江旭東 劉錚 滕曉艷
摘 要:以結(jié)構(gòu)動(dòng)柔順度最小為目標(biāo),融合等效靜載荷方法與雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法,提出了動(dòng)載荷作用下連續(xù)體結(jié)構(gòu)的動(dòng)剛度拓?fù)鋬?yōu)化方法。為了有效降低結(jié)構(gòu)動(dòng)力學(xué)拓?fù)鋬?yōu)化問題的求解規(guī)模,通過等效靜載荷方法將動(dòng)態(tài)拓?fù)鋬?yōu)化問題轉(zhuǎn)變?yōu)殪o態(tài)拓?fù)鋬?yōu)化問題,結(jié)合雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法實(shí)現(xiàn)結(jié)構(gòu)的靜力學(xué)拓?fù)鋬?yōu)化。提出了一種設(shè)計(jì)域減縮方法降低連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化計(jì)算規(guī)模,構(gòu)建了一種新穎的體積進(jìn)化和優(yōu)化收斂準(zhǔn)則,顯著提高了連續(xù)體結(jié)構(gòu)的動(dòng)剛度優(yōu)化效率。數(shù)值算例結(jié)果表明,結(jié)構(gòu)動(dòng)柔順度與約束體積均能漸進(jìn)收斂于最優(yōu)值,最優(yōu)拓?fù)錁?gòu)形能夠有效抑制動(dòng)載荷作用下的結(jié)構(gòu)振動(dòng),其優(yōu)化算法具有一定的魯棒性和適應(yīng)性。提出的連續(xù)體結(jié)構(gòu)動(dòng)剛度拓?fù)鋬?yōu)化方法拓展了基本漸進(jìn)結(jié)構(gòu)優(yōu)化方法的應(yīng)用范圍,對(duì)于結(jié)構(gòu)動(dòng)力學(xué)優(yōu)化設(shè)計(jì)具有重要的理論意義。
關(guān)鍵詞:連續(xù)體結(jié)構(gòu);拓?fù)鋬?yōu)化;動(dòng)剛度;等效靜載荷;雙向漸進(jìn)結(jié)構(gòu)優(yōu)化
DOI:10.15938/j.jhust.2020.05.019
中圖分類號(hào): TB535.1
文獻(xiàn)標(biāo)志碼: A
文章編號(hào): 1007-2683(2020)05-0136-07
Abstract:By minimizing structural dynamic compliance, the programming scheme of optimal stiffness for continuum structure under dynamic load is proposed, by combination of Equivalent Static Loads with Bidirectional Evolutionary Structural Optimization. To effectively decrease calculation scale for dynamic optimization in structural topology, the Equivalent Static Loads Method is applied to transforming dynamic optimization to static one that is solved by Bidirectional Evolutionary Structural Optimization in structural topology. To enhance the optimal efficiency of the original BESO method to optimization of dynamic stiffness in continuum structure, a design domain reduction method is developed to establish a new volume control and a stop criterion in this study. Numerical results show that the dynamic compliance is asymptotically convergent to optimal solution with volume constraint precisely satisfied, and optimal configuration can effectively inhibit the vibration induced by dynamic load. Whereby the presented optimization algorithm is verified to be robust and adapt. Consequently it is provided with theoretical significance to extend the original Evolutionary Structural Optimization Method to dynamic optimization in structural design.
