申瑞霞,趙立欣,馮 晶,荊 勇,于佳動(dòng)
·農(nóng)業(yè)資源循環(huán)利用工程·
生物質(zhì)水熱液化產(chǎn)物特性與利用研究進(jìn)展
申瑞霞,趙立欣※,馮 晶,荊 勇,于佳動(dòng)
(農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院農(nóng)村能源與環(huán)保研究所,農(nóng)業(yè)部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125)
近年來,由于水熱液化技術(shù)可以將高含水率的生物質(zhì)直接轉(zhuǎn)化為生物原油而極具潛力,引起了人們的廣泛關(guān)注。該文綜述了生物質(zhì)水熱液化研究的最新進(jìn)展,簡(jiǎn)述了生物質(zhì)水熱液化的產(chǎn)物分離流程,著重分析了水熱液化4種產(chǎn)物(生物原油、水相產(chǎn)物、固體殘?jiān)蜌怏w)的產(chǎn)物特性及其利用方式。在4項(xiàng)產(chǎn)物中,生物原油可作為燃料或者從中提煉高附加值產(chǎn)品,水熱液化水相可以進(jìn)行微藻養(yǎng)殖、經(jīng)厭氧發(fā)酵產(chǎn)甲烷或者利用微生物電解池產(chǎn)生氫氣等,固體殘?jiān)ㄟ^進(jìn)一步處理后可作為生物炭使用,氣相產(chǎn)物可作為溫室的氣體肥料。另外,該文總結(jié)了生物質(zhì)中關(guān)鍵元素在水熱液化產(chǎn)物中的分布規(guī)律,展望了水熱液化技術(shù)未來研究方向,以期能為生物質(zhì)水熱液化研究提供參考與借鑒。
生物質(zhì);水熱液化;發(fā)酵;生物原油;元素遷移
近年來,隨著化石能源危機(jī)的加劇,尋找和開發(fā)可再生能源已經(jīng)迫在眉睫。生物質(zhì)作為一種可再生能源,可以通過各種技術(shù)轉(zhuǎn)化為新的能源載體,在諸多的生物質(zhì)轉(zhuǎn)化技術(shù)中,水熱液化技術(shù)作為環(huán)境友好型的熱化學(xué)技術(shù),可將高含水率的生物質(zhì)直接轉(zhuǎn)化為生物原油而極具潛力,因此引起了人們的廣泛關(guān)注。水熱液化技術(shù)是在高溫高壓(200~350 ℃、5~25 MPa),以水為溶劑的條件下進(jìn)行的,在水熱液化過程中生物質(zhì)中的大分子物質(zhì)通過水解、脫羧、脫氨基、再聚合等一系列反應(yīng)最終生成生物原油、水相產(chǎn)物、氣體和固體殘?jiān)黐1-2]。與其他生物質(zhì)轉(zhuǎn)化技術(shù)相比,水熱液化技術(shù)優(yōu)勢(shì)明顯,如原料來源廣泛,可實(shí)現(xiàn)生物質(zhì)有機(jī)組分的全轉(zhuǎn)化,除了脂肪,碳水化合物和蛋白質(zhì)也可以轉(zhuǎn)化為生物原油。另外,水熱液化不需要對(duì)原料進(jìn)行干燥處理,可以實(shí)現(xiàn)高含水率(70%以上)生物質(zhì)的水熱液化處理[3-4]。
21世紀(jì)以來,特別是2010年以后,生物質(zhì)水熱液化技術(shù)研究越來越多,水熱液化研究團(tuán)隊(duì)遍布全球。根據(jù)Web of science數(shù)據(jù)庫統(tǒng)計(jì),2017年之后每年有超過350篇水熱液化相關(guān)的文章發(fā)表,因此生物質(zhì)水熱技術(shù)已成為當(dāng)今的研究熱點(diǎn)之一。當(dāng)前,關(guān)于水熱液化技術(shù)的研究主要集中在美國(guó)、中國(guó)、英國(guó)、丹麥、加拿大等國(guó)家,水熱液化研究團(tuán)隊(duì)不斷涌現(xiàn),這些團(tuán)隊(duì)對(duì)于水熱液化的研究各有側(cè)重,在生物質(zhì)水熱液化研究的最新研究進(jìn)展如下詳述:
賓夕法尼亞州立大學(xué)的Phillip E. Savage團(tuán)隊(duì)對(duì)微藻或模型化合物的快速水熱液化及其動(dòng)力學(xué)進(jìn)行了探究,發(fā)現(xiàn)在350℃時(shí),微擬球藻生物原油的產(chǎn)率最高為43%,熱值達(dá)到39 MJ/kg,在加入非均相催化劑后,生物原油的產(chǎn)率得到了提高,但元素組成和熱值變化不大,負(fù)載型鎳催化劑降低了生物原油中的硫含量[5-6]。此外,微擬球藻的快速水熱液化反應(yīng)(600℃,1min)最高產(chǎn)油率可達(dá)到66%,證明了微藻快速液化產(chǎn)油的可行性,縮短反應(yīng)時(shí)間可以減小反應(yīng)器體積,從而降低生物原油的制造成本[7]。Savage團(tuán)隊(duì)對(duì)于水熱液化反應(yīng)機(jī)理方面也做了一些研究,通過一些模型化合物,模擬生物質(zhì)水熱液化過程。此外,該團(tuán)隊(duì)建立的動(dòng)力學(xué)模型可以預(yù)測(cè)不同生物質(zhì)組分在不同水熱液化條件下的生物原油產(chǎn)率[8]。
丹麥奧爾堡大學(xué)Lasse A. Rosendahl團(tuán)隊(duì)主要研究了溫度對(duì)亞臨界狀態(tài)下微擬球藻和螺旋藻的液化影響,發(fā)現(xiàn)在350 ℃時(shí),微擬球藻生物原油產(chǎn)率最高(46%),螺旋藻最佳產(chǎn)油溫度為310 ℃[9]。對(duì)秸稈水熱液化的研究發(fā)現(xiàn)低溫有利于生物原油的形成,而高溫下生物原油的油品品質(zhì)更好,如氧含量低、熱值高[10]。此外,該團(tuán)隊(duì)還采用響應(yīng)面的方法優(yōu)化了反應(yīng)溫度、時(shí)間、催化劑和含固量對(duì)秸稈水熱液化產(chǎn)油的條件,發(fā)現(xiàn)反應(yīng)時(shí)間對(duì)產(chǎn)油率影響較小,秸稈最高產(chǎn)油率為38.72%[11]。以楊木和甘油作為原料進(jìn)行了連續(xù)式水熱液化反應(yīng),產(chǎn)生的水相循環(huán)利用,得到生物原油的熱值為34.3 MJ/kg[12]。為了提高柳木在連續(xù)式水熱液化過程中的流動(dòng)性,在柳木中添加了藻類與其混合,增加了原料的粘度,提高了其泵的輸送性。與單獨(dú)柳木水熱液化相比,加入微藻可提高原料的有機(jī)組分,同時(shí)生物原油的產(chǎn)率也得到有效提高[13]。
