng)機(jī)制。其中,能量代謝變化是果蔬冷害發(fā)生過(guò)程的早期表現(xiàn)形式和基本特征,而能量虧損又進(jìn)一步引起細(xì)胞代謝異常,并加速冷害進(jìn)程。擬南芥中eATP受體的發(fā)現(xiàn),為認(rèn)識(shí)eATP作為重要的信號(hào)分子參與果蔬采后冷害發(fā)生的能量虧損理論提供了重要線索,有助于深入揭示冷害發(fā)生的作用機(jī)制。

        果蔬采后研究大約始于20世紀(jì)30年代,主要圍繞新鮮果蔬供應(yīng)。在近90年時(shí)間內(nèi),科技工作者研發(fā)了一系列減輕果蔬冷害發(fā)生的技術(shù),但這些技術(shù)的實(shí)際應(yīng)用受到果蔬種類和貯運(yùn)條件以及食品安全性和保鮮成本等多種因素的制約。目前,在防止或者減輕采后果蔬貯運(yùn)冷害措施方面,主要有熱處理、冷鍛煉、氣調(diào)貯藏和化學(xué)處理等。其中,氣調(diào)貯藏通過(guò)調(diào)節(jié)貯藏環(huán)境內(nèi)溫度、濕度以及CO2、O2等濃度,延緩采后果蔬成熟衰老,減輕冷害發(fā)生;但對(duì)于不同果蔬,由于其生物學(xué)特性的差異,在貯藏環(huán)境氣體比例與濕度問(wèn)題上,還需要獲得最佳配比。在不同化學(xué)處理方面,需要考慮復(fù)合處理優(yōu)化,如鈣、茉莉酸甲酯、水楊酸、硫化氫等,以達(dá)到最優(yōu)保鮮效果。另外,考慮到每一種果蔬的最佳貯藏環(huán)境條件,需要加強(qiáng)貯藏裝備的配套研發(fā)及通用性,從整體上實(shí)現(xiàn)果蔬精準(zhǔn)貯藏與物流保鮮。特別是隨著現(xiàn)代生物技術(shù)的迅速發(fā)展,利用基因工程技術(shù)選擇培育對(duì)貯藏溫度敏感性低的果蔬新品種,進(jìn)而保障果蔬采后品質(zhì)和貯藏壽命。

        參考文獻(xiàn)

        田世平, 羅云波, 王貴禧. 園藝產(chǎn)品采后生物學(xué)基礎(chǔ)[M]. 北京: 科學(xué)出版社, 2011: 99-105.

        金? 鵬, 王? 靜, 朱? 虹, 等. 果蔬采后冷害控制技術(shù)及機(jī)制研究進(jìn)展[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2012, 35(5): 167- 174.

        Aghdam M S, Bodbodak S. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables[J]. Food and Bioprocess Technology, 2014, 7: 37-53.

        連龍浩. 火龍果最適貯藏條件及其冷害發(fā)生機(jī)制研究[D]. 福州: 福建農(nóng)林大學(xué), 2014.

        高? 慧. 油桃果實(shí)冷害及冷害生理機(jī)制研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2007.

        陸旺金, 張昭其, 季作梁. 熱帶亞熱帶果蔬低溫貯藏冷害及御冷技術(shù)[J]. 植物生理學(xué)通訊, 1999, 35(2): 158-163.

        索江濤. 獼猴桃采后冷害木質(zhì)化特點(diǎn)及其果實(shí)抗冷機(jī)制研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2018.

        Lieberman M, Craft C C, Audia W V, et al. Biochemical studies of chilling injury in sweet potatoes[J]. Plant Physiology, 1958, 33(5): 307-311.

        賈雯茹, 趙紫迎, 左小霞, 等. 高濕貯藏減輕黃瓜果實(shí)冷害的效果研究[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào), 2020, 43(3): 529-536.

        Xiao L, Li T T, Jiang G X, et al. Effects of dry fog humidification on pericarp browning and quality of litchi fruit stored at low temperature[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(4): 192-196.

        Montero-Calderón M, Cerdas-Araya M M. Tropical and subtropical fruits: Postharvest physiology, processing and packaging[M]. Oxford: Wiley-Blackwell, 2012.

        程運(yùn)江. 園藝產(chǎn)品貯藏運(yùn)銷學(xué)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2011: 46-51.

        黃邦彥, 楊? 謙. 果蔬采后生理與貯藏保鮮[M]. 北京: 農(nóng)業(yè)出版社, 1990: 23-25.

        潘塔斯蒂科. 熱帶亞熱帶果蔬采后生理、處理及利用[M]. 中國(guó)科學(xué)院華南植物研究所生理生化室, 譯. 北京: 農(nóng)業(yè)出版社, 1982: 321-330.

        Paull R E. Effect of temperature and relative humidity on fresh commodity quality[J]. Postharvest Biology and Technology, 1999, 15: 263-277.

        Valenzuela J L, Manzano S, Palma F. Oxidative stress associated with chilling injury in immature fruit: Postharvest technological and biotechnological solutions[J]. International Journal of Molecular Sciences, 2017, 18(7): 1467.