Keywords:continuum structure; topological optimization; dynamic stiffness; equivalent static loads; bidirectional evolutionary structural optimization
0 引 言
從拓?fù)鋵用嫔蟽?yōu)化結(jié)構(gòu)的動(dòng)態(tài)響應(yīng)特性,抑制結(jié)構(gòu)振動(dòng)及其機(jī)械噪聲的產(chǎn)生與傳遞,全面提高重大裝備技術(shù)水平,長期以來都是機(jī)械工程、力學(xué)以及優(yōu)化理論等多學(xué)科領(lǐng)域關(guān)注的基礎(chǔ)性研究課題。近三十年來,形成了許多基于梯度或啟發(fā)式的拓?fù)鋬?yōu)化方法,主要有均勻化方法(homogenization)、優(yōu)化準(zhǔn)則法(optimality criteria,OC)和SIMP方法(solid isotropic material with penalization)等優(yōu)化數(shù)值求解方法[1-2]。其中,雙向漸進(jìn)漸進(jìn)結(jié)構(gòu)優(yōu)化(bidirectional evolutionary structural optimization,BESO)方法不僅能夠在高效區(qū)域添加單元,而且能夠在結(jié)構(gòu)低效區(qū)域刪除單元,從而在漸進(jìn)優(yōu)化準(zhǔn)則作用下形成最優(yōu)的拓?fù)錁?gòu)型[3]。
目前,BESO方法在結(jié)構(gòu)動(dòng)態(tài)特性和動(dòng)態(tài)響應(yīng)優(yōu)化方面已經(jīng)取得了初步的研究進(jìn)展。王磊等[4]以機(jī)床部件固有頻率為約束條件,提出了一種機(jī)床固定結(jié)合面形狀的拓?fù)湓O(shè)計(jì)方法。賀紅林等[5]以模態(tài)阻尼比最大化為優(yōu)化目標(biāo),阻尼材料用量為約束,開展了粘彈阻尼抗振結(jié)構(gòu)的低噪聲設(shè)計(jì)研究工作。Liu等[6]構(gòu)建了復(fù)合材料結(jié)構(gòu)宏觀-微觀雙尺度優(yōu)化模型,研究了復(fù)合材料結(jié)構(gòu)多尺度并行頻率優(yōu)化方法。Picelli等[7]考慮了結(jié)構(gòu)-聲的多場耦合作用,提出了聲振耦合結(jié)構(gòu)的頻率優(yōu)化方法。Vicente等[8]研究了流固耦合結(jié)構(gòu)的頻率響應(yīng)優(yōu)化問題。近些年來,盡管BESO方法正在嘗試解決動(dòng)態(tài)響應(yīng)優(yōu)化問題,但是動(dòng)態(tài)優(yōu)化的梯度計(jì)算代價(jià)太高,而且處理時(shí)域內(nèi)的函數(shù)也相當(dāng)復(fù)雜,直接開展動(dòng)態(tài)響應(yīng)優(yōu)化設(shè)計(jì)往往由于計(jì)算規(guī)模大且很多時(shí)候難以收斂,而導(dǎo)致了其在工程應(yīng)用中的不可行性[9]。
等效靜載荷法最早由Choi和Park針對(duì)動(dòng)態(tài)線性優(yōu)化問題而提出,它通過結(jié)構(gòu)在動(dòng)、靜態(tài)載荷作用下系統(tǒng)響應(yīng)結(jié)果等效原理獲得等效靜態(tài)載荷,從而將結(jié)構(gòu)動(dòng)態(tài)響應(yīng)優(yōu)化問題轉(zhuǎn)化為結(jié)構(gòu)靜態(tài)優(yōu)化問題,為結(jié)構(gòu)動(dòng)態(tài)響應(yīng)優(yōu)化設(shè)計(jì)提供了有效的解決途徑[10]。Park等[11],Stolpe等[12]證明了等效靜載荷法對(duì)于動(dòng)態(tài)優(yōu)化問題的最優(yōu)解滿足Karush-Kuhn-Tucker 必要條件。與傳統(tǒng)的基于梯度的數(shù)值優(yōu)化算法和啟發(fā)式全局優(yōu)化算法相比,等效載荷法極大的降低了動(dòng)力學(xué)優(yōu)化問題的求解難度,顯著的提高了優(yōu)化效率。目前,國內(nèi)外研究學(xué)者已將等效靜載荷法應(yīng)用于多體動(dòng)力學(xué)系統(tǒng)的結(jié)構(gòu)優(yōu)化設(shè)計(jì)問題[13-14],張艷崗等[15-16]從載荷等效轉(zhuǎn)化前后結(jié)構(gòu)能量等效角度研究動(dòng)態(tài)載荷等效靜態(tài)轉(zhuǎn)化問題,提出了一種基于關(guān)鍵時(shí)間點(diǎn)的能量等效靜態(tài)載荷法。