復(fù)旦大學(xué)Zhang Shicheng團(tuán)隊(duì)研究了不同反應(yīng)條件對(duì)滸苔水熱液化產(chǎn)物的影響,發(fā)現(xiàn)滸苔最高生物原油產(chǎn)率為20.4%[14],而滸苔在甲醇中液化時(shí),最高生物原油產(chǎn)率為31.1%,在乙醇中時(shí)產(chǎn)率為35.3%。說明以甲醇和乙醇作為溶劑時(shí),可以提高滸苔液化的產(chǎn)油率[15]。除了水熱液化產(chǎn)生物原油之外,還進(jìn)行了稻桿水熱處理產(chǎn)乙酸的研究,在260 ℃,NaOH和NiO納米片做催化劑時(shí),乳酸最高產(chǎn)率為58.81%[16]。他們對(duì)木質(zhì)纖維素水解液中的單糖、有機(jī)酸和酚類物質(zhì)進(jìn)行了分離和回收,通過陰離子交換樹脂分離,葡萄糖和乙酸的純度可達(dá)到97%和81%,通過陽離子交換樹脂,乙酸和酚類的純度可達(dá)97%和81%,酚類在高溫水解液中的回收率達(dá)到了70%[17]。
清華大學(xué)Wu Yulong團(tuán)隊(duì)主要進(jìn)行了杜氏鹽藻的水熱液化研究,發(fā)現(xiàn)在360 ℃,Na2CO3作為催化劑時(shí),生物原油最高產(chǎn)率為25.8%,生物原油的熱值為30.74 MJ/kg,主要成分為酸、酯、酮類和醛類[18],而以乙醇和水作為反應(yīng)媒介時(shí),生物原油最高產(chǎn)率達(dá)到64.68%,熱值為34.96 MJ/kg[19]。此外,還研究了不同酸堿催化劑對(duì)杜氏鹽藻液化產(chǎn)油的影響,KtB作為催化劑時(shí)生物原油產(chǎn)率最高達(dá)到49.09%,當(dāng)HZSM-5和MgO/MCM-41作為催化劑時(shí),生物原油酸含量比較低,催化劑的使用減少了生物原油中的固定碳含量,對(duì)生物原油組成和沸點(diǎn)分布影響很大[20]。此外,還探究了杜氏鹽藻與聚丙烯的混合液化情況,當(dāng)杜氏鹽藻與聚丙烯的質(zhì)量比為8:2時(shí),兩者協(xié)同產(chǎn)油的效果最好,聚丙烯的添加顯著減少了生物原油中的酸含量[21]。
美國(guó)西北太平洋國(guó)家實(shí)驗(yàn)室Elliott團(tuán)隊(duì)主要進(jìn)行了生物質(zhì)的連續(xù)式水熱液化研究。以藻作為原料,含固量為35%,在高溫高壓下進(jìn)行連續(xù)式水熱液化反應(yīng),所得生物原油中主要成分是烷烴和雜環(huán)化合物,并通過催化加氫的方式對(duì)生物原油進(jìn)行提質(zhì),去除其中的一些雜原子。另外,對(duì)水相進(jìn)行了催化水熱氣化處理,反應(yīng)后產(chǎn)生的氣體中含有較多甲烷[22]。大藻(灰分含量11%~41%)的連續(xù)式水熱液化試驗(yàn)表明350 ℃,20 MPa時(shí),58.8%的碳轉(zhuǎn)移到了生物原油中,生物原油回收時(shí)并未使用有機(jī)溶劑,藻類中的礦物質(zhì)在反應(yīng)過程中通過一個(gè)帶過濾器的固體分離裝置進(jìn)行了去除,催化水熱氣化實(shí)現(xiàn)了水相中99.2%的碳轉(zhuǎn)化[23]。對(duì)葡萄渣在350 ℃,20 MPa下的連續(xù)水熱液化試驗(yàn)表明超過56%的碳轉(zhuǎn)化到了生物原油中(未用有機(jī)溶劑萃?。?,其水相在Ru和C作為催化劑的條件下通過水熱氣化處理實(shí)現(xiàn)了99.8%的COD轉(zhuǎn)化,處理后水相COD質(zhì)量濃度小于150 mg/kg[24]。
伊利諾伊大學(xué)-香檳分校、中國(guó)農(nóng)業(yè)大學(xué)Zhang Yuanhui團(tuán)隊(duì)對(duì)低脂小球藻水熱液化研究發(fā)現(xiàn),生物原油產(chǎn)率最高達(dá)到39.4%[25],此時(shí)生物原油能量回收率是65.4%,生物原油和水相產(chǎn)物中的C和N含量隨溫度和滯留時(shí)間的增加而增加,而固體殘?jiān)a(chǎn)率趨勢(shì)與此相反,當(dāng)溫度大于220 ℃,滯留時(shí)間大于10 min時(shí),原料中65%~70%的N和35%~40%的C轉(zhuǎn)移到了水相產(chǎn)物中[26]。對(duì)小球藻和螺旋藻水熱液化中的反應(yīng)路徑進(jìn)行分析發(fā)現(xiàn)固含量是影響小球藻水相中營(yíng)養(yǎng)回收的重要因素[1,27]。當(dāng)小球藻與米殼的比例為1:1時(shí),在300 ℃獲得最高產(chǎn)油率,2種原料的共液化降低了生物原油的酸度與氮含量[28]。此外,該團(tuán)隊(duì)還以餐廚垃圾、滸苔、滇池藍(lán)藻、秸稈和畜禽糞便等為原料做了一些水熱液化方面的研究,發(fā)現(xiàn)高灰分的大藻滸苔產(chǎn)油率比較低(<15%),但是,添加粗甘油與滸苔共液化后,生物原油產(chǎn)率最高超過40%,并且粗甘油的添加顯著降低了生物原油中的氮含量[29-30]。對(duì)畜禽糞便水熱液化的研究發(fā)現(xiàn)畜禽糞便生物原油中主要含有酸酯類和酚醇類化合物而水相產(chǎn)物中主要為含氮化合物。并且畜禽糞便中的重金屬經(jīng)過水熱液化后,大部分轉(zhuǎn)移到了固體殘?jiān)校?70%)。畜禽糞便中具有直接生物毒性的重金屬形態(tài)在固體殘?jiān)泻棵黠@減少而具有穩(wěn)定形態(tài)的重金屬增多[31-32]。