        Lyons J M.Chilling injury in plants[J].Annual Review of Plant Physiology, 1973, 24: 445-466

        李志剛, 陳文冰, 郝利平, 等. 香蕉果實(shí)冷害過(guò)程中質(zhì)構(gòu)特性變化研究[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 36(6): 450-456.

        高? 慧, 饒景萍. 冷害對(duì)貯藏油桃膜脂脂肪酸及相關(guān)酶活性的影響[J]. 西北植物學(xué)報(bào), 2007, 27(4): 710-714.

        季作梁, 張昭其, 王? 燕, 等. 芒果低溫貯藏及其冷害的研究[J]. 園藝學(xué)報(bào), 1994, 21(2): 111-116.

        金? 鵬, 呂慕雯, 孫萃萃, 等. MeJA與低溫預(yù)貯對(duì)枇杷冷害和活性氧代謝的影響[J]. 園藝學(xué)報(bào), 2012, 39(3): 461- 468.

        孟雪雁. 不同溫度下桃貯藏效果及冷害癥狀的發(fā)生[J]. 山西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2001, 21(1): 66-69.

        Lukatkin A S, Brazaityt A R, Bobinas E, et al. Chilling injury in chilling-sensitive plants: A review[J]. Zemdirbyste-Agriculture, 2012, 99: 111-124.

        Fung R, Wang C, Smith D, et al. MeSA and MeJA increase steady state transcript levels of alternative oxidase and resistancea gainst chilling injury in sweet peppers (Capsicum annuum L.)[J]. Plant Science, 2004, 166: 71l-719.

        Aghdam M S, Bodbodak S. Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments[J]. Scientia Horticulturae, 2013, 156: 73-85.

        Cao S F, Yang Z F, Cai Y T, et al. Fatty acid composition and antioxidant system in relation to susceptibility of loquat fruit to chilling injury[J]. Food Chemistry, 2011, 127(4): 1777-1783.

        張? 敏, 解? 越. 采后果蔬低溫貯藏冷害研究進(jìn)展[J]. 食品與生物技術(shù)學(xué)報(bào), 2016, 35(1): 1-11.

        Liu J, Li Q, Chen J, et al. Revealing further insights on chilling injury of postharvest bananas by untargeted lipidomics[J]. Foods, 2020, 9(7): 894.

        Mirdehghan S H, Rahemi M, Martínez-Romero D, et al. Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines[J]. Postharvest Biology and Technology, 2007, 44(1): 19-25.

        Promyou S, Kesta S, Van D W. Hot water treatments delay cold-induced banana peel blackening[J]. Postharvest Biology Technology, 2008, 48(1): 132-138.

        Luo Z S, Wu X , Xie Y, et al. Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment[J]. Food Chemistry, 2012, 131(2): 456-461.

        Cao S F, Zheng Y H, Wang K T, et al. Methyljasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit[J]. Food Chemistry, 2009, 115(4): 1458-1463.

        Ding Z S, Tian S P, Zheng X L, et al. Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress[J]. Physiologia Plantarum, 2007, 130(1): 112-121.

        Marangoni A G, Palma T, Stanley D W. Membrane effects in postharvest physiology[J]. Postharvest Biology and Technology, 1996, 7(3): 193-217.

        Jiang Y M, Fu J R, Xu L G. Membrane effects in postharvest senescence of horticultural crops[J]. Guihaia, 2002, 22(2): 160-166.

        Yang H Q, Wu F H, Cheng J Y. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response[J]. Food Chemistry, 2011, 127(3): 1237-1242.

        Jiang Y M, Jiang Y L, Qu H X, et al. Energy aspects in ripening and senescence of harvested horticultural crops[J]. Stewart Postharvest Review, 2007, 2: 5.

        張 倩, 王慶國(guó), 白冬紅, 等. 果實(shí)采后冷害發(fā)生生理機(jī)制及調(diào)控技術(shù)研究進(jìn)展[J]. 山東農(nóng)業(yè)科學(xué), 2018, 50(12): 152-157.

        Sevillano L, Sanchez-Ballesta M T, Romojaro F, et al. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact[J]. Journal of the Science of Food and Agriculture, 2009, 89(4): 555-573.

        Lee S K, Kader A A. Preharvest and postharvest factors influencing vitamin C content of horticultural crops[J]. Postharvest Biology and Technology, 2000, 20(3): 207-220.

        Luo Z S, Chen C, Xie J. Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘Qingnai plum fruit[J]. Postharvest Biology and Technology, 2011, 62(2): 115-120.

        Maul P, McCollum G, Guy C L, et al. Temperature conditioning alters transcript abundance of genes related to chilling stress in ‘Marsh grapefruit flavedo[J]. Postharvest Biology and Technology, 2011, 60(3): 177-185.

        Sala J M. Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits[J]. Postharvest Biology and Technology, 1998, 13(3): 255-261.

