劉億, 鄧洪, 姜一帆, 李宗林, 趙正飛, 徐亮
STC-1通過Bcl-2介導(dǎo)胃癌細(xì)胞的增殖和凋亡*
劉億, 鄧洪, 姜一帆, 李宗林, 趙正飛, 徐亮△
(西南醫(yī)科大學(xué)附屬醫(yī)院胃腸外科,四川 瀘州 646300)
研究斯鈣素1 (STC-1)是否通過Bcl-2介導(dǎo)胃癌AGS細(xì)胞的增殖和凋亡。將-敲減或過表達(dá)質(zhì)粒轉(zhuǎn)染AGS細(xì)胞,用MTT法和集落形成實驗檢測細(xì)胞的增殖能力,劃痕實驗檢測細(xì)胞的遷移能力,Hoechst 33342染色和annexin V-FITC/PI雙染法分析細(xì)胞凋亡水平, Western blot法檢測Bcl-2、survivin、caspase-3及cleared caspase-3蛋白表達(dá)水平。RT-PCR法檢測20例臨床胃癌組織和癌旁組織中STC-1和Bcl-2的mRNA表達(dá)水平, Pearson法分析二者的相關(guān)性。過表達(dá)STC-1后, AGS細(xì)胞的增殖和遷移能力提高,且Bcl-2和survivin的表達(dá)水平升高,而caspase-3及cleared caspase-3的表達(dá)水平降低(<0.05);敲減-表達(dá)后, AGS細(xì)胞的增殖和遷移能力降低,且Bcl-2和survivin的表達(dá)水平降低,而caspase-3及cleared caspase-3的表達(dá)水平升高(<0.05)。胃癌組織中STC-1和Bcl-2的mRNA相對表達(dá)量均高于癌旁組織。Pearson相關(guān)分析結(jié)果顯示,胃癌組織中STC-1的mRNA與Bcl-2的mRNA表達(dá)呈正相關(guān)(=0.308,=0.011)。STC-1可能通過改變Bcl-2的表達(dá)水平調(diào)節(jié)胃癌細(xì)胞的生物學(xué)功能。
斯鈣素1;Bcl-2蛋白;細(xì)胞增殖;細(xì)胞凋亡;胃癌
胃癌是消化系統(tǒng)常見的腫瘤,2020年預(yù)計我國胃癌發(fā)病率為24.30/10萬,新發(fā)病例數(shù)約為34.6萬[1]。外科手術(shù)是治療胃癌的主要方法,然而由于大部分患者確診胃癌時已屬晚期,手術(shù)療效欠佳,術(shù)后5年生存率一直維持在30%左右[2]。腫瘤靶向藥物是近年來研究的熱點。斯鈣素1 (stanniocalcin-1, STC-1)是一種分泌性糖蛋白激素,可參與鈣磷代謝、線粒體氧化和免疫炎癥等多種生物學(xué)行為的調(diào)控。STC-1高表達(dá)于人類多種腫瘤,與腫瘤細(xì)胞增殖、分化、侵襲、凋亡和血管生成等密切相關(guān)[3-5]。近年來,有研究發(fā)現(xiàn)胃癌患者外周血和癌組織中STC-1表達(dá)水平顯著升高,并且其表達(dá)水平與胃癌增殖和轉(zhuǎn)移有關(guān)[6-7]。然而STC-1調(diào)節(jié)胃癌生物學(xué)行為的機(jī)制研究,既往鮮有。He等[8]發(fā)現(xiàn),STC-1可能通過上調(diào)血管內(nèi)皮生長因子,激活蛋白激酶C βII (protein kinase C βII, PKCβII)和細(xì)胞外信號調(diào)節(jié)激酶1/2(extracellular signal-regulated kinase 1/2, ERK1/2)信號通路,從而促進(jìn)腫瘤血管生成。Bcl-2是凋亡級聯(lián)反應(yīng)上游的關(guān)鍵蛋白,Bcl-2與胃癌細(xì)胞的增殖和凋亡密切相關(guān)[9]。有研究發(fā)現(xiàn),STC-1過度表達(dá)可以上調(diào)Bcl-2表達(dá),進(jìn)而抑制細(xì)胞凋亡[10]。因此可以猜測,STC-1可以通過Bcl-2介導(dǎo)胃癌細(xì)胞的增殖和凋亡。本研究通過構(gòu)建-干擾重組質(zhì)粒和STC-1過表達(dá)重組質(zhì)粒,檢測胃癌AGS細(xì)胞轉(zhuǎn)染后Bcl-2及相關(guān)分子caspase-3和survivin表達(dá)水平的變化,及其對癌細(xì)胞增殖和凋亡的影響,旨在探討尋找治療胃癌的潛在靶點。