此外,本文重點(diǎn)綜述了近年來生物質(zhì)水熱液化反應(yīng)后產(chǎn)物的分離方式以及4種產(chǎn)物的產(chǎn)物特性及其目前的利用方式,展望了現(xiàn)階段水熱液化技術(shù)面臨的主要挑戰(zhàn)以及未來的研究方向,以期能為生物質(zhì)水熱液化的機(jī)理研究以及放大化生產(chǎn)應(yīng)用提供參考與借鑒。
生物質(zhì)水熱液化過程主要在反應(yīng)釜中進(jìn)行,包括批式反應(yīng)釜[18, 33]和連續(xù)式反應(yīng)釜[34-35],其中批式反應(yīng)釜大多由不銹鋼(型號(hào):SS316)材料制成,體積為10~1000 mL[36]。典型的水熱液化反應(yīng)器示意圖如圖1所示。水熱液化的底物包括各類生物質(zhì)原料,如畜禽糞便、餐廚垃圾、微藻、秸稈、滸苔等。在特定溫度下反應(yīng)一段時(shí)間后,降到室溫進(jìn)行產(chǎn)物分離與收集。水熱液化產(chǎn)物的分離流程如圖2所示。反應(yīng)結(jié)束后,首先通過氣袋將氣體收集,固液混合物通過過濾將水相收集,剩余產(chǎn)物用有機(jī)溶劑清洗萃取,其中溶于有機(jī)溶劑的產(chǎn)物通過蒸餾干燥后得到生物原油,不溶于有機(jī)溶劑的部分通過過濾得到固體殘?jiān)?。萃取生物原油的有機(jī)溶劑包括非極性的有機(jī)溶劑和極性的有機(jī)溶劑,主要是:丙酮、異丙醇、二氯甲烷、三氯甲烷、乙醚、己烷等[18,37]。不同的萃取劑影響著生物原油的產(chǎn)油率和熱值,一般來講,溶劑的極性度越高,產(chǎn)油率越高(如異丙醇26%>己烷3%),但產(chǎn)油率與有機(jī)溶劑的極性不是呈線性相關(guān)關(guān)系,還與溶劑的結(jié)構(gòu)特性有關(guān)[38]。盡管用極性有機(jī)溶劑萃取時(shí)產(chǎn)油率高,但油品質(zhì)量差一些,生物原油的主要組分C與H的含量略低于用非極性溶劑萃取時(shí)的含量,同時(shí)N與O含量高于用非極性溶劑萃取時(shí)的含量(N、O含量影響生物原油的品質(zhì)和熱值)[37]。萃取后的有機(jī)溶劑可以通過減壓蒸餾法回收利用,如丙酮65 ℃下可蒸餾回用,乙醚35℃下可蒸餾回用。
圖1 水熱液化反應(yīng)器示意圖
生物原油是水熱液化的主產(chǎn)物,當(dāng)前,大多數(shù)關(guān)于水熱液化的研究都集中在生物原油的特性分析及如何提高生物原油的產(chǎn)率和品質(zhì)上,生物原油的產(chǎn)率和品質(zhì)受諸多因素的影響,比如原料的生化組成、反應(yīng)溫度、升溫速率、保留時(shí)間、底物含固量、催化劑類型、萃取溶劑類型等。
生物質(zhì)水熱液化所得生物原油一般呈黑色、比較粘稠、流動(dòng)性較差。不同生物質(zhì)在不同的反應(yīng)條件下生物原油產(chǎn)率差異較大(表1),其中溫度是影響產(chǎn)油率最重要的因素。就生物質(zhì)幾大組分而言,脂肪的產(chǎn)油率最高,在80%以上,蛋白質(zhì)其次,生物原油產(chǎn)率在20%~30%,碳水化合物產(chǎn)率最低,纖維素、木質(zhì)素其單獨(dú)水熱液化的生物原油產(chǎn)率都在10%以下[42]。
利用藻類生產(chǎn)生物原油是近年來的研究熱點(diǎn)之一[4],特別是利用滇池藻(水體富營(yíng)養(yǎng)化的產(chǎn)物)生產(chǎn)生物原油,不僅可以處理湖泊污染還可以變廢為寶,產(chǎn)生生物原油。但由于滇池藻高灰分低脂的特性(灰分41.6%、脂肪1.9%、蛋白24.8%),因此其最高產(chǎn)油率僅為18.4%[41]。反之,高脂高蛋白的藻產(chǎn)油率較高,如高蛋白的藻()產(chǎn)油率為55%,高脂的藻()產(chǎn)油率超過80%,為82.9%,是目前藻類水熱液化的最高產(chǎn)油率[40]。除此之外,豬糞與秸稈的產(chǎn)油率分別為25%和13%[43-44],這些生物原油的熱值一般在27 MJ/kg以上,餐廚垃圾、螺旋藻和豬糞的生物原油熱值超過35 MJ/kg,與原油熱值類似。生物原油的組分主要包括酚類、酮醛類、酸酯類、含氮類和烴類化合物等,生物原油的組分差異主要與原料的生化組成密切相關(guān)[45]。高脂肪含量的大豆油水熱液化所得生物原油中的主要成分為脂肪酸,這些脂肪酸由大豆油脂的水解而來。而高蛋白生物質(zhì)水熱液化產(chǎn)生的生物原油主要成分為含氮化合物,如吲哚、吡咯烷酮和酰胺類物質(zhì)等,這些物質(zhì)由蛋白質(zhì)的水解、脫羧和環(huán)化等反應(yīng)生成[42]。而木質(zhì)纖維素生物質(zhì)(稻稈、灌木等)水熱液化產(chǎn)生的生物原油中含有的酚類和酮醛類物質(zhì)較多,纖維素水解產(chǎn)生的一些葡萄糖可以降解為糠醛,另外,單糖的脫水、異構(gòu)化和環(huán)化反應(yīng)可以產(chǎn)生環(huán)狀酮,而木質(zhì)素水解成分多為酚類化合物[46]。
表1 不同原料水熱液化生物原油特性
