王星果 曲亮 竇套存 郭軍 胡玉萍 馬猛 李永峰 王克華
摘要:【目的】明確相關(guān)基因在育成期蛋雞肝臟脂質(zhì)代謝調(diào)控過(guò)程中的作用機(jī)理,為改善蛋雞的生產(chǎn)性能打下基礎(chǔ)?!痉椒ā糠謩e選取高能量(12.14 MJ/kg)和低能量(10.88 MJ/kg)飼料飼喂育成期蛋雞,利用Illumina NextSeq 500平臺(tái)對(duì)蛋雞肝臟進(jìn)行轉(zhuǎn)錄組測(cè)序,通過(guò)HTSeq和DESeq等生物信息學(xué)方法篩選出差異表達(dá)基因,并以超幾何分布對(duì)差異表達(dá)基因進(jìn)行GO功能富集分析和KEGG信號(hào)通路富集分析?!窘Y(jié)果】從低能組和高能組蛋雞肝臟樣品RNA-seq測(cè)序獲得的原始序列均超過(guò)8000萬(wàn)條,且能比對(duì)上基因組和基因的序列均在80.00%以上。其中,基因序列占87.32%~89.78%,基因間序列占10.22%~12.68%;外顯子序列在基因序列中的所占比例很高,為78.10%~82.88%,內(nèi)含子序列所占比例在17.12%~21.90%。相對(duì)于低能組,高能組蛋雞肝臟中有82個(gè)基因上調(diào)表達(dá)、106個(gè)基因下調(diào)表達(dá)。差異表達(dá)基因GO功能富集分析發(fā)現(xiàn)有314個(gè)顯著富集的GO功能(P<0.05,下同),其中,241個(gè)富集在生物過(guò)程(BP),18個(gè)富集在細(xì)胞組分(CC),55個(gè)富集在分子功能(MF)。脂質(zhì)代謝過(guò)程和細(xì)胞脂質(zhì)代謝過(guò)程富集的基因分別有16和14個(gè),占差異表達(dá)基因總數(shù)的8.51%和7.45%;脂質(zhì)代謝過(guò)程較細(xì)胞脂質(zhì)代謝過(guò)程多出的基因是PLIN1和FGF19。差異表達(dá)基因KEGG信號(hào)通路富集分析發(fā)現(xiàn)有4條顯著富集的KEGG信號(hào)通路,且均與蛋雞肝臟的脂質(zhì)代謝相關(guān)?!窘Y(jié)論】育成期對(duì)蛋雞進(jìn)行高能飲食飼喂,主要是通過(guò)上調(diào)或下調(diào)脂質(zhì)代謝相關(guān)基因表達(dá)而影響肝臟脂質(zhì)代謝,最終實(shí)現(xiàn)蛋雞生產(chǎn)性能調(diào)控。
關(guān)鍵詞: 蛋雞;育成期;高能飲食;肝臟;脂質(zhì)代謝;生產(chǎn)性能;轉(zhuǎn)錄組測(cè)序
中圖分類號(hào): S831.91? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼: A 文章編號(hào):2095-1191(2020)08-1864-08
Effects of high energy diet on liver transcriptome of laying
hens during growing period
WANG Xing-guo, QU Liang, DOU Tao-cun, GUO Jun, HU Yu-ping, MA Meng,
LI Yong-feng, WANG Ke-hua*
(Jiangsu Institute of Poultry Science, Yangzhou, Jiangsu? 225125,? China)
Abstract:【Objective】The current study was conducted to clarify the mechanism of related genes in the regulation of lipid metabolism in the liver of laying hens during growing period. It laid a foundation for improving the performance of laying hens. 【Method】High energy(12.14 MJ/kg) and low energy(10.88 MJ/kg) feeds were selected to feed laying hens during growing period, respectively. The livers in laying hens were transcriptome sequenced using the Illumina NextSeq 500 platform.The differentially expressed genes(DEG) were screened by bioinformatics such as HTSeq and DESeq. And the DEG were analyzed by GO function enrichment and KEGG signal pathway enrichment analysis using hypergeometric. 【Result】The raw reads obtained by RNA-seq from the liver samples of both the low energy group and the high energy group were over 80000000, and over 80.00% of them could be mapped to genomes and genes. Among them, gene reads accounted for 87.32%-89.78%, and intergene reads 10.22%-12.68%. Exon reads accounted for 78.10%-82.88% of the gene reads, and intron reads 17.12%-21.90%. Compared with the lowenergy group, 82 genes in the livers of high energy group were up-regulated and 106 genes were down-regulated. Analysis of GO function enrichment of DEG showed there were 314 significantly enriched functions(P<0.05, the same below), among which 241 were enriched in biological processes(BP), 18 were enriched in cellular components(CC), and 55 were enriched in molecular functions(MF). There were 16 and 14 genes that were enriched in lipid metabolic process and cellular lipid metabolic process, respectively, accounting for 8.51% and 7.45% of the total number of DEG. PLIN1 and FGF19 were in lipid metabolic process but not in cellular lipid metabolic process. KEGG analysisof DEG revealed that there were 4 significantly enriched signaling pathways, and all of them were related to lipid metabolism in livers oflaying hens. 【Conclusion】During the growing period, high energy diet feeding of laying hens affects lipid metabolism in liver mainly by upregulating or downregulating the expression of lipid metabolism related genes, and finally regulates the performance of laying hens.