胃癌AGS細(xì)胞購于泉州市睿信生物科技有限公司,培養(yǎng)于含10%胎牛血清的RPMI-1640培養(yǎng)基中,置于37℃、5%CO2的恒溫箱中培養(yǎng)。培養(yǎng)48 h時用0.25%胰酶消化,進(jìn)行傳代。取第3代生長良好的細(xì)胞用于后續(xù)實驗。
RPMI-1640培養(yǎng)基和0.25%胰蛋白酶(杭州吉諾生物醫(yī)藥技術(shù)有限公司); RNA檢測試劑盒和MTT試劑盒(上海江萊生物科技有限公司);轉(zhuǎn)染試劑Lipofectamine 2000 (Invitrogen); Hoechst 33342活細(xì)胞染色液和annexin V-FITC/PI細(xì)胞凋亡檢測試劑盒(北京市雷根生物技術(shù)有限公司);抗Bcl-2、caspase-3和survivin多克隆抗體(Bioworld);細(xì)胞培養(yǎng)板(杭州欣友生物技術(shù)有限公司)。IX51型熒光顯微鏡(Olympus); ABI 7900實時定量PCR儀(Bio-Rad);DxI 800全自動化學(xué)發(fā)光儀(Beckman Coulter);ELx808酶標(biāo)儀(BioTek)。
3.1構(gòu)建質(zhì)粒-干擾序列為5'-GCCACTTTGCGTAGCTTAA-3'和5'-GTAAGTGCGGTCGACGCCTGA-3',陰性對照序列為5'-CTTCGGCTTACGACTCTGGT-3' (北京邁基諾基因科技股份有限公司)。shRNA核酸序列與環(huán)狀模體TTCAAGAGA連接,插入pGPU6-Neo載體(Sigma),轉(zhuǎn)化DH5α化學(xué)感受態(tài)細(xì)胞,從而構(gòu)建穩(wěn)定干擾STC-1的穩(wěn)轉(zhuǎn)細(xì)胞[11]。提取STC-1低表達(dá)質(zhì)粒載體pGPU6-shSTC-1和對照質(zhì)粒pGPU6-Ctrl。本實驗有構(gòu)建好的STC-1過表達(dá)質(zhì)粒載體(pEGFP-N1-STC-1)和對照質(zhì)粒(pEGFP-N1-Ctrl)。
3.2細(xì)胞轉(zhuǎn)染待AGS細(xì)胞融合至85%后,將載體用Lipofectamine 2000轉(zhuǎn)染入細(xì)胞,1 d后更換培養(yǎng)液。轉(zhuǎn)染2 d后提取細(xì)胞總RNA,用RT-qPCR法檢測轉(zhuǎn)染后STC-1的mRNA表達(dá)水平,并用Western blot法檢測STC-1的蛋白表達(dá)水平,以確定轉(zhuǎn)染是否成功。
3.3MTT法和集落形成實驗檢測細(xì)胞增殖能力待轉(zhuǎn)染后細(xì)胞數(shù)超過85%生長融合時,以每孔5×103個的密度接種于培養(yǎng)板,CO2恒溫培養(yǎng)箱中培養(yǎng)24 h和48 h;以每孔3×103個的密度接種于培養(yǎng)板上,CO2恒溫培養(yǎng)箱中培養(yǎng)72 h。避光條件下每孔加入MTT溶液10 μL,培養(yǎng)3 h后取出,離心后棄去上清液,每孔加入100 μL formazan溶解液,再培養(yǎng)4 h。用酶標(biāo)儀檢測吸光度()值,反映細(xì)胞活力。集落形成實驗中,細(xì)胞以每孔300細(xì)胞接種在培養(yǎng)板中,用結(jié)晶紫染色后測定每孔的菌落數(shù),僅計數(shù)直徑>40?μm的菌落[12]。