        Sfakiotakis E, Chlioumis G, Gerasopoulos D. Preharvest chilling reduces low temperature breakdown incidence of kiwifruit[J]. Postharvest Biology and Technology, 2005, 38(2): 169-174.

        Cao S F, Hu Z C, Zheng Y H, et al. Synergistic effect of heat treatment and salicylic acid on alleviating internal browning in cold-stored peach fruit[J]. Postharvest Biology and Technology, 2010, 58(2): 93-97.

        Zhang C F, Ding Z S, Xu X B, et al. Crucial roles of membrane stability and its related proteins in the tolerance of peach fruit to chilling injury[J]. Amino Acids, 2010, 39: 181-194.

        Cao Y R, Tanaka K, Nguyen C T, et al. Extracellular ATP is a central signaling molecule in plant stress responses[J]. Current Opinion in Plant Biology, 2014, 20: 82-87.

        Li T T, Yun Z, Zhang D D, et al. Proteomic analysis of differentially expressed proteins involved in ethylene-induced chilling tolerance in harvested banana fruit[J]. Frontiers in Plant Science, 2015, 6: 845.

        李濤濤. 香蕉采后真菌病害及冷害發(fā)生和調(diào)控的分子機(jī)理研究[D]. 廣州: 中國(guó)科學(xué)院大學(xué), 2016.

        Khademi O,Besada C,Mostofi Y, et al. Changes in pectin methylesterase, polygalacturonase,catalase and peroxidase activities associated with alleviation of chilling injury in persimmon by hot water and 1-MCP treatments[J]. Scientia Horticulturae, 2014, 179: 191-197.

        Carvaja F, Palma F, Jamilena M, et al. Cell wall metabolism and chilling injury during postharvest cold storage in zucchini fruit[J]. Postharvest Biology and Technology, 2015, 108: 68-77.

        陳京京. 桃果實(shí)冷害與能量代謝的關(guān)系研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2012.

        Zhou H W, Soneggo L, Ben-Arie R, et al. Analysis of cell wall components in juice of ‘Flavortop nectarines during normal ripening and woolliness development[J]. Journal of the American Society for Horticultural Science, 1999, 124: 424-429.

        Jin P, Zhu H, Wang J, et al. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents[J]. Food Chemistry, 2014, 161: 87-93.

        Pan Y G, Zhang S Y, Yuan M Q, et al. Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage[J]. Food Science and Nutrition, 2019, 7(3): 1123-1130.

        Yao W S, Xu T T, Farooq S U, et al. Glycine betaine treatment alleviates chilling injury in zucchini fruit (Cucurbita pepo L.) by modulating antioxidant enzymes and membrane fatty acid metabolism[J]. Postharvest Biology and Technology, 2018, 144: 20-28.

        Wang J W, Jiang Y G, Li G D, et al. Effect of low temperature storage on energy and lipid metabolisms accompanying peel browning of ‘Nanguo pears during shelf life[J]. Postharvest Biology and Technology, 2018, 139: 75-81.

        Given N K, Venis M A, Grierson D. Hormonal regulation of ripening in the strawberry, a non-climacteric fruit[J]. Planta, 1988, 174: 402-406.

        Antunes M D C, Sfakiotakis E M. Chilling induced ethylene biosynthesis in ‘Hayward kiwifruit following storage[J]. Scientia Horticulturae, 2002, 92(1): 29-39.

        Sfakiotakis E, Chlioumis G, Gerasopoulos D. Preharvest chilling reduces low temperature breakdown incidence of kiwifruit[J]. Postharvest Biology and Technology, 2005, 38(2): 169-174.

        Shen W, Nada K, Tachibana S. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiology, 2000, 124(1): 431-439.

        Zhang W P, Jiang B, Li W G, et al. Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system[J]. Scientia Horticulturae, 2009, 122(2): 200-208.

        Xu C A, Jin Z Y, Yang S Q. Polyamines induced by heat treatment before cold-storage reduce mealiness and decay in peach fruit[J]. The Journal of Horticultural Science and Biotechnology, 2005, 80(5): 557-560

        Mirdehghan S H, Rahemi M, Martínez-Romero D, et al. Reduction of pomegranate chilling injury during storage after heat treatment: Role of polyamines[J]. Postharvest Biology and Technology, 2007, 44(1): 19-25.

        Yin X R, Chen K S, Allan A C, et al. Ethylene-induced modulation of genes associated with the ethylene signaling pathway in ripening kiwifruit[J]. Journal of Experimental Botany, 2008, 59: 2097-2108.

        Wang C Y. Effect of abscisic acid on chilling injury of zucchini squash[J]. Journal of Plant Growth Regulation, 1991, 10: 101-105.

        Chen J, Li Y X, Li F F, et al. Banana MaABI5 is involved in ABA-induced cold tolerance through interaction with a RING E3 ubiquitin ligase, MaC3HC4-1[J]. Scientia Horticulturae, 2018, 237(8): 239-246.

        Magwaza L S, Alamar M C, Tesfay S Z, et al. Investigating the involvement of ABA, ABA catabolites and cytokinins in the susceptibility of ‘Nules Clementine mandarin to rind breakdown disorder[J]. Journal of the Science of Food and Agriculture, 2019, 99(8): 4142-4149.

