亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Banach空間的U凸系數(shù)

        2020-11-30 08:32:32王靜崔云安
        關(guān)鍵詞:凸模不動(dòng)點(diǎn)常數(shù)

        王靜 崔云安

        摘 要:空間幾何常數(shù)是空間幾何性質(zhì)的量化,從幾何性質(zhì)的研究到幾何常數(shù)的計(jì)算是從定性到定量的推進(jìn)。首先引入了一個(gè)新的幾何常數(shù)U凸系數(shù),并研究了它與一致非方和正規(guī)結(jié)構(gòu)等幾何性質(zhì)之間的關(guān)系,并且通過研究它與常數(shù)R(X)的關(guān)系,得到Banach空間X弱接近一致光滑,且具有不動(dòng)點(diǎn)性質(zhì)。其次利用它與弱正交系數(shù)之間的關(guān)系給出了Banach空間具有正規(guī)結(jié)構(gòu)的充分條件。最后給出了U凸模在lp序列空間的計(jì)算。

        關(guān)鍵詞:U凸系數(shù);Banach空間;一致非方;正規(guī)結(jié)構(gòu);弱正交系數(shù);Garcia-Falset系數(shù);不動(dòng)點(diǎn)性質(zhì)

        DOI:10.15938/j.jhust.2020.05.022

        中圖分類號(hào): O177. 3

        文獻(xiàn)標(biāo)志碼: A

        文章編號(hào): 1007-2683(2020)05-0158-06

        Abstract:The spatial geometric constant is the quantification of the geometrical properties of space. From the study of geometric properties to the calculation of geometric constants from qualitative to quantitative advancement. Firstly, this paper introduces a new geometric constant U-convex coefficient. Studying its relationship with geometric properties such as uniform non-square and regular structures and by studying its relationship with constants, the Banach space is weakly close to uniform smooth and has fixed point properties. Secondly, Using the relationship between it and weak orthogonal coefficients gives a sufficient condition for Banach spaces to have a regular structure. Finally, the calculation of the convex model in the sequence space is given.

        Keywords:U-convex coefficient; Banach space; uniform nonsquare; normal structure; weak orthogonal coefficient; Garcia-Falset coefficient; fixed point properties

        0 引 言

        1978年Lau ka-sing 在研究Banach空間的切比雪夫集的過程中引入了U性質(zhì)[1]。此后,Lau ka-sing與Gao Jin 在1991年引入了U空間的概念[2],并刻畫了U空間所具有的性質(zhì),如U空間是一致非方的,進(jìn)而也是超自反的,一致凸空間和一致光滑空間是U空間,等等[3-5]。為了更好地刻畫U空間的概念,1995年,Gao[6]引入了U凸模的概念。幾何常數(shù)是研究幾何結(jié)構(gòu)的一個(gè)重要工具,空間幾何常數(shù)是空間幾何性質(zhì)的量化,從幾何性質(zhì)的研究到幾何常數(shù)的計(jì)算是從定性到定量的推進(jìn)。因此探索幾何結(jié)構(gòu)和幾何常數(shù)之間的聯(lián)系,一直是大家關(guān)注的熱點(diǎn)問題。

        為了方便地刻畫U凸模的幾何性質(zhì)與應(yīng)用。本文引入了一個(gè)新的幾何常數(shù),U凸系數(shù),研究了它與一致非方、正規(guī)結(jié)構(gòu)之間的關(guān)系,并且通過研究它與常數(shù)R(X)的關(guān)系,得到Banach空間X若滿足U0(X)<1,則X弱接近一致光滑,且具有不動(dòng)點(diǎn)性質(zhì)。其次,利用它與弱正交系數(shù)之間的關(guān)系給出了Banach空間具有正規(guī)結(jié)構(gòu)的充分條件,最后給出了U凸模在lp序列空間的計(jì)算。

        參 考 文 獻(xiàn):

        [1] LAU K.S. Best Approximation by Closed Set in Banach Space[J]. Approx Theroy, 1978, 23:29.

        [2] GAO J, K.S.Lau. On Two Classes of Banach Spaces with Normal Strcture. Studia. Mathematia,1991,99(1):41.

        [3] GAO Ji, A New Class of Banach Space with Uniform Normal Structure[J]. Northest Math,2001,17(1):103.

        [4] JAMES R C. Uniformly Nonsquare Banach Spaces[J]. Annals of Math,1964(80): 542.

        [5] 趙耀培,李全紅,董茜. Banach空間的U凸模[J].山東師范大學(xué)學(xué)報(bào). 2004,19(4):82.

        ZHAO Yaopei, LI Quanhong, DONG Xi. Punch of Banach Space [J]. Journal of Shandong Normal University, 2004,194): 82.

        [6] JI D H, ZHAN D P. Some Equivalent Representations of Nonsquare Constants and Its Applications[J]. Communications in Mathematical Research, 1999, 15(4): 61.

        [7] JESU'S G F, LLORENS F E, MAZCU A N E M. Uniformly Nonsquare Banach Spaces Have the Fixed Point Property for Nonexpansive Mappings[J]. Journal of Functional Analysis, 2006, 233(2): 494.

        [8] 左占飛. Banach 空間中的正規(guī)結(jié)構(gòu)和廣義U凸模[J]. 數(shù)學(xué)物理學(xué)報(bào), 2013, 33(2):327.

        ZUO Zhanfei. Normal Structures and Generalized U-convex Modules in Banach Spaces [J]. Journal of Mathematical Physics, 2013, 332): 327.