3.4劃痕實驗檢測細(xì)胞遷移能力待轉(zhuǎn)染后細(xì)胞數(shù)超過85%生長融合時,用無菌移液槍頭順著培養(yǎng)板底端劃一字型劃痕,用磷酸緩沖鹽溶液沖洗,隨后換無血清RPMI-1640培養(yǎng)基進(jìn)行培養(yǎng),第24 h和48 h在顯微鏡下測量劃痕寬度。細(xì)胞遷移率(%)=(1-測量時劃痕寬度/初始劃痕寬度)×100%[13]。
3.5Hoechst 33342染色和annexin V-FITC/PI 雙染法分析細(xì)胞凋亡Hoechst 33342染色法步驟:以每孔1.5×105細(xì)胞的密度將AGS細(xì)胞接種于培養(yǎng)板中,培養(yǎng)24 h后用4%甲醛在PBS中固定10 min。用10 mg/L Hoechst 33342在37℃下染色10 min,用顯微鏡觀察AGS細(xì)胞形態(tài)學(xué)。annexin V-FITC/PI雙染法步驟:細(xì)胞培養(yǎng)24 h后,用PBS洗滌。室溫下用annexin V-FITC/PI染色15 min,最后用流式細(xì)胞術(shù)檢測凋亡情況[14]。
3.6RT-qPCR法檢測mRNA的表達(dá)水平取細(xì)胞上清液進(jìn)行檢測,用Trizol法提取總RNA,逆轉(zhuǎn)錄后進(jìn)行RT-qPCR檢測。每個樣本最少重復(fù)3次,設(shè)置3個復(fù)孔。反應(yīng)條件為: 95℃ 30 s; 95℃ 5 s, 60℃ 30 s, 40個循環(huán)。引物序列由北京邁基諾基因科技股份有限公司設(shè)計并提供。STC-1的上游引物序列為5'-GACTTCAACAGGAGACGCAC-3',下游引物序列為5'-TGCATGAAACTAGGCTTCTG-3'; Bcl-2的上游引物序列為5'-CCATGAAACAAAGCTGCAGG-3',下游引物序列為5'-TGTGCCTGTAAACATAGATT-3';內(nèi)參照GAPDH的上游引物序列為5'-GCTGCTGTTAGATGTTTTCAGAAGT-3',下游引物序列為5'-CCTCCTCACCGCCAAGTATGAAC-3'。
取20例胃癌患者的癌組織和癌旁組織各50 mg,液氮中研磨,勻漿后提取總RNA。按上法檢測STC-1和Bcl-2的mRNA表達(dá)水平。
3.7Westernblot法檢測蛋白表達(dá)水平細(xì)胞中加入蛋白裂解液,冰上裂解25 min后離心15 min,將上清液轉(zhuǎn)移至EP管中。樣品中加入SDS緩沖液煮沸5 min使蛋白變性。經(jīng)SDS-PAGE后將蛋白轉(zhuǎn)移至PVDF膜上,用5%脫脂奶粉封閉1 h,孵育Ⅰ抗,4℃過夜,棄去Ⅰ抗,TBST洗膜3次,每次5 min。室溫孵育Ⅱ抗2 h,棄去Ⅱ抗,TBST洗膜3次,每次5 min。ECL顯色,以β-actin作為內(nèi)參照。
采用SPSS 20.0進(jìn)行統(tǒng)計學(xué)分析。多組間均數(shù)比較采用單因素方差分析,兩兩比較方差齊采用SNK-法,方差不齊采用Dennett T3法。兩組間均數(shù)比較采用兩獨立樣本檢驗;重復(fù)測量資料組間比較采用協(xié)方差分析;相關(guān)性檢驗用Pearson分析。以<0.05為差異有統(tǒng)計學(xué)意義。
轉(zhuǎn)染STC-1低表達(dá)質(zhì)粒后,AGS細(xì)胞STC-1的mRNA和蛋白表達(dá)水平顯著下降(<0.05),轉(zhuǎn)染STC-1過表達(dá)質(zhì)粒后,AGS細(xì)胞STC-1的mRNA和蛋白表達(dá)水平顯著升高(<0.05),見圖1。