生物原油的主要用途是用作交通燃料,但目前仍有很多問題需要克服。與石油相比,生物原油中的含氮量較高,且氮元素的存在不利于后續(xù)油品提質(zhì)的精煉,同時(shí)其燃燒產(chǎn)生的氮氧化合物會(huì)污染環(huán)境[50]。僅有一些特定的生物質(zhì)水熱液化產(chǎn)生的生物原油中含氮量較低,作為燃料使用會(huì)相對(duì)容易,如秸稈、粗甘油、食品廢棄物等含氮量較低的生物質(zhì)原料。另外,生物原油的含氧量也比較高,氧的存在嚴(yán)重影響著生物原油的熱值。生物原油中高含氮和含氧量的特性使得油品的提質(zhì)顯得尤為重要,如對(duì)生物原油組分進(jìn)行分離、提純、提質(zhì)等。生物原油中含有數(shù)百甚至上千種復(fù)雜的有機(jī)化合物,對(duì)于生物原油組分的分離與提純目前主要由兩種方式,即根據(jù)化合物極性差異進(jìn)行分離或者根據(jù)化合物沸點(diǎn)差異進(jìn)行分離。依據(jù)相似相溶原理,極性溶劑易溶解極性物質(zhì)而非極性溶劑易溶解非極性物質(zhì)。Yang等發(fā)現(xiàn)沙柳水熱液化過程中,使用四氫呋喃作為萃取劑得到的生物原油產(chǎn)率較高,而使用正己烷作為萃取劑得到的生物原油產(chǎn)率較低,這主要是由于不同溶劑的極性差異造成的。丙酮、甲醇和四氫呋喃等極性溶劑更容易萃取生物原油中的酮類和酚類化合物,而非極性的溶劑如石油醚等更易于萃取生物原油中的烷烴類物質(zhì)[51]。另外,生物原油中化合物的沸點(diǎn)也有很大差異,如Jazrawi等通過蒸餾的方式將藻類生物原油分成了不同餾分段,即重石腦油(<193 ℃)、煤油(193~271 ℃)、柴油(271~343 ℃)、減壓柴油(343~538 ℃)和渣油(>538 ℃)5個(gè)組分[52]。Chen等通過蒸餾與酯化相結(jié)合的方式將食品廢棄物的生物原油提質(zhì)后作為柴油的添加劑使用,通過發(fā)動(dòng)機(jī)測(cè)試試驗(yàn)發(fā)現(xiàn)添加了10%~20%生物原油的柴油,在發(fā)動(dòng)機(jī)動(dòng)力輸出及污染物排放方面與常規(guī)柴油相比沒有明顯差異[53],這為生物原油作為燃料使用提供了新的思路與方向。另外,除了作為燃料使用外,從生物原油中提煉高附加值產(chǎn)品也是一個(gè)研究熱點(diǎn),例如,微擬球藻水熱液化產(chǎn)生的生物原油可以用來制備碳量子點(diǎn)的綠色前體,這種碳量子點(diǎn)具有良好的生物相容性,對(duì)于植物細(xì)胞成像表現(xiàn)出優(yōu)異特性[54]。
水相產(chǎn)物是生物質(zhì)水熱液化的主要副產(chǎn)物,經(jīng)水熱液化過程后底物中的有機(jī)物20%~50%轉(zhuǎn)移到水相中[55]。水相產(chǎn)物中含有大量的碳、氮、磷和微量元素。生物質(zhì)組分不同(糖類、脂類、蛋白質(zhì)含量),以及水熱液化過程的條件不同(底物TS、反應(yīng)溫度、停留時(shí)間、催化劑類型、升溫速率等)[36],所得水相產(chǎn)物的特性也不盡相同。其共同點(diǎn)是水質(zhì)呈酸性,成分復(fù)雜,含有有毒有害物質(zhì),水相中的COD質(zhì)量濃度較高,甚至高達(dá)100 g/L(表2)。另外,水相中含氮量也較高,以污泥、豬糞和藻類作為水熱液化原料時(shí),水相中氨氮含量為1.9~12.7 g/L[55]。豬糞水熱液化后超過40%的氮和30%以上的碳轉(zhuǎn)移到了水相中[43]。通過對(duì)水熱液化水相產(chǎn)物進(jìn)行分析發(fā)現(xiàn)藻類和糞便為原料時(shí)水相中主要含有氮氧雜環(huán)類化合物,還有部分有機(jī)酸、酰胺類、酯類、酮類和醇類化合物,而玉米秸稈為原料時(shí)水相中主要含有揮發(fā)性有機(jī)酸(≤20 g/L)。
水熱液化水相中含有大量有毒有害的物質(zhì),如不經(jīng)有效處理直接進(jìn)行排放會(huì)對(duì)環(huán)境造成嚴(yán)重污染。目前已有多種方式對(duì)水相進(jìn)行處理,同時(shí)可產(chǎn)生一些高附加值的產(chǎn)品,如微藻、甲烷、氫氣等。微藻養(yǎng)殖可以利用水相中的一些物質(zhì)作為藻類生長(zhǎng)的營(yíng)養(yǎng)源,經(jīng)過微藻養(yǎng)殖后,水相中的總?cè)芙庑缘涂側(cè)芙庑粤椎娜コ史謩e達(dá)到了86%和95%,SCOD去除率為63%。用水相養(yǎng)殖的微藻又可以作為水熱液化產(chǎn)生物原油的原料,經(jīng)過營(yíng)養(yǎng)物的多次循環(huán)實(shí)現(xiàn)能源的增值。但微藻養(yǎng)殖需對(duì)水相進(jìn)行稀釋預(yù)處理,水相中物質(zhì)濃度過高會(huì)抑制微藻的生長(zhǎng)[59]。其次,先用沸石吸附水相產(chǎn)物中的一些對(duì)于發(fā)酵微生物有毒的抑制物質(zhì),如糠醛、酮類、5-羥甲基糠醛、酚類等,之后再進(jìn)行厭氧發(fā)酵產(chǎn)甲烷[60]。沸石吸附后的水相作為厭氧發(fā)酵的底物時(shí)甲烷產(chǎn)率為6170.2mol/g COD,甲烷含量為54.69%[61]。此外,利用微生物電化學(xué)技術(shù)處理該水相也有一些研究,如以豬糞的水相作為微生物電解池底物時(shí),最大產(chǎn)氫速率和氫含量分別為75.36 mL/(L?d)和61.77%[62],而以玉米秸稈水相作為微生物電解池底物時(shí),最大產(chǎn)氫速率和氫含量分別為25.49 mL/(L?d)和55.45%[63]。以上的生化處理方式可實(shí)現(xiàn)水相COD去除率為40%~60%。除此之外,Watson等采用催化氣化的方式對(duì)水相進(jìn)行處理,發(fā)現(xiàn)NaOH做催化劑時(shí),氫氣含量最高為46.9%,Ru/AC做催化劑時(shí),COD去除率最高為97.7%。Ni和Ru/AC混合作為催化劑時(shí),氫氣產(chǎn)量為9.5 mg /g[64]。此外,水相也可循環(huán)作為秸稈(固含量較高)水熱液化的溶劑,隨著循環(huán)次數(shù)的增加生物原油產(chǎn)率有所提高,生物原油熱值與用蒸餾水做反應(yīng)介質(zhì)時(shí)略有提高[10]。
表2 生物質(zhì)水熱液化水相特性
除水相產(chǎn)物外,固體殘?jiān)巧镔|(zhì)水熱液化的另一副產(chǎn)物,其產(chǎn)率與原料組成、反應(yīng)溫度等密切相關(guān),一般來說,高的灰分含量會(huì)導(dǎo)致高的固體殘?jiān)a(chǎn)率。