綜上,本文通過雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法,以結(jié)構(gòu)動(dòng)柔順度最小化目標(biāo),構(gòu)建連續(xù)體結(jié)構(gòu)動(dòng)剛度拓?fù)鋬?yōu)化模型。將等效靜載荷方法與雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法相融合,求解以動(dòng)柔順度最小化為目標(biāo)的結(jié)構(gòu)動(dòng)剛度優(yōu)化問題。通過數(shù)值算例,驗(yàn)證連續(xù)體結(jié)構(gòu)動(dòng)剛度拓?fù)鋬?yōu)化方法的有效性。所提出的結(jié)構(gòu)動(dòng)力學(xué)優(yōu)化方法將拓展雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法的理論范疇,同時(shí)為工程結(jié)構(gòu)動(dòng)態(tài)響應(yīng)優(yōu)化設(shè)計(jì)提供一種新的思路。
1 結(jié)構(gòu)動(dòng)剛度拓?fù)鋬?yōu)化
為了降低動(dòng)載荷作用下的結(jié)構(gòu)振動(dòng)和機(jī)械噪聲的傳播,以結(jié)構(gòu)動(dòng)柔順度最小為目標(biāo),體積用量為約束條件,結(jié)合雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法,結(jié)構(gòu)動(dòng)剛度拓?fù)鋬?yōu)化模型表示為:
式中:C(x)為結(jié)構(gòu)在動(dòng)載荷F(ti)作用下的動(dòng)柔順度;u(x,ti)為結(jié)構(gòu)ti時(shí)刻的位移響應(yīng);m為F(ti)作用時(shí)間的均分?jǐn)?shù),x=[xi]N×1為結(jié)構(gòu)優(yōu)化設(shè)計(jì)變量;xi為第i個(gè)單元的相對(duì)密度;V、Vi分別為優(yōu)化結(jié)構(gòu)目標(biāo)體積和單元體積。
由式(1),動(dòng)剛度優(yōu)化的靈敏度分析涉及動(dòng)態(tài)響應(yīng)的梯度信息,需要求解大規(guī)模的動(dòng)力學(xué)微分方程。由此,為了降低動(dòng)力學(xué)優(yōu)化計(jì)算規(guī)模,通過等效靜載荷法將將各離散時(shí)刻的動(dòng)態(tài)載荷轉(zhuǎn)化靜態(tài)多工步載荷,從而將計(jì)算復(fù)雜的動(dòng)態(tài)優(yōu)化問題轉(zhuǎn)化為的靜態(tài)優(yōu)化問題。如圖1所示,等效靜載荷法將結(jié)構(gòu)動(dòng)力學(xué)優(yōu)化分為分析域和設(shè)計(jì)域:分析域求解結(jié)構(gòu)動(dòng)態(tài)位移場,基于位移場等效原理得到結(jié)構(gòu)等效靜載荷;設(shè)計(jì)域依據(jù)雙向漸進(jìn)結(jié)構(gòu)優(yōu)化準(zhǔn)則更新結(jié)構(gòu)設(shè)計(jì)域,同時(shí)將設(shè)計(jì)變量返回分析域?qū)嵤﹦?dòng)態(tài)響應(yīng)分析。
4 結(jié) 論
為了有效抑制結(jié)構(gòu)在動(dòng)載荷作用下的機(jī)械振動(dòng),以結(jié)構(gòu)動(dòng)柔順度最小為優(yōu)化目標(biāo),基于等效靜載荷方法和雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法,提出了連續(xù)體結(jié)構(gòu)的動(dòng)剛度拓?fù)鋬?yōu)化方法。
1)融合等效靜載荷方法和雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法,將結(jié)構(gòu)動(dòng)剛度優(yōu)化問題轉(zhuǎn)化為多工步載荷工況的線性靜剛度優(yōu)化問題,利用雙向漸進(jìn)結(jié)構(gòu)優(yōu)化方法實(shí)現(xiàn)了多工況線性靜力學(xué)優(yōu)化,其優(yōu)化算法具有一定的魯棒性和適應(yīng)性。
2)提出了一種設(shè)計(jì)域減縮方法降低連續(xù)體結(jié)構(gòu)拓?fù)鋬?yōu)化計(jì)算規(guī)模,構(gòu)建了一種新穎的體積進(jìn)化和優(yōu)化收斂準(zhǔn)則,顯著提高了連續(xù)體結(jié)構(gòu)的動(dòng)剛度優(yōu)化效率。
綜上,提出的連續(xù)體結(jié)構(gòu)動(dòng)剛度拓?fù)鋬?yōu)化方法拓展了基本漸進(jìn)結(jié)構(gòu)優(yōu)化方法的應(yīng)用范圍,對(duì)于結(jié)構(gòu)動(dòng)力學(xué)優(yōu)化設(shè)計(jì)具有重要的理論意義。
參 考 文 獻(xiàn):
[1] SIGMUND O,MAUTE K. Topology Optimization Approaches [J]. Structural & Multidisciplinary Optimization, 2013, 48(6): 1031.
[2] DEATON J. D,GRANDHI R. V. A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000 [J]. Structural & Multidisciplinary Optimization, 2014, 49(1): 1.