Figure 1. The mRNA and protein expression levels of STC-1 in the AGS cells after transfection. Mean±SD. n=3. *P<0.05 vs pGPU6-Ctrl group; #P<0.05 vs pEGFP-N1-Ctrl group.
細(xì)胞培養(yǎng)至48 h和72 h時,pGPU6-shSTC-1組細(xì)胞的活力和集落形成數(shù)量均顯著低于pGPU6-Ctrl組(<0.05); pEGFP-N1-STC-1組細(xì)胞活力和集落形成數(shù)量顯著高于pEGFP-N1-Ctrl組(<0.05),見圖2、3。
Figure 2. MTT assay was used to measure the viability of AGS cells after plasmid transfection. Mean±SD. n=3. *P<0.05 vs pGPU6-Ctrl group; #P<0.05 vs pEGFP-N1-Ctrl group.
Figure 3. The colony formation of AGS cells after transfection. Mean±SD. n=3. *P<0.05 vs pGPU6-Ctrl group; #P<0.05 vs pEGFP-N1-Ctrl group.
細(xì)胞培養(yǎng)至48 h和72 h時, pGPU6-shSTC-1組細(xì)胞的遷移能力顯著低于pGPU6-Ctrl組(<0.05);pEGFP-N1-STC-1組細(xì)胞的遷移能力顯著高于pEGFP-N1-Ctrl組(<0.05),見圖4。
Figure 4. Scratch assay was used to detect the migration ability of AGS cells after transfection (×100). Mean±SD. n=3. *P<0.05 vs pGPU6-Ctrl group; #P<0.05 vs pEGFP-N1-Ctrl group.
pGPU6-shSTC-1組細(xì)胞凋亡比例顯著高于pGPU6-Ctrl組(<0.05); pEGFP-N1-STC-1組細(xì)胞凋亡比例顯著低于于pEGFP-N1-Ctrl組(<0.05),見圖5、6。
Figure 6. Flow cytometry with annexin V-FITC/PI double staining was used to observe the apoptosis of AGS cells after transfection. Mean±SD. n=3. *P<0.05 vs pGPU6-Ctrl group; #P<0.05 vs pEGFP-N1-Ctrl group.
pGPU6-shSTC-1組Bcl-2和survivin蛋白水平均低于pGPU6-Ctrl組(<0.05),而caspase-3及cleared caspase-3的蛋白水平較高(<0.05); pEGFP-N1-STC-1組Bcl-2和survivin的蛋白水平高于pEGFP-N1-Ctrl組,而caspase-3及cleared caspase-3的蛋白水平較低(<0.05),見圖7。
Figure 7. Western blot was used to determine the protein levels of Bcl-2, caspase-3 and survivin. Mean±SD. n=3. *P<0.05 vs pGPU6-Ctrl group; #P<0.05 vs pEGFP-N1-Ctrl group.