與生物原油和水相產(chǎn)物不同,固體殘?jiān)械挠袡C(jī)組分比較少,主要是無機(jī)成分。人糞便的水熱液化過程中,原料中超過70%的Ca、Mg、Al、Fe和Zn都轉(zhuǎn)移到了固體殘?jiān)衃33]。另外,畜禽糞便固體殘?jiān)刑細(xì)涞睾恐托∮?0%,而其中的灰分質(zhì)量分?jǐn)?shù)高達(dá)50%以上[50],畜禽糞便中大部分(>70%)的重金屬(Zn、Cu、Pb和Cd)經(jīng)過水熱液化后轉(zhuǎn)移到了固體殘?jiān)?。并且畜禽糞便中具有直接生物毒性的重金屬形態(tài)在固體殘?jiān)斜戎孛黠@減少[65],因此,水熱液化技術(shù)可以將原料中的重金屬富集到固體殘?jiān)胁⒛芙档推洵h(huán)境風(fēng)險(xiǎn)。
目前,由于固體殘?jiān)谢曳州^多,對(duì)于固體殘?jiān)睦醚芯枯^少。通過掃描電鏡發(fā)現(xiàn)豬糞水熱液化后的固體殘?jiān)休^大的比表面積和孔隙度,推測(cè)固體殘?jiān)鼘?duì)于重金屬的富集可能來源于本身的吸附作用。實(shí)際上,溫度較低(220 ℃以下)的水熱液化也可稱為水熱炭化反應(yīng),一些木質(zhì)纖維素原料在水熱炭化后會(huì)生成生物炭,這些生物炭對(duì)于廢水中的重金屬離子、氨氮及磷等具有良好的吸附能力[66-70]。但是固體殘?jiān)c生物炭的區(qū)別及其作為吸附劑的使用還有待進(jìn)一步深入研究。
氣體在生物質(zhì)水熱液化產(chǎn)物中所占的比重較小,氣體產(chǎn)率隨著反應(yīng)溫度的升高而增加,一般在15%以下。氣相產(chǎn)物中的主要組分是CO2,占到80%以上,此外還有少量的CH4和H2等[43]。關(guān)于這部分氣體的利用,主要是通過適當(dāng)處理后可以作為溫室的氣體肥料使用。目前,并未吸引眾多的研究者對(duì)其應(yīng)用進(jìn)行深入探究。
基于文獻(xiàn)研究,本文對(duì)生物質(zhì)水熱液化過程中的主要元素遷移(C元素、N元素、金屬元素)進(jìn)行了總結(jié),如圖3所示。生物質(zhì)類型組分不同(畜禽糞便、玉米秸稈、微藻等),水熱液化過程條件不同(溫度、時(shí)間、含固量等),各項(xiàng)產(chǎn)物的元素分布也不同。如340 ℃時(shí),豬糞中45%的C轉(zhuǎn)移到生物原油中,約30%的C轉(zhuǎn)移到水相中,20%左右的C轉(zhuǎn)移到固體殘?jiān)衃50]。290 ℃條件下,玉米秸稈C在水熱液化產(chǎn)物中的分布與豬糞類似[56]。260 ℃時(shí),微藻水熱液化后C元素43%轉(zhuǎn)移到生物原油中,40%轉(zhuǎn)移到水相中,12%轉(zhuǎn)移到固體殘?jiān)衃26]。另外,對(duì)于N元素而言,畜禽糞便中N元素超過40%轉(zhuǎn)移到了水相,還有部分N元素分布到固體殘?jiān)?5%)和生物原油(25%)中。而玉米秸稈水熱液化后70%以上轉(zhuǎn)移到水相中,固體殘?jiān)蜕镌椭械腘各占約10%[56]。微藻水熱液化后N元素分布與玉米秸稈相似[26]。除C、N元素分布外,研究者對(duì)金屬元素的分布也作了深入探究,糞便中超過60%的金屬轉(zhuǎn)移到了固體殘?jiān)校嘀械慕饘俸苌?,占原料總金屬?%以下[65]??傮w來說,水熱液化技術(shù)可以實(shí)現(xiàn)原料中元素在產(chǎn)物中的定向分配。
圖3 生物質(zhì)水熱液化關(guān)鍵元素遷移
在水熱液化的4項(xiàng)產(chǎn)物中,生物原油可作為燃料或高附加值產(chǎn)品生產(chǎn)原料使用,水熱液化水相可以進(jìn)行微藻養(yǎng)殖、或者作為厭氧發(fā)酵產(chǎn)甲烷或產(chǎn)氫氣的底物,固體殘?jiān)ㄟ^進(jìn)一步處理后可作為生物炭使用,氣相產(chǎn)物可作為溫室的氣體肥料。生物質(zhì)中關(guān)鍵元素在水熱液化4項(xiàng)產(chǎn)物中的分布規(guī)律不同。目前關(guān)于生物質(zhì)水熱液化已有大量研究,但仍有一些科學(xué)問題需要解決,主要表現(xiàn)在以下幾個(gè)方面:1)水熱液化中水作用的不夠明朗??勺鳛槿軇?、反應(yīng)物或是作為催化劑。可通過同位素示蹤的方式標(biāo)記水和反應(yīng)物來探究水熱液化反應(yīng)中水與生物質(zhì)的反應(yīng)機(jī)制;2)水熱液化生物原油如何有效利用。生物質(zhì)水熱液化可以通過先催化加氫的方式提高其生物原油的品質(zhì),再通過蒸餾的方法對(duì)生物原油進(jìn)行分段利用;3)生物質(zhì)水熱液化轉(zhuǎn)化機(jī)理有待研究。目前只是對(duì)產(chǎn)物進(jìn)行一些表征后推測(cè)其反應(yīng)路徑,對(duì)一些反應(yīng)中間體沒有監(jiān)測(cè),可通過過程取樣或者一些原位在線監(jiān)測(cè)手段進(jìn)行深入分析;4)生物質(zhì)水熱液化技術(shù)如何實(shí)現(xiàn)工業(yè)化生產(chǎn)。水熱液化技術(shù)放大遇到的挑戰(zhàn)主要包括高溫高壓下反應(yīng)器穩(wěn)定進(jìn)出料以及大規(guī)模原料的收集等問題。盡管以上的諸多瓶頸需要研究者們的不斷探索與研究,但是水熱液化生產(chǎn)生物原油由于其具有的顯著優(yōu)勢(shì),特別是作為液體燃料使用指日可待,有望解決我國(guó)能源不足的問題,因此水熱液化技術(shù)在未來的實(shí)際生產(chǎn)中具有巨大潛力。
[1] Gai Chao, Zhang Yuanhui, Chen Wanting, et al. An investigation of reaction pathways of hydrothermal liquefaction usingand[J]. Energy Conversion and Management, 2015, 96: 330-339.