        [9] 崔云安. Banach空間幾何理論及應(yīng)用[M]. 北京:科學(xué)出版社, 2011.

        [10]W Tingfu, J Donghai, Z Liang. The U-property of Orlicz Sequence Spaces[J]. Chinese Quarterly Journal of Mathematic, 1997, 12(4):55.

        [11]GAO Ji, SATIT Saejung. Normal Structure and Some Geometric Parameters Related to the Modulus of U Convexity in Banach Spaces[J]. Mathematica Scientia, 2011, 31(3):1035.

        [12]Z Zhanfei, C Yunan. Some Modulus and Normal Structure in Banach Space[J].Journal of Inequalities and Applications, 2009, 2009(1):1.

        [13]HUA N. The Fixed Point Theory and the Existence of the Periodic Solution on a Nonlinear Differential Equation[J]. Journal of Applied Mathematics, 2018, 2018(13):1.

        [14]吳森林, 張新玲, 計(jì)東海. Banach空間中的完備集[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2017(2):110.

        WU Senlin, ZHANG Xinling, JI Donghai. Complete Set in Banach Space [J]. Journal of Harbin University of Technology, 2017(2):110.

        [15]趙亮, 張興. Banach空間中的廣義光滑模[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2016, 21(4):112.

        ZHAO Liang, ZHANG Xing. Generalized Smooth Modules in Banach Spaces [J]. Journal of Harbin University of Technology, 2016,21(4):112.

        [16]趙亮, 王微微, 張興. Banach空間具有正規(guī)結(jié)構(gòu)的判定條件[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2018,23(4):144.

        ZHAO Liang, WANG Weiwei, Zhang Xing. The Determination Condition of Banach Space with Normal Structure[J]. Journal of Harbin University of Technology, 2018,23(4):144.

        [17]崔云安, 郭晶晶. 與不動(dòng)點(diǎn)性質(zhì)相關(guān)的新常數(shù)[J]. 哈爾濱理工大學(xué)學(xué)報(bào), 2016, 21(2):122.

        CUI Yunan, GUO Jingjing. New Constants Related to Fixed Point Properties [J]. Journal of Harbin University of Technology, 2016, 212): 122.

        [18]SHANG S, CUI Y, FU Y. Smoothness and Approximative Compactness in Orlicz Function Spaces[J]. Banach Journal of Mathematical Analysis, 2014, 8(1):26.

        [19]ZUO Z, CUI Y. A Note on the Modulus of U-convexity and Modulus of W*-convexity[J]. Journal of Inequalities in Pure and Applied Mathematics, 2008, 9(4):1.

        [20]S Shaoqiang, C Yunan. 2-Strict Convexity and Continuity of Set-Valued Metric Generalized Inverse in Banach Spaces[J]. Abstract and Applied Analysis, 2014, 2014:384639.

        [21]YANG C S, WANG F H. On a Generalized Modulus of Convexity and Uniform Normal Strcture[J]. Acta Mathmatica Scientia,2007,27B(4):838.

        猜你喜歡
        凸模不動(dòng)點(diǎn)常數(shù)
        連續(xù)精密沖壓模具的凸模設(shè)計(jì)
        沖壓模具快換凸模常用的幾種結(jié)構(gòu)與應(yīng)用
        模具制造(2021年8期)2021-10-20 06:26:40
        關(guān)于Landau常數(shù)和Euler-Mascheroni常數(shù)的漸近展開式以及Stirling級(jí)數(shù)的系數(shù)
        一類抽象二元非線性算子的不動(dòng)點(diǎn)的存在性與唯一性
        活用“不動(dòng)點(diǎn)”解決幾類數(shù)學(xué)問題
        幾個(gè)常數(shù)項(xiàng)級(jí)數(shù)的和
        萬有引力常數(shù)的測量
        基于高速切削技術(shù)電吹風(fēng)凸模加工工藝設(shè)計(jì)
        快換沖頭冷沖壓模具裝置設(shè)計(jì)
        不動(dòng)點(diǎn)集HP1(2m)∪HP2(2m)∪HP(2n+1) 的對(duì)合
        国产成人午夜精华液| 青青草激情视频在线播放| 天天干天天日夜夜操| 樱桃视频影视在线观看免费| 国产乱人视频在线看| 久久视频在线视频精品 | 一本一道久久综合久久| 精品一区二区三区婷婷| 国产精品三级av及在线观看| 三年片在线观看免费大全电影| 99久久精品久久久| 久久婷婷夜色精品国产| 中文字幕成人乱码熟女精品国50| 亚洲欧美综合区自拍另类| 国产jk在线观看| 国产一级一片内射视频在线| 国产性自爱拍偷在在线播放 | 91色婷婷成人精品亚洲| 国产丝袜长腿美臀在线观看| 天天躁夜夜躁狠狠躁2021| 欧洲色综合| 中文字幕高清一区二区| 一级r片内射视频播放免费| 成午夜精品一区二区三区| 亚洲精品无码av片| 一区二区久久精品66国产精品| 日韩精品一区二区三区在线视频| 欧美一区二区三区红桃小说 | 精选二区在线观看视频| 亚洲综合偷自成人网第页色| 麻豆成人精品国产免费| 国产乱子伦精品免费女| 亚洲综合一区二区三区蜜臀av| 青青草国产手机观看视频| 777亚洲精品乱码久久久久久| 国产系列丝袜熟女精品视频| 国产我不卡在线观看免费| 亚洲av无码乱码国产一区二区| 国产av国片精品| 日本女优中文字幕在线观看| 一区二区三区四区国产99|