        Aditi S, Bryce M, Ute A. Preharvest abscisic acid application to alleviate chilling jnjury of sweet basil (Ocimum basilicum L.) during cold storage[J]. HortScience, 2019, 54(1): 155-161.

        Hedden P, Thomas S G. Plant hormone signaling[M]. Oxford: Blackwell Publishing Ltd, 2006, 147-184.

        Wang B G, Wang J H, Liang H, et al. Reduced chilling injury in mango fruit by 2,4-dichlorophenoxyacetic acid and the antioxidant response[J]. Postharvest Biology Technology, 2008, 48(2): 172-181.

        Pusittigul I, Kondo S, Siriphanich J. Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage[J]. Scientia Horticulturae, 2012, 146: 45-51.

        Chen B, Yang H. 6-benzylaminopurine alleviates chilling injury of postharvest cucumber fruit through modulating antioxidant system and energy status[J]. Journal of Science Food Agriculture, 2013, 93(8): 1915-1921.

        Huang H, Jing G X, Wang H, et al. The combined effects of phenylurea and gibberellins on quality maintenance and shelf life extension of banana fruit during storage[J]. Scientia Horticulturae, 2014, 167: 36-42.

        Ding, Y L, Shi Y T, Yang S H. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4): 544-564.

        Ding, Y L, Shi Y T, Yang S H. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytologist, 2019, 222: 1690-1704.

        Guo H , Ecker J R. The ethylene signaling pathway: New insights[J]. Current Opinion in Plant Biology, 2004, 7(1): 40-49.

        Licausi F, Ohme-Takagi M, Perata P. Apetala 2-ethylene responsive factor (AP2/ERF) transcription factors: Mediators of stress responses and developmental programs[J]. New Phytologist, 2013, 199(3): 639-649.

        Zhang J, Yin X R, Li H, et al. Ethylene Response Factor 39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit[J]. Journal of Experimental Botany, 2020, 71(10): 3172-3184.

        Li T, Xu Y, Zhang L, et al. The jasmonate-activated transcription factor MdMYC2 regulates Ethylene Response Factor and ethylene biosynthetic genes to promote ethylene biosynthesis during apple fruit ripening[J]. The Plant Cell, 2017, 29(6): 1316-1334.

        Ge H, Zhang J, Zhang Y J, et al. EjNAC3 transcriptionally regulates chilling-induced lignification of loquat fruit via physical interaction with an atypical CAD-like gene[J]. Journal of Experimental Botany, 2017, 68(18): 5129-5136.

        Yu W, Sheng J, Zhao R, et al. Ethylene biosynthesis involved in regulating chilling tolerance and SlCBF1 gene expression in tomato fruit[J]. Postharvest Biology Technology, 2019, 149: 139-147.

        Zhang T, Che F B, Zhang H, et al. Effect of nitric oxide treatment on chilling injury, antioxidant enzymes and expression of the CmCBF1 and CmCBF3 genes in cold-stored Hami melon (Cucumis melo L.) fruit[J]. Postharvest Biology and Technology, 2017, 127: 88-98.

        Reyes-Diaz M, Lobos T, Cardemil L, et al. Methyl jasmonate: an alternative for improving the quality and health properties of fresh fruits[J]. Molecules, 2016, 21(6): 567.

        王浩然, 呂雪芹, 張? 越, 等. eATP在植物生長(zhǎng)發(fā)育及逆境脅迫中的作用[J]. 電子顯微學(xué)報(bào), 2017, 36(1): 83-90.

        霍? 塏, 陸? 巍, 李? 霞, 等. 植物細(xì)胞外信號(hào)分子eATP研究進(jìn)展[J]. 植物學(xué)報(bào), 2014, 49(5): 618-625.

        Cao Y R, Tanaka K, Nguyen C T, et al. Extracellular ATP is a central signaling molecule in plant stress responses[J]. Current Opinion in Plant Biology, 2014, 20: 82-87.

        Choi J, Tanaka K, Cao Y, et al. Identification of a plant receptor for extracellular ATP[J]. Science, 2014, 343(6168): 290-294.

        Chen D Q, Cao Y R, Li H, et al. Extracellular ATP elicits DORN1-mediated RBOHD phosphorylation to regulate stomatal aperture[J]. Nature Communications, 2017, 8: 2265.

        Cho S H, Nguyen C T Choi J, et al. Molecular mechanism of plant recognition of extracellular ATP[M]// Atassi M. Protein reviews:? Advances in experimental medicine and biology, vol 1051. Singapore: Springer, 2017: 233-253.

        Shan Y X, Huang H, Lian Q Q, et al. Characterization and function of banana DORN1s during fruit ripening and cold storage[J]. Postharvest Biology and Technology, 2020, 167: 111236.

        Aghdam M S, Sevillano L, Flores F B, et al. Heat shock proteins as biochemical markers for postharvest chilling stress in fruits and vegetables[J]. Scientia Horticulturae, 2013, 160: 54-64.