[2] Valdez Peter J, Nelson Michael C, Wang Henry Y, et al. Hydrothermal liquefaction ofSystematic study of process variables and analysis of the product fractions[J]. Biomass and Bioenergy, 2012, 46: 317-331.
[3] López Barreiro Diego, Prins Wolter, Ronsse Frederik, et al. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects[J]. Biomass and Bioenergy, 2013, 53: 113-127.
[4] Tian Chunyan, Li Baoming, Liu Zhidan, et al. Hydrothermal liquefaction for algal biorefinery: A critical review[J]. Renewable and Sustainable Energy Reviews, 2014, 38: 933-950.
[5] Duan Peigao, Savage Phillip E. Hydrothermal liquefaction of a microalga with heterogeneous catalysts[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 52-61.
[6] Brown Tylisha M, Duan Peigao, Savage Phillip E. Hydrothermal liquefaction and gasification of[J]. Energy & Fuels, 2010, 24(6): 3639-3646.
[7] Faeth Julia L, Valdez Peter J, Savage Phillip E. Fast Hydrothermal liquefaction ofto produce biocrude[J]. Energy & Fuels, 2013, 27(3): 1391-1398.
[8] Sheehan James D, Savage Phillip E. Modeling the effects of microalga biochemical content on the kinetics and biocrude yields from hydrothermal liquefaction[J]. Bioresource Technology, 2017, 239: 144-150.
[9] Toor Saqib S, Reddy Harvind, Deng Shuguang, et al. Hydrothermal liquefaction ofandunder subcritical and supercritical water conditions[J]. Bioresource Technology, 2013, 131: 413-419.
[10] Zhu Zhe, Rosendahl Lasse, Toor Saqib Sohail, et al. Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation[J]. Applied Energy, 2015, 137: 183-192.
[11] Zhu Zhe, Rosendahl Lasse, Toor Saqib Sohail, et al. Optimizing the conditions for hydrothermal liquefaction of barley straw for bio-crude oil production using response surface methodology[J]. Science of The Total Environ-ment, 2018, 630: 560-569.
[12] Pedersen T H, Grigoras I F, Hoffmann J, et al. Continuous hydrothermal co-liquefaction of aspen wood and glycerol with water phase recirculation[J]. Applied Energy, 2016, 162: 1034-1041.
[13] Sintamarean Iulia M, Pedersen Thomas H, Zhao Xueli, et al. Application of algae as cosubstrate to enhance the processability of willow wood for continuous hydrothermal liquefaction[J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4562-4571.
[14] Zhou Dong, Zhang Liang, Zhang Shicheng, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24(7): 4054-4061.
[15] Zhou Dong, Zhang Shicheng, Fu Hongbo, et al. Liquefaction of macroalgae enteromorpha prolifera in sub-/supercritical alcohols: Direct production of ester compounds[J]. Energy & Fuels, 2012, 26(4): 2342-2351.
[16] Younas Rafia, Zhang Shicheng, Zhang Liwu, et al. Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates[J]. Catalysis Today, 2016, 274: 40-48.
[17] Chen Kaifei, Hao Shilai, Lyu Hang, et al. Ion exchange separation for recovery of monosaccharides, organic acids and phenolic compounds from hydrolysates of lignocellulosic biomass[J]. Separation and Purification Technology, 2017, 172: 100-106.
[18] Zou Shuping, Wu Yulong, Yang Mingde, et al. Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake[J]. Energy, 2010, 35(12): 5406-5411.
[19] Chen Yu, Wu Yulong, Zhang Peiling, et al. Direct liquefaction of Dunaliella tertiolecta for bio-oil in sub/supercritical ethanol–water[J]. Bioresource Technology, 2012, 124: 190-198.
[20] Chen Yu, Wu Yulong, Ding Ranran, et al. Catalytic hydrothermal liquefaction of D. tertiolecta for the production of bio-oil over different acid/base catalysts[J]. Aiche Jounal, 2015, 61(4): 1118-1128.
[21] Wu Xiuyun, Liang Junmei, Wu Yulong, et al. Co-liquefaction of microalgae and polypropylene in sub-/super-critical water[J]. RSC Advances, 2017, 7(23): 13768-13776.
[22] Elliott Douglas C, Hart Todd R, Schmidt Andrew J, et al. Process development for hydrothermal liquefaction of algae feedstocks in a continuous-flow reactor[J]. Algal Research, 2013, 2(4): 445-454.
[23] Elliott Douglas C, Hart Todd R, Neuenschwander Gary G., et al. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 207-215.
[24] Elliott Douglas C, Schmidt Andrew J, Hart Todd R, et al. Conversion of a wet waste feedstock to biocrude by hydrothermal processing in a continuous-flow reactor: Grape pomace[J]. Biomass Conversion and Biorefinery, 2017, 7: 455-465.
[25] Yu Guo, Zhang Yuanhui, Schideman Lance, et al. Hydrothermal liquefaction of low lipid content microalgae into bio-crude oil[J]. Transactions of the ASABE, 2011, 54: 239-246.
[26] Yu Guo, Zhang Yuanhui, Schideman Lance, et al. Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae[J]. Energy & Environmental Science, 2011, 4(11): 4587-4595.
[27] Gai Chao, Zhang Yuanhui, Chen Wanting, et al. Characterization of aqueous phase from the hydrothermal liquefaction of Chlorella pyrenoidosa[J]. Bioresource Technology, 2015, 184: 328-335.
[28] Gai Chao, Li Yi, Peng Nana, et al. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water[J]. Bioresource Technology, 2015, 185: 240-245.
[29] Lu Jianwen, Liu Zhidan, Zhang Yuanhui, et al. Improved production and quality of biocrude oil from low-lipid high-ash macroalgae Enteromorpha prolifera via addition of crude glycerol[J]. Journal of Cleaner Production, 2017, 142: 749-757.
[30] Lu J W, Liu Z D, Zhang Y H, et al. Effects of operational parameters on the hydrothermal liquefaction of enteromorpha prolifera and products distribution[J]. Journal of Biobased Materials and Bioenergy, 2015, 9(1): 16-21.
[31] Lu Jianwen, Li Hugang, Zhang Yuanhui, et al. Nitrogen migration and transformation during hydrothermal liquefaction of livestock manures[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13570-13578.
[32] Li Hugang, Lu Jianwen, Zhang Yuanhui, et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 133-140.
[33] Lu Jianwen, Zhang Jiaren, Zhu Zhangbing, et al. Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction[J]. Energy Conversion and Management, 2017, 134: 340-346.
[34] Elliott Douglas C, Hart Todd R, Neuenschwander Gary G, et al. Hydrothermal processing of macroalgal feedstocks in continuous-flow reactors[J]. ACS Sustain-able Chemistry & Engineering, 2013, 2(2): 207-215.