胃癌組織STC-1和Bcl-2的mRNA相對表達(dá)量均高于癌旁組織(<0.05),見圖8。Pearson相關(guān)分析結(jié)果顯示,癌組織中STC-1mRNA與Bcl-2 mRNA的表達(dá)呈正相關(guān)(<0.05),見圖9。
Figure 8. The relative mRNA expression levels of STC-1 and Bcl-2 in the gastric cancer tissues. Mean±SD. n=20. *P<0.05 vs paracancerous tissues.
Figure 9. Analysis of correlation between STC-1 and Bcl-2 (n=20).
STC-1是由一個糖基化同源二聚體細(xì)胞分泌的蛋白,其可通過旁分泌方式參與機(jī)體多種生理功能,屬于多效因子[15]。STC-1具有促進(jìn)腫瘤細(xì)胞增殖、抑制凋亡、促進(jìn)血管形成和適應(yīng)低氧微環(huán)境等作用[16]。既往研究顯示,胃癌患者外周血和癌組織中STC-1表達(dá)水平顯著升高,并且其表達(dá)水平與胃癌增殖和轉(zhuǎn)移有關(guān)[6-7]。本研究對AGS 細(xì)胞分別轉(zhuǎn)染STC-1低表達(dá)質(zhì)粒和過表達(dá)質(zhì)粒,發(fā)現(xiàn)STC-1可能通過調(diào)控Bcl-2介導(dǎo)癌細(xì)胞的增殖和凋亡。在體內(nèi)研究中,我們發(fā)現(xiàn)胃癌組織STC-1 mRNA的相對表達(dá)量高于癌旁組織,說明STC-1在胃癌中扮演重要角色。
STC-1調(diào)節(jié)癌細(xì)胞增殖的研究既往較多,Jeon等[17]發(fā)現(xiàn)STC-1可以通過上調(diào)Akt/NF-κB通路促進(jìn)三陰性乳腺癌細(xì)胞的增殖。在食管癌的研究中,卜秀梅等[18]發(fā)現(xiàn)抑制-基因過表達(dá)可以降低食管鱗癌細(xì)胞的增殖活力并促進(jìn)凋亡,另外對JAK2/STAT3信號通路及其介導(dǎo)的炎癥損傷有一定的抑制作用。STC-1調(diào)控胃癌細(xì)胞生物學(xué)行為的研究既往較少。He等[8]發(fā)現(xiàn),STC-1可能通過上調(diào)血管內(nèi)皮生長因子,激活PKCβII和ERK1/2信號通路,從而促進(jìn)腫瘤血管生成。這說明STC-1對腫瘤細(xì)胞增殖有促進(jìn)作用。本研究用MTT法和集落形成實驗對胃癌AGS細(xì)胞進(jìn)行檢測,結(jié)果顯示過表達(dá)STC-1對AGS細(xì)胞增殖有促進(jìn)作用。劃痕實驗結(jié)果顯示,過表達(dá)STC-1也可以促進(jìn)AGS細(xì)胞遷移。
凋亡在腫瘤的發(fā)生和發(fā)展中扮演著重要角色[19-20]。樊鑫等[21]發(fā)現(xiàn)STC-1可以抑制膀胱癌5637細(xì)胞凋亡,凋亡細(xì)胞比例從(53.43±2.04)%下降至(18.48±0.87)%。卜秀梅等[18]在食管癌的研究中也證實了STC-1抗凋亡的作用。本研究采用Hoechst 33342染色和annexin V-FITC/PI雙染法分析AGS細(xì)胞凋亡,結(jié)果顯示過表達(dá)STC-1抑制了AGS細(xì)胞的凋亡。Bcl-2與細(xì)胞增殖和凋亡密切相關(guān),本研究發(fā)現(xiàn)Bcl-2表達(dá)水平的變化與STC-1一致,并且體內(nèi)研究中腫瘤組織STC-1 mRNA與Bcl-2 mRNA的表達(dá)也呈正相關(guān)。-是細(xì)胞凋亡中最重要的基因,Bcl-2抑制細(xì)胞凋亡的機(jī)制可能為:減少氧自由基和脂質(zhì)過氧化;抑制鈣離子跨膜流動,影響細(xì)胞膜通透性;促進(jìn)Bax形成二聚體[22]。本研究發(fā)現(xiàn),過表達(dá)SCT-1后survivin蛋白表達(dá)水平升高,而caspase-3蛋白表達(dá)水平降低。caspase-3處于細(xì)胞凋亡通路下游,與Bcl-2的表達(dá)呈負(fù)相關(guān)。Bcl-2可以抑制細(xì)胞膜通透性和細(xì)胞色素C的釋放,進(jìn)而抑制caspase-3的激活及其級聯(lián)反應(yīng),使細(xì)胞免于凋亡[23]。survivin是新型凋亡抑制因子,屬于IAP家族成員,可以通過抑制caspase-3發(fā)揮抗凋亡效應(yīng),進(jìn)而促進(jìn)癌癥的發(fā)生[24]。本研究結(jié)果提示,STC-1在胃癌細(xì)胞凋亡中扮演重要角色。