        Sun J H, Chen J Y, Kuang J F, et al. Expression of sHSP genes as affected by heat shock and cold acclimation in relation to chilling tolerance in plum fruit[J]. Postharvest Biology and Technology, 2010, 55(2): 91-96.

        Paliyath G, Murr D P, Handa A K, et al. Postharvest biology and technology of fruits, vegetables, and flowers[M]. Ames: Wiley-Blackwell, 2009: 246-259.

        Jin P, Zheng Y H, Tang S S, et al. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit[J]. Postharvest Biology and Technology, 2009, 52(1): 24-29.

        Diaz-Corona D A, Lopez-Lopez M E, Ayon-Reyna L E, et al. Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature[J]. Journal of Food Biochemistry, 2020, 44(8): e13286.

        Cao S F, Hu Z C, Zheng Y H, et al. Synergistic effect of heat treatment and salicylic acid on alleviating internal browning in cold-stored peach fruit[J]. Postharvest Biology and Technology, 2010, 58(2): 93-97.

        Zhao Z L, Jiang W B, Cao J K, et al. Effect of cold-shock treatment on chilling injury in mango (Mangifera indica cv. ‘Wacheng) fruit[J]. Journal of the Science of Food and Agriculture, 2006, 86(14): 2458-2462.

        Maul P, McCollum G, Guy C L, et al. Temperature conditioning alters transcript abundance of genes related to chilling stress in ‘Marsh grapefruit flavedo[J]. Postharvest Biology and and Technology, 2011, 60(3): 177-185.

        Cai C, Xu C J, Shan L L, et al. Low temperature conditioning reduces postharvest chilling injury in loquat fruit[J]. Postharvest Biology and Technology, 2006, 41(3): 252-259.

        Zhang Z K, Zhu Q G, Hu M J, et al. Low-temperature conditioning induces chilling tolerance in stored mango fruit[J]. Food Chemistry, 2017, 219: 76-84.

        Jin P, Wang K T, Shang H T, et al. Low-temperature conditioning combined with methyl jasmonate treatment reduces chilling injury of peach fruit[J]. Journal of the Science of Food and Agriculture, 2009, 89(10): 1690-1696.

        張昭其, 洪漢君, 李雪萍, 等. 間歇升溫對(duì)芒果冷害及生理生化反應(yīng)的影響[J]. 園藝學(xué)報(bào), 1997, 24(4): 329-332.

        王淑琴, 皮鈺珍, 顏廷才. 間歇升溫處理對(duì)冷藏桃風(fēng)味的影響[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào), 2003, 34(6): 464-466.

        于? 明, 張? 謙, 劉冬文, 等. 果蔬冷害及御冷措施綜述[J]. 新疆農(nóng)業(yè)科學(xué), 2001, 38(6): 332-334.

        Zhang N, Yang Z, Chen A G, et al. Effects of intermittent heat treatment on sensory quality and antioxidant enzymes of cucumber[J]. Scientia Horticulturae, 2014, 170: 39-44.

        Wang C Y. Approaches to reduce chilling injury of fruits and vegetables[M]//Janick J. Horticulture review: volume 15. 1993: 63-95.

        Singh S P, Singh Z. Controlled and modified atmospheres influence chilling injury, fruit quality and antioxidative system of Japanese plums (Prunussalicina Linde L) [J]. International Journal of Food Science and Technology, 2013, 48(2): 363-374.

        Ding C K,Chachin K, Ueda Y, et al. Modified atmosphere packaging maintains postharvest quality of loquat fruit[J]. Postharvest Biology and Technology, 2002, 24(3): 341-348.

        Wang C Y, Qi L. Modified atmosphere packaging alleviates chilling injury in cucumbers[J]. Postharvest Biology and Technology, 1997, 10(3): 195-200.

        Nguyen T B T, Ketsa S, Doorn W G. Effect of modified atmosphere packaging on chilling-induced peel browning in banana[J]. Postharvest Biology and Technology, 2004, 31(3): 313-317.

        Siripatrawan U, Assatarakul K. Methyl jasmonate coupled with modified atmosphere packaging to extend shelf life of tomato (Lycopersicon esculentum Mill.) during cold storage[J]. International Journal of Food Science and Technology, 2009, 44(5): 1065-1071.

        Zhao X X, Xia M, Wei X P, et al. Consolidated cold and modified atmosphere package system for fresh strawberry supply chains[J]. LWT, 2019, 109: 207-215.

        Ozturk A, Yildiz K, Ozturk B, et al. Maintaining postharvest quality of medlar (Mespilus germanica) fruit using modified atmosphere packaging and methyl jasmonate[J]. LWT, 2019, 111: 117-124.

        Kader A A,Ben-Yehoshua S. Effects of superatmospheric oxygen levels on postharvest physiology and quality of fresh fruits and vegetables[J]. Postharvest Biology and Technology, 2000, 20(1): 1-13.