[35] Lababpour Abdolmajid. Continuous hydrothermal liquefac- tion for biofuel and biocrude production from microalgal feedstock[J]. ChemBioEng Reviews, 2018, 5(2): 90-103.
[36] Dimitriadis Athanasios, Bezergianni Stella. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review[J]. Renewable & Sustainable Energy Reviews, 2017, 68(1): 113-125.
[37] Yan Weihong, Duan Peigao, Wang Feng, et al. Composition of the bio-oil from the hydrothermal liquefaction of duckweed and the influence of the extraction solvents[J]. Fuel, 2016, 185: 229-235.
[38] Lu Jianwen, Liu Zhidan, Zhang Yuanhui, et al. 110th anniversary: influence of solvents on biocrude from hydrothermal liquefaction of soybean oil, soy protein, cellulose, xylose, and lignin, and their quinary mixture[J]. Industrial & Engineering Chemistry Research, 2019.
[39] Zhou Dong, Zhang Liang, Zhang Shicheng, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24(7): 4054-4061.
[40] Li Hao, Liu Zhidan, Zhang Yuanhui, et al. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction[J]. Bioresource Technology, 2014, 154: 322-329.
[41] Tian Chunyan, Liu Zhidan, Zhang Yuanhui, et al. Hydrothermal liquefaction of harvested high-ash low-lipid algal biomass from Dianchi Lake: Effects of operational parameters and relations of products[J]. Bioresource Technology, 2015, 184: 336-343.
[42] Lu Jianwen, Liu Zhidan, Zhang Yuanhui, et al. Synergistic and antagonistic interactions during hydrothermal liquefaction of soybean oil, soy protein, cellulose, xylose, and lignin[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14501-14509.
[43] Lu Jianwen, Watson Jamison, Zeng Jianli, et al. Biocrude production and heavy metal migration during hydrothermal liquefaction of swine manure[J]. Process Safety and Environmental Protection, 2018, 115: 108-115.
[44] Singh Rawel, Chaudhary Kajal, Biswas Bijoy, et al. Hydrothermal liquefaction of rice straw: Effect of reaction environment[J]. The Journal of Supercritical Fluids, 2015 104: 70-75.
[45] 朱張兵,王猛,張?jiān)摧x,等. 雞糞發(fā)酵液培養(yǎng)的小球藻水熱液化制備生物原油及其特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):191-196.
Zhu Zhangbing, Wang Meng, Zhang Yuanhui, et al. Biocrude oil preparation by hydrothermal liquefaction ofcultivated in biogas digestate from chicken manure and its characteristic[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8):191-196. (in Chinese with English abstract)
[46] Yang Wenchao, Li Xianguo, Li Zihui, et al. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: Crude polysaccharides, crude proteins and their binary mixtures[J]. Bioresource Technology, 2015, 196: 99-108.
[47] Jena Umakanta, Das K C, Kastner J R. Effect of operating conditions of thermochemical liquefaction on biocrude production from[J]. Bioresource Technology, 2011, 102(10): 6221-6229.
[48] 屈埴,劉志丹,朱張兵,等. 廚余垃圾水熱液化成油特性研究[J]. 太陽能學(xué)報(bào),2016,37(5):1327-1333. Qu Zhi, Liu Zhidan, Zhu Zhangbing, et al. Bio-crude production from kitchen waste through hydrothermal liquefaction[J]. Acta Energiae Solaris Sinica, 2016, 37(5): 1327-1333. (in Chinese with English abstract)
[49] Li Changjun, Yang Xiao, Zhang Zhe, et al. Hydrothermal liquefaction of desert shrub salix psammophila to high value-added chemicals and hydrochar with recycled processing water[J]. BioResources, 2013, 8(2): 2981-2997.
[50] Lu Jianwen, Li Hugang, Zhang Yuanhui, et al. Nitrogen migration and transformation during hydrothermal liquefaction of livestock manures[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 13570-13578.
[51] Yang Xiao, Lyu Hang, Chen Kaifei, et al. Selective extraction of bio-oil from hydrothermal liquefaction of salix psammophila by organic solvents with different polarities through multistep extraction separation[J]. Bio-Resources, 2014, 9(3): 5219-5233.
[52] Jazrawi Christopher, Biller Patrick, Ross Andrew B, et al. Pilot plant testing of continuous hydrothermal liquefaction of microalgae[J]. Algal Research, 2013, 2(3): 268-277.
[53] Chen Wanting, Zhang Yuanhui, Lee Timothy H, et al. Renewable diesel blendstocks produced by hydrothermal liquefaction of wet biowaste[J]. Nature Sustainability, 2018, 1(11): 702-710.
[54] Zhang Che, Xiao Yumei, Ma Yongqiang, et al. Algae biomass as a precursor for synthesis of nitrogen-and sulfurco-doped carbon dots: A better probe in Arabidopsis guard cells and root tissues[J]. Journal of Photochemistry & Photobiology B-Biology, 2017, 174: 315-322.
[55] Usman Muhammad, Chen Huihui, Chen Kaifei, et al. Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: A review[J]. Green Chemistry, 2019, 21(7): 1553-1572.
[56] Zhu Zhangbing, Si Buchun, Lu Jianwen, et al. Elemental migration and characterization of products during hydrothermal liquefaction of cornstalk[J]. Bioresource Technology, 2017, 243: 9-16.
[57] Pham Mai, Schideman Lance, Scott John, et al. Chemical and biological characterization of wastewater generated from hydrothermal liquefaction of Spirulina[J]. Environmental Science & Technology, 2013, 47(4): 2131―2138.
[58] Zhou Dong, Zhang Liang, Zhang Shicheng, et al. Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil[J]. Energy & Fuels, 2010, 24: 4054-4061.
[59] Zhou Yan, Schideman Lance, Yu Guo, et al. A synergistic combination of algal wastewater treatment and hydrothermal biofuel production maximized by nutrient and carbon recycling[J]. Energy & Environmental Science, 2013, 6(12): 3765-3779.
[60] Yang Xiao, Lyu Hang, Chen Kaifei, et al. Selective extraction of bio-oil from hydrothermal liquefaction of salix psammophila by organic solvents with different polarities through multistep extraction separation[J]. Bioresources, 2014, 9(3): 5219-5233.
[61] Li Ruirui, Ran Xia, Duan Na, et al. Application of zeolite adsorption and biological anaerobic digestion technology on hydrothermal liquefaction wastewater[J]. International Journal of Agricultural and Biological Engineering, 2017.
[62] Shen Ruixia, Jiang Yong, Ge Zheng, et al. Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation[J]. Applied Energy, 2018, 212: 509-515.