綜上所述,本研究發(fā)現(xiàn)STC-1可能通過改變Bcl-2的表達(dá)水平調(diào)節(jié)胃癌AGS細(xì)胞的生物學(xué)功能。然而STC-1是以何種方式調(diào)控Bcl-2,有待進(jìn)一步研究。STC-1對胃癌的調(diào)節(jié)還有待深入,進(jìn)一步闡述其機(jī)制有助于胃癌的靶向治療。
[1]楊之洵. 中國胃癌發(fā)病趨勢及預(yù)測[J]. 中國腫瘤, 2019, 28(5):321-326.
Yang ZX. Incidence and prediction of gastric cancer in China[J]. Chin Cancer, 2019, 28(5):321-326.
[2] Song Z, Wu Y, Yang J, et al. Progress in the treatment of advanced gastric cancer[J]. Tumour Biol, 2017, 39(7):1-9.
[3] Yang Y, Yin S, Li S, et al. Stanniocalcin 1 in tumor microenvironment promotes metastasis of ovarian cancer[J]. Onco Targets Ther, 2019, 12(1):2789-2798.
[4] Li Y, He ZC, Zhang XN, et al. Stanniocalcin-1 augments stem-like traits of glioblastoma cells through binding and activating NOTCH1[J]. Cancer Lett, 2018, 416(1):66-74.
[5] Chan KK, Leung CO, Wong CC, et al. Secretory stanniocalcin 1 promotes metastasis of hepatocellular carcinoma through activation of JNK signaling pathway[J]. Cancer Lett, 2017, 403(1):330-338.
[6]陳忠,陳聆,孟凡祥. 胃癌患者外周血中斯鈣素1 mRNA的表達(dá)及意義[J]. 廣東醫(yī)學(xué), 2012, 33(21):3243-3245.
Chen Z, Chen L, Meng FX. The expression and significance of stanniocalcin 1 mRNA in peripheral blood of patients with gastric cancer[J]. Guangdong Med J, 2012, 33(21):3243-3245.
[7] Arigami T, Uenosono Y, Ishigami S, et al. Expression of stanniocalcin 1 as a potential biomarker of gastric cancer[J]. Oncology, 2012, 83(3):158-164.
[8] He LF, Wang TT, Gao QY, et al. Stanniocalcin-1 promotes tumor angiogenesis through up-regulation of VEGF in gastric cancer cells[J]. J Biomed Sci, 2011, 18(1):39-46.