        Shah S, Hashmi M S. Chitosan-aloe vera gel coating delays postharvest decay of mango fruit[J]. Horticulture Environment and Biotechnology, 2020, 61(2): 279-289.

        Molamohammadi H, Pakkish Z, Akhavan H R, et al. Effect of salicylic acid incorporated chitosan coating on shelf life extension of fresh in-hull Pistachio fruit[J]. Food and Bioprocess Technology, 2020, 13: 121-131.

        Rojas-Graua M A,Tapia M S,Rodríguez F J, et al. Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples[J]. Food Hydrocolloids, 2007, 21(1): 118-127.

        Ehteshami S, Abdollahi F, Ramezanian A, et al. Enhanced chilling tolerance of pomegranate fruit by edible coatings combined with malic and oxalic acid treatments[J]. Scientia Horticulturae, 2019, 250: 388-398.

        Pranoto Y, Salokhe V M, Rakshit S K. Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil[J]. Food Research International, 2005, 38(3): 267-272.

        Liu J, Li F J, Li T T, et al. Fibroin treatment inhibits chilling injury of banana fruit via energy regulation[J]. Scientia Horticulturae, 2019, 248: 8-13.

        Woolf A B, Requejo-Tapia C, Cox K A, et al. 1-MCP reduces physiological storage disorders of ‘Hass avocados[J]. Postharvest Biology and Technology, 2005, 35(1): 43-60.

        Larrigaudiere C,Vilaplana R,Soria Y, et al. Oxidative behaviour of Blanquilla pears treated with 1-methylcyclopro pene during cold storage[J]. Journal of the Science of Food and Agriculture, 2004, 84(14): 1871-1877.

        Selvarajah S, Bauchot A D, John P. Internal browning in cold-stored pineapples is suppressed by postharvest application of 1-methylcyclopropene[J].Postharvest Biology and Technology, 2001, 23(2): 167-170.

        Jin P,Shang H T,Chen J J,et al. Effect of 1-methylcyclopropene on chilling injury and quality of peach fruit during cold storage[J]. Journal of Food Science, 2011, 76(8): 5485-5491.

        Li C Y, Zhang J H, Wei M L, et al. Methyl jasmonate maintained antioxidative ability of ginger rhizomes by regulating antioxidant enzymes and energy metabolism[J]. Scientia Horticulturae, 2019, 256: 108578.

        Chen M S, Guo H M, Chen S Q, et al. Methyl Jasmonate promotes phospholipid remodeling and jasmonic acid signaling to alleviate chilling injury in peach fruit[J]. Journal of Agricultural and Food Chemistry, 2019, 67(35): 9958-9966.

        Wang Y X, Gao L P, Wang Q, et al. Low temperature conditioning combined with methyl jasmonate can reduce chilling injury in bell pepper[J]. Scientia Horticulturae, 2019, 243: 434-439.

        Rehman M, Singh Z, Khurshid T. Methyl jasmonate alleviates chilling injury and regulates fruit quality in 'Midknight' Valencia orange[J]. Postharvest Biology and Technology, 2018, 141: 58-62.

        Boonyaritthongchai P, Supapvanich S. Effects of methyl jasmonate on physicochemical qualities and internal browning of 'Queen' pineapple fruit during cold storage[J]. Horticulturae Environment and Biotechnology, 2017, 58: 479-487.

        Muengkaew R, Chaiprasart P, Warrington I. Changing of physiochemical properties and color development of mango fruit sprayed methyl Jasmonate[J]. Scientia Horticulturae, 2016, 198: 70-77.

        Cao S F, Zheng Y H, Wang K T, et al. Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit[J]. Food Chemistry, 2009, 115(4): 1458-1463.

        Shi J Y, Zuo J H, Xu D Y, et al. Effect of low-temperature conditioning combined with methyl jasmonate treatment on the chilling resistance of eggplant (Solanum melongena L.) fruit[J]. Journal of Food Science and Technology, 2019, 56: 4658-4666.

        Mustafa M A, Ali A, Seymour G, et al. Treatment of dragonfruit (Hylocereus polyrhizus) with salicylic acid and methyl jasmonate improves postharvest physico-chemical properties and antioxidant activity during cold storage[J]. Scientia Horticulturae, 2018, 231: 89-96.

        Aghdam M S, Asghari M, Khorsandi O, et al. Alleviation of postharvest chilling injury of tomato fruit by salicylic acid treatment[J]. Journal of Food Science and Technology, 2014, 51: 2815-2820.

        Sangprayoon P, Supapvanich S, Youryon P, et al. Chilling injury alleviation of Queen pineapple cv. ‘Sawi fruit by acetyl salicylate immersion[J]. Horticulture Environment and Biotechnology, 2010, 61: 83-92.

        Sangprayoon P, Supapvanich S, Youryon P, et al. Efficiency of salicylic acid or methyl jasmonate immersions on internal browning alleviation and physicochemical quality of Queen pineapple cv. ‘Sawi fruit during cold storage[J]. Journal of Food Biochemistry, 2019, 43: e13059.