[3] MUNK D. J, VIO G. A, STEVEN G. P. Topology and Shape Optimization Methods Using Evolutionary Algorithms: a Review [J]. Structural & Multidisciplinary Optimization, 2015, 52(3): 613.
[4] 王磊, 劉海濤, 金濤, 等. 一種機(jī)床固定結(jié)合面形狀拓?fù)湓O(shè)計(jì)方法[J]. 振動(dòng)工程學(xué)報(bào), 2014, 27(4): 481.
WANG L, LIU J T, JIN T, et al. A Design Method of Fixed Joint Contact Area Topology-based Equivalent Model for Machine Tools[J]. Journal of Vibration and Engineering, 2014, 27(4):481.
[5] 賀紅林, 陶潔, 劉堯弟, 等. 粘性阻尼抗振結(jié)構(gòu)雙向漸進(jìn)法拓?fù)鋭?dòng)力學(xué)優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2016, 47(8): 339.
HE H L, TAO J, LIU Y D, et al. Dynamic Optimization of Damping Anti-vibration Structure Topology Based on BESO Method[J]. Transactions of The Chinese Society of Agriculture Machinery, 2016, 47(8): 339.
[6] LIU Q M, CHAN R, HUANG X D. Concurrent Topology Optimization of Macrostructures and Material Microstructures for Natural Frequency [J]. Materials and Design, 2016, 106: 380.
[7] PICELLI R, VICENTE W M, PAVANELLO R, et al. Evolutionary Topology Optimization for Natural Frequency Maximization Problems Considering Acoustic-structure Interaction [J]. Finite Elements in Analysis and Design, 2015, 106: 56.
[8] VICENTE W M,PICELLI R, PAVANELLO R, et al. Topology Optimization of Frequency Responses of Fluid-structure Interaction Systems [J]. Finite Elements in Analysis and Design, 2015, 98: 1.
[9] TZARGLHAM S, WARD T A, RAMLI R, et al. Topology Optimization: a Review for Structural Designs under Vibration Problems [J]. Structural & Multidisciplinary Optimization, 2016, 53(6): 1157.
[10]CHOI W. S, PARK G. J. Structural Optimization Using Equivalent Static Loads at All the Time InterVals [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(19/20): 2105.
[11]PARK G. J, KANG B.S. Validation of a Structural Optimization Algorithm Transforming Dynamic Loadsinto Equivalent Static Loads [J]. Theory Application, 2003, 118(1): 191.
[12]STOLPE M. On the Equivalent Static Loads Approach for Dynamic Response Structural Optimization[J]. Structural & Multidisciplinary Optimization, 2014, 50(6): 921.
[13]HONG E. P, YOU B. J, KIM C. H, et al. Optimization Flexible Components of Multibody Systems Via Squivalent Static Loads [J]. Structural & Multidisciplinary Optimization, 2010, 40(1): 549.
[14]楊志軍. 基于等效靜態(tài)載荷原理的高速機(jī)構(gòu)結(jié)構(gòu)拓?fù)鋬?yōu)化方法[J]. 機(jī)械工程學(xué)報(bào), 2011, 47(17): 119.
YANG Z J. Topological Optimization Approach for Structure Design of High Speed Mechanisms Using Equivalent Static Loads Method[J]. Journal of Mechanical Engineering, 2011, 47(17): 119.
[15]張艷崗, 毛虎平, 蘇鐵熊, 等. 基于關(guān)鍵時(shí)間點(diǎn)的能量等效靜態(tài)載荷法及結(jié)構(gòu)動(dòng)態(tài)響應(yīng)優(yōu)化[J]. 機(jī)械工程學(xué)報(bào), 2016, 52(9): 151.
ZHANG Y G, MAO H P, SU T X, et al.Energy Equivalent Static Load Method Based on Critical Time Point and Structure Dynamic Response Optimization[J]. Journal of Mechanical Engineering, 2016, 52(9): 151.
[16]張艷崗, 毛虎平, 蘇鐵熊, 等.基于能量原理的等效靜態(tài)載荷法及其在活塞動(dòng)態(tài)優(yōu)化中的應(yīng)用[J]. 上海交通大學(xué)學(xué)報(bào), 2015, 49(9): 1293.
ZHANG Y G, MAO H P, SU T X, et al. Method of Equivalent Static Loads Based on Energy Principle and Its Application in Dynamic Optimization Design of Diesel Engine Piston[J]. Journal of Shanghai Jiao Tong University, 2015, 49(9): 1293.
(編輯:王 萍)