[9] Guo D, Zhang B, Liu S, et al. Xanthohumol induces apoptosis via caspase activation, regulation of Bcl-2, and inhibition of PI3K/Akt/mTOR-kinase in human gastric cancer cells[J]. Biomed Pharmacother, 2018, 106:1300-1306.
[10] Liu G, Yang G, Chang B, et al. Stanniocalcin 1 and ovarian tumorigenesis[J]. J Natl Cancer Inst, 2010, 102(11):812-827.
[11] 張夢瑤,楊峰,劉開東,等. 利用同源重組技術(shù)構(gòu)建DKK1、BMP4真核表達(dá)載體及共轉(zhuǎn)染成纖維細(xì)胞表達(dá)的研究[J]. 華北農(nóng)學(xué)報, 2018, 33(5): 117-124.
Zhang MY, Yang F, Liu KD, et al. Construction of eukaryotic expression vector of DKK1 and BMP4 by homologous recombination technology and co-transfection of fibroblast expression[J]. Acta Agric Boreali Sin, 2018, 33(5): 117-124.
[12] Fang F, Chang RM, Yu L, et al. MicroRNA-188-5p suppresses tumor cell proliferation and metastasis by directly targeting FGF5 in hepatocellular carcinoma[J]. J Hepatol, 2015, 63(4):874-885.
[13] Chen GM, Zheng AJ, Cai J, et al. microRNA-145-3p inhibits non-small cell lung cancer cell migration and invasion by targeting PDK1 via the mTOR signaling pathway[J]. J Cell Biochem, 2018, 119(1):885-895.
[14] Jiang Y, Jin S, Tan S, et al. MiR-203 acts as a radiosensitizer of gastric cancer cells by directly targeting ZEB1[J]. Onco Targets Ther, 2019, 12(1):6093-6104.
[15] Dalvin LA, Hartnett ME, Bretz CA, et al. Stanniocalcin-1 is a Modifier of Oxygen-Induced Retinopathy Severity[J]. Curr Eye Res, 2019, 28(1):1-6.
[16] 吳湘光,王薇. 斯鈣素-1與腫瘤的研究進(jìn)展[J]. 基礎(chǔ)醫(yī)學(xué)與臨床, 2016, 36(10):1425-1428.
Wu XG, Wang W. Research progress of stanniocalcin-1 and tumor[J]. Basic Med Clin, 2016, 36(10):1425-1428.
[17] Jeon M, Han J, Nam SJ, et al. STC-1 expression is upregulated through an Akt/NF-kappaB-dependent pathway in triple-negative breast cancer cells[J]. Oncol Rep, 2016, 36(3):1717-1722.
[18] 卜秀梅,王文剛,李輝,等. 抑制食管癌-基因表達(dá)對食管癌細(xì)胞凋亡、IL-1β和TNF-α表達(dá)及JAK2/STAT3信號的影響研究[J]. 中國免疫學(xué)雜志, 2019, 35(2):64-69.
Bu XM, Wang WG, Li H, et al. The effect of inhibiting-gene expression in esophageal cancer cells on apoptosis, IL-1β and TNF-α expression and JAK2/STAT3 signaling in esophageal cancer cells[J]. Chin J Immun, 2019, 35(2):64-69.
[19] 余亮,江惠麗,劉豪杰,等. 褐藻多糖硫酸酯通過調(diào)控基因的表達(dá)促進(jìn)胃癌細(xì)胞凋亡[J]. 中國病理生理雜志, 2019, 35(6):1075-1080.
Yu L, Jiang HL, Liu HJ, et al. Fucoidan promotes gastric cancer cell apoptosis by regulating the expression ofgene[J]. Chin J Pathophysiol, 2019, 35(6):1075-1080.
[20] Zhang YJ, Li JQ, Li HZ, et al. PDRG1 gene silencing contributes to inhibit the growth and induce apoptosis of gastric cancer cells[J]. Pathol Res Pract, 2019, 27(1):1-8.