        Mustafa M A, Ali A, Seymour G, et al. Delayed pericarp hardening of cold stored mangosteen (Garcinia mangostana L.) upon pre-treatment with the stress hormones methyl jasmonate and salicylic acid[J]. Scientia Horticulturae, 2018, 230: 107-116.

        Aghdam M S, Bodbodak S. Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments[J]. Scientia Horticulturae, 2013, 156: 73-85.

        Siboza X I, Bertling I. The effects of methyl jasmonate and salicylic acid on suppressing the production of reactive oxygen species and increasing chilling tolerance in ‘Eureka lemon [Citrus limon (L.) Burm. F.][J]. Journal of Horticultural Science and Biotechnology, 2013, 88(3): 269-276.

        Glowacz M, Bill M, Tinyane P P, et al. Maintaining postharvest quality of cold stored ‘Hass avocados by altering the fatty acids content and composition with the use of natural volatile compounds-methyl jasmonate and methyl salicylate[J]. Journal of the Science of Food and Agriculture, 2017, 97(15): 5186-5193.

        Wang Y S, Luo Z S, Khan Z U, et al. Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress[J]. Postharvest Biology and Technology, 2015, 108: 21-27.

        Liu Y F, Yang X X, Zhu S J, et al. Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation[J]. Postharvest Biology and Technology, 2016, 119: 77-83.

        Zhu S,Sun L,Liu M, et al. Effect of nitric oxide on reactive oxygen species and antioxidant enzymes in kiwifruit during storage[J]. Journal of the Science of Food and Agriculture,2008, 88(13): 2324-2331.

        Singh S P, Singh Z, Swinny E E. Postharvest nitric oxide fumigation delays fruit ripening and alleviates chilling injury during cold storage of Japanese plums (Prunus salicina Lindell)[J]. Postharvest Biology and Technology, 2009, 53(3): 101-108.

        范林林, 高麗樸, 王? 清, 等. 油菜素內(nèi)酯對(duì)豇豆冷害的控制[J]. 食品工業(yè)科技, 2016, 37(15): 339-343.

        Wang Q, Ding T, Gao L P, et al. Effect of brassinolide on chilling injury of green bell pepper in storage[J]. Scientia Horticulturae, 2012, 144: 195-200.

        Liu Z L, Li L, Luo Z S, et al. Effect of brassinolide on energy status and proline metabolism in postharvest bamboo shoot during chilling stress[J]. Postharvest Biology and Technology, 2016, 111: 240-246.

        Aghdam M S, Mohammadkhani N. Enhancement of chilling stress tolerance of tomato fruit by postharvest brassinolide treatment[J]. Food and Bioprocess Technology, 2014, 7: 909-914.

        Li P Y, Zheng X L, Chowdhury M G F, et al. Prestorage application of oxalic acid to alleviate chilling injury in mango fruit[J]. Hortscience, 2015, 50(12): 1795-1800.

        Jin P, Zhu H, Wang L, et al. Oxalic acid alleviates chilling injury in peach fruit by regulating energy metabolism and fatty acid contents[J]. Food Chemistry, 2014, 161: 87-93.

        Huang H, Jing G X, Guo L F, et al. Effect of oxalic acid on ripening attributes of banana fruit during storage[J]. Postharvest Biology and Technology, 2013, 84: 22-27

        鹿常勝, 潘永貴, 何? 其, 等. 甜菜堿結(jié)合熱處理降低采后香蕉果實(shí)冷害的研究[J]. 食品工業(yè)科技, 2014, 35(4): 300-305.

        袁夢(mèng)麒, 潘永貴, 張偉敏, 等. 甜菜堿處理對(duì)番木瓜果實(shí)采后冷害及抗氧化系統(tǒng)的影響[J]. 熱帶作物學(xué)報(bào), 2016, 37(8): 1582-1587.

        Wang Q, Ding T, Zuo J H, et al. Amelioration of postharvest chilling injury in sweet pepper by glycine betaine[J]. Postharvest Biology and Technology, 2016, 112: 114-120.

        Razayi F, Mahmoudi R, Rabiei V, et al. Glycine betaine treatment attenuates chilling injury and maintains nutritional quality of hawthorn fruit during storage at low temperature[J]. Scientia Horticulturae, 2018, 233: 188-194.

        Pan Y G, Zhang S Y, Yuan M Q, et al. Effect of glycine betaine on chilling injury in relation to energy metabolism in papaya fruit during cold storage[J]. Food Science and Nutrition, 2019, 7(3): 1123-1130.

        Mirshekari A, Madani B, Yahia E M, et al. Postharvest melatonin treatment reduces chilling injury in sapota fruit[J]. Journal of the Science of Food and Agriculture, 2020, 100(5): 1897-1903.

        Aghdam M S, Luo Z S, Jannatizadeh A, et al. Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity[J]. Food Chemistry, 2019, 275: 549-556.

        Gao H, Lu Z M, Yang Y, et al. Melatonin treatment reduces chilling injury in peach fruit through its regulation of membrane fatty acid contents and phenolic metabolism[J]. Food Chemistry, 2018, 245: 659-666.