[63] Shen Ruixia, Liu Zhidan, He Yanhong, et al. Microbial electrolysis cell to treat hydrothermal liquefied wastewater from cornstalk and recover hydrogen: Degradation of organic compounds and characterization of microbial community[J]. International Journal of Hydrogen Energy, 2016, 41(7): 4132-4142.
[64] Watson Jamison, Si Buchun, Li Hao, et al. Influence of catalysts on hydrogen production from wastewater generated from the HTL of human feces via catalytic hydrothermal gasification[J]. International Journal of Hydrogen Energy, 2017, 42(32): 20503-20511.
[65] Li Hugang, Lu Jianwen, Zhang Yuanhui, et al. Hydrothermal liquefaction of typical livestock manures in China: Biocrude oil production and migration of heavy metal[J]. Journal of Analytical and Applied Pyrolysis, 2018(135): 133-140.
[66] 金斯汗. 干旱區(qū)牛糞生物炭對(duì)水中磷的吸附特性研究[J]. 新疆環(huán)境保護(hù),2018,40(3):35-39. Jin Sihan. Adsorption characteristics of phosphorus in water by dairy manure-derived biochar in arid area[J]. Environ- mental Protection of Xinjiang, 2018, 40(3): 35-39. (in Chinese with English abstract)
[67] 馬鋒鋒,趙保衛(wèi),刁靜茹,等. 牛糞生物炭對(duì)水中氨氮的吸附特性[J]. 環(huán)境科學(xué),2015,36(5):1678-1685. Ma Fengfeng, Zhao Baowei, Diao Jingru, et al. Ammonium adsorption characteristics in aqueous solution by dairy manure biochar[J]. Environmental Science, 2015, 36(5): 1678-1685. (in Chinese with English abstract)
[68] 韓魯佳,李彥霏,劉賢,等. 生物炭吸附水體中重金屬機(jī)理與工藝研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(11):1-11.
Han Lujia, Li Yanfei, Liu Xian, et al. Review of biochar as adsorbent for aqueous heavy metal removal[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(11): 1-11. (in Chinese with English abstract)
[69] 馮晶,荊勇,趙立欣,等. 生物炭強(qiáng)化有機(jī)廢棄物厭氧發(fā)酵技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):256-264.
Feng Jing, Jing Yong, Zhao Lixin, et al. Research progress on biochar enhanced anaerobic fermentation technology of organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 256-264. (in Chinese with English abstract)
[70] 王健,沈玉君,劉燁,等. 畜禽糞便與秸稈厭氧-好氧發(fā)酵氣肥聯(lián)產(chǎn)碳氮元素變化研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(4):225-231.
Wang Jian, Shen Yujun, Liu Ye, et al. Variations of carbon and nitrogen during anaerobic-aerobic fermentation for co-production of biogas and organic fertilizer using animal manure and straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 225-231. (in Chinese with English abstract)
Research progress on characteristics and utilization of products from hydrothermal liquefaction of biomass
Shen Ruixia, Zhao Lixin※, Feng Jing, Jing Yong, Yu Jiadong
(,,,100125)
In recent years, hydrothermal liquefaction (HTL) has attracted great attention because it has obvious advantages, such as various substrate types, total conversion of organic components from biomass (fat, carbohydrates and proteins), etc., compared with other biomass conversion technologies. In addition, HTL do not need to dry the raw materials, even biomass with high moisture content (more than 70%) can be used to produce biocrude oil via HTL. This paper reviews the latest progress in the HTL study of biomass, describes the separation process during HTL, and concentrates on the characteristics and utilization of HTL products (Biocrude oil, aqueous phase, solid residues and gases). Biocrude production of several model components from biomass was investigated, the results showed that biocrude yield of lipid was the highest (above 80%), followed by protein (20%-30%), and the yield of carbohydrate is the lowest (less than 10%). The aqueous phase is the main by-product of biomass HTL. There was 20%-50% of the organic matter in the substrate transferred to the aqueous phase. Different from the biocrude oil and aqueous phase, the organic components in the solid residues are much lower, the solid residue mainly contained inorganic components (ash content > 50%). Furthermore, we summarized the key elements migration in HTL products. In the process of HTL, 62%-98% of Ca, Mg, Al, Fe, Cu, Pb, Cd and Zn in the raw materials are transferred to the solid residues. Biocrude oil can be used as fuels, or can be used to extract high value-added products, the aqueous phase can be utilized for microalgae cultivation, methane production through anaerobic digestion or hydrogen production via microbial electrolysis cells, the solid residue is able to be used as biochar after further treatment, and gas phase can be used as gas fertilizer in the greenhouse. At last, the research direction in HTL is prospected. At present, a lot of researches on HTL of biomass were performed, but still some problems need to be further explored, mainly in the following aspects: 1) Biocrude oil components are complex, GC-MS of the biocrude oil can only obtain the information of low boiling point compounds, lack of understanding for high boiling point macromolecular compounds in biocrude oil, FTICR-MS or other technologies can be carried out to get a comprehensive understanding of the compounds. 2) The conversion mechanism of biomass HTL needs to be studied. At present, only some characterization of the product is carried out to speculate its reaction path, while the reaction intermediates are not monitored, which can be deeply analyzed by some in-situ on-line monitoring methods. Biomass HTL can improve the quality of biocrude oil by catalytic hydrogenation, and then the biocrude oil can be utilized by distillation. Although the above bottlenecks need to be explored and studied by researchers, the production of biocrude oil by HTL is expected to solve the problem of energy shortage in China because of its remarkable advantages, especially as a liquid fuel, so HTL technology has great potential in the renewable fuel production. This paper can provide references for future HTL study of biomass and the downstream utilization of HTL products.
biomass; hydrothermal liquefaction; fermentation; biocrude oil; elements migration
申瑞霞,趙立欣,馮 晶,荊 勇,于佳動(dòng). 生物質(zhì)水熱液化產(chǎn)物特性與利用研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):266-274. doi:10.11975/j.issn.1002-6819.2020.02.031 http://www.tcsae.org
Shen Ruixia, Zhao Lixin, Feng Jing, Jing Yong, Yu Jiadong. Research progress on characteristics and utilization of products from hydrothermal liquefaction of biomass[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 266-274. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.02.031 http://www.tcsae.org
2019-08-25
2019-10-20
現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金資助(CARS-02);中國(guó)博士后科學(xué)基金資助項(xiàng)目(2018M641295);農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院重點(diǎn)實(shí)驗(yàn)室開放課題(KLERUAR2018-01)
申瑞霞,工程師,博士,主要從事農(nóng)業(yè)廢棄物資源化利用研究。Email:shenruixia20101229@163.com
趙立欣,研究員,博士,主要從事農(nóng)業(yè)廢棄物能源化研究。Email:zhaolixin5092@163.com
10.11975/j.issn.1002-6819.2020.02.031
X71
A
1002-6819(2020)-02-0266-09