[21] 樊鑫,師磊,宋東奎. 斯鈣素-1促進(jìn)膀胱癌5637細(xì)胞增殖和遷移、抑制凋亡的研究[J]. 中華實驗外科雜志, 2018, 35(5):936-939.
Fan X, Shi L, Song DK. Stanniocalcin-1 promotes proliferation and migration and inhibits apoptosis of bladder cancer 5637 cells[J]. Chin J Exp Surg, 2018, 35(5):936-939.
[22] 劉俊,張雪林,任永生,等. BARF1表達(dá)下調(diào)通過活化caspase依賴的線粒體通路誘導(dǎo)EBV陽性胃癌細(xì)胞凋亡[J]. 中國病理生理雜志, 2015, 31(11):1970-1978.
Liu J, Zhang XL, Ren YS, et al. Down-regulation of BARF1 expression induces apoptosis of EBV-positive gastric cancer cells by activating the caspase-dependent mitochondrial pathway[J]. Chin J Pathophysiol, 2015, 31(11):1970-1978.
[23] Hu PF, Chen WP, Bao JP, et al. Paeoniflorin inhibits IL-1β-induced chondrocyte apoptosis by regulating the Bax/Bcl-2/caspase-3 signaling pathway[J]. Mol Med Rep, 2018, 17(4):6194-6200.
[24] Sam S, Sam MR, Esmaeillou M, et al. Effective targeting survivin, caspase-3 and microRNA-16-1 expression by methyl-3-pentyl-6-methoxyprodigiosene triggers apoptosis in colorectal cancer stem-like cells[J]. Pathol Oncol Res, 2016, 22(4):715-723.
STC-1 mediates proliferation and apoptosis of gastric cancer cells through Bcl-2
LIU Yi, DENG Hong, JIANG Yi-fan, LI Zong-lin, ZHAO Zheng-fei, XU Liang
(,,646300,)
To investigate the effect of stanniocalcin-1 (STC-1) on the proliferation and apoptosis of gastric cancer AGS cells and the role of Bcl-2 in these processes.The AGS cells were transfected with the plasmids for-knockdown or over-expression. The cell proliferation was measured by MTT assay and colony formation assay. The migration ability was detected by scratch assay. Apoptosis was analyzed by Hoechst 33342 staining and flow cytometry with annexin V-FITC/PI double staining. The protein expression of Bcl-2, survivin, caspase-3 and cleared caspase-3 was determined by Western blot. The mRNA expression levels of STC-1 and Bcl-2 in 20 cases of clinical gastric cancer tissues and adjacent tissues were detected by RT-qPCR, and the correlation between them was analyzed by Pearson method.After over-expression of STC-1, the proliferation and migration abilities of the AGS cells were increased, the expression of Bcl-2 and survivin was increased, while the expression of caspase-3 and cleared caspase-3 was decreased (<0.05). After knockdown of-, the proliferation and migration abilities of the AGS cells were decreased, the expression of Bcl-2 and survivin was decreased, while the expression of caspase-3 and cleared caspase-3 was increased (<0.05). The mRNA expression levels of STC-1 and Bcl-2 in the gastric cancer tissues were higher than those in the adjacent tissues. Pearson correlation analysis showed that there was a positive correlation between STC-1 and Bcl-2 mRNA expression in the cancer tissues (=0.308,=0.011).STC-1 may regulate the biological function of gastric cancer cells by altering the expression level of Bcl-2.
Stanniocalcin-1; Bcl-2 protein; Cell proliferation; Apoptosis; Gastric cancer
R735.2; R730.23
A
10.3969/j.issn.1000-4718.2020.11.012
1000-4718(2020)11-2005-08
2020-02-26
2020-04-27
四川省自籌經(jīng)費科研基金資助項目(No. TUYR3875758)
Tel:0830-3165421;E-mail:rtfnpr@163. com
(責(zé)任編輯:宋延君,羅森)