        Cao S F, Shao J R, Shi L Y, et al. Melatonin increases chilling tolerance in postharvest peach fruit by alleviating oxidative damage[J]. Scientific Reports, 2018, 8(1): 806.

        Liu G S, Zhang Y X, Yun Z, et al. Melatonin enhances cold tolerance by regulating energy and proline metabolism in litchi fruit[J]. Foods, 2020, 9(4): 454.

        王艷穎,胡文忠,劉程惠, 等. 低溫貯藏引起果蔬冷害的研究進(jìn)展[J]. 食品科技, 2010, 35(1): 72-75, 80.

        Li D, Limwachiranon J, Li L, et al. Involvement of energy metabolism to chilling tolerance induced by hydrogen sulfide in cold-stored banana fruit[J]. Food Chemistry, 2016, 208: 272-278.

        Luo Z S, Li D D, Du R X, et al. Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content[J]. Scientia Horticulturae, 2015, 183: 144-151.

        Ali S, Nawaz A, Ejaz S, et al. Effects of hydrogen sulfide on postharvest physiology of fruits and vegetables: An overview[J]. Scientia Horticulturae, 2019, 243: 290-299.

        胡樹(shù)立. H2S延緩采后草莓衰老及調(diào)控植物切花保鮮的信號(hào)機(jī)制[D]. 合肥: 合肥工業(yè)大學(xué), 2012.

        Yang T B, Peng H, Whitaker B D, et al. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit[J]. Physiologia Plantarum, 2013, 148(3): 445-455.

        Li Z Y, Wang L, Xie B, et al. Effects of exogenous calcium and calcium chelant on cold tolerance of postharvest loquat fruit[J]. Scientia Horticulturae, 2020, 269: 109391

        Diaz-Corona D A, Lopez-Lopez M E, Ayon-Reyna L E, et al. Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature[J]. Journal of Food Biochemistry, 2020, 44(8): e13286.

        Murata N, Ishizaki-Nishizawa O, Higashi S, et al. Genetically engineered alteration in the chilling sensitivity of plants[J]. Nature, 1992, 356: 710-713.

        Ben-Amor M, Flores B, Latché A, et al. Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons[J]. Plant Cell and Environment, 1999, 22(12): 1579-1586.

        Patel T, Vanmarle G. Biotechnology and genetic engineering reviews[M]. London: Taylor & Francis Ltd., 2018.

        Aghdam M S, Sevillano L, Flores F B, et al. The contribution of biotechnology to improving post-harvest chilling tolerance in fruits and vegetables using heat-shock proteins[J]. Journal of Agricultural Science, 2015, 153(1): 7-24.

        猜你喜歡
        處理水果蔬菜
        奇怪的蔬菜
        蔬菜
        我最喜歡的蔬菜
        四月里該吃什么水果
        視頻后期剪輯制作中鏡頭時(shí)長(zhǎng)的處理
        戲劇之家(2016年19期)2016-10-31 18:38:40
        聲樂(lè)演唱中藝術(shù)與情感的深入處理
        戲劇之家(2016年19期)2016-10-31 18:04:18
        東風(fēng)4B型內(nèi)燃機(jī)車C6級(jí)維修后冷卻風(fēng)扇不動(dòng)作原因及解決辦法
        橋梁軟土基礎(chǔ)處理應(yīng)用
        水果篇之Cherry
        水果暢想曲
        蜜桃在线播放免费一区二区三区| 久久久噜噜噜久久| 黑人巨大跨种族video| 天天爽夜夜爽人人爽曰喷水| 久久婷婷免费综合色啪| 日本在线观看一二三区| 国产v片在线播放免费无码| 亚洲av无码日韩精品影片| 国产成人免费一区二区三区| 国产激情免费观看视频| 日韩女同视频在线网站| 粗壮挺进人妻水蜜桃成熟漫画| 香蕉成人啪国产精品视频综合网 | 国产成人久久精品二区三区牛| 偷拍女厕尿尿在线免费看| 一区二区在线观看视频高清| 鲁一鲁一鲁一鲁一曰综合网| 人妻丰满av∨中文久久不卡| 国产一区,二区,三区免费视频| 国产三级黄色大片在线免费看| 欧美人做人爱a全程免费| 国产一区视频在线免费观看| 日韩精品一区二区av在线| 亚洲国产性夜夜综合另类| 午夜无码伦费影视在线观看| 亚洲AV无码成人网站久久精品| 久久精品国语对白黄色| 亚洲av午夜成人片精品电影| 丰满少妇被猛男猛烈进入久久| 无码免费午夜福利片在线| 91精品人妻一区二区三区水蜜桃| 亚洲国产成人久久三区| 亚洲AV无码一区二区三区日日强| 国产一区二区三区亚洲精品| 亚洲国产精品国自产拍久久蜜av| 最近免费mv在线观看动漫| 亚洲男人的天堂精品一区二区| 中文字幕色一区二区三区页不卡| 久久久国产精品va麻豆| 国内揄拍国内精品少妇国语| 偷拍女厕尿尿在线免费看|