Key words: laying hen; growing period; high energy diet; liver; lipid metabolism; performance; transcriptome sequencing
Foundation item: Independent Research Project of Jiangsu Public Welfare Research Institutes(BM2018026); National Modern Agricultural IndustryTechnology System Construction Project(CARS-40-K01); Project of Agricultural Major New Breed Creation of Jiangsu(PZCZ201729); Project of Key Laboratory of Poultry Genetics and Breeding of Jiangsu (JQLAB-ZZ-202003)
0 引言
【研究意義】生產(chǎn)性能提高是蛋雞養(yǎng)殖業(yè)的一項(xiàng)重要工作,而影響蛋雞生產(chǎn)性能的因素錯(cuò)綜復(fù)雜,其中能量水平調(diào)控是主要因素之一。近年來(lái),科學(xué)家們逐漸認(rèn)識(shí)到能量對(duì)蛋雞生產(chǎn)性能影響的重要性(李娜等,2019),同時(shí)出于對(duì)飼料成本的考慮,養(yǎng)殖戶也更加重視能量水平對(duì)蛋雞生產(chǎn)性能的影響(張利敏等,2012),尤其是對(duì)育成期蛋雞進(jìn)行能量調(diào)控。肝臟是動(dòng)物機(jī)體重要的代謝器官,在雞、鴨、鵝等家禽中還是物質(zhì)代謝特別是脂質(zhì)代謝的主要器官,對(duì)育成期的能量調(diào)控起關(guān)鍵作用(劉振,2016)。轉(zhuǎn)錄組測(cè)序是目前研究生物過(guò)程的熱門方法之一,通過(guò)轉(zhuǎn)錄組測(cè)序可較全面地發(fā)現(xiàn)和分析調(diào)控生物過(guò)程的基因,在人類和豬的能量調(diào)控上已有成功報(bào)道(Skugor et al.,2019;van Bussel et al.,2019)。因此,開展育成期能量調(diào)控后蛋雞肝臟轉(zhuǎn)錄組測(cè)序研究,對(duì)揭示其關(guān)鍵基因調(diào)控肝臟代謝機(jī)理及有效改善蛋雞生產(chǎn)性能均具有重要意義?!厩叭搜芯窟M(jìn)展】能量是影響蛋雞性能的重要因素之一,且越來(lái)越多的研究證實(shí)能量調(diào)控對(duì)蛋雞生產(chǎn)性能有顯著影響(張利敏等,2012;費(fèi)強(qiáng),2013)。至今,針對(duì)育成期蛋雞進(jìn)行能量調(diào)控的研究主要集中在調(diào)控后蛋雞的表觀特征探索。張李俊等(2005)以不同能量的飼料飼喂育成期白殼蛋雞,結(jié)果發(fā)現(xiàn)中高能量組的蛋雞體重顯著高于低能量組,產(chǎn)蛋率也高于低能量組;呂秋鳳等(2014)研究表明,不同能量日糧對(duì)育成蛋雞的體重增長(zhǎng)和料重比均有顯著影響,且以日糧能量水平為11.63 MJ/kg的效果較優(yōu);李娜等(2019)通過(guò)研究不同能量飼料對(duì)育成期盧氏綠殼蛋雞體尺、生長(zhǎng)性能及屠宰性能的影響,發(fā)現(xiàn)日糧能量水平為11.70 MJ/kg時(shí)更有利于提高育成期盧氏綠殼蛋雞的生長(zhǎng)性能和屠宰性能。隨著轉(zhuǎn)錄組測(cè)序技術(shù)的不斷成熟,其應(yīng)用領(lǐng)域也越來(lái)越廣泛(陳黎等,2016;唐玉娟等,2018;趙彥花等,2019;楊和川等,2020),目前在雞肝臟的相關(guān)研究中也有一定應(yīng)用。Wang等(2014)對(duì)經(jīng)生長(zhǎng)激素(GH)處理的雞肝臟進(jìn)行轉(zhuǎn)錄組測(cè)序,發(fā)現(xiàn)164個(gè)差異表達(dá)基因中有46個(gè)基因參與代謝過(guò)程,且KEGG信號(hào)通路富集分析發(fā)現(xiàn)最顯著富集的信號(hào)通路參與脂質(zhì)代謝;同時(shí)對(duì)miR-122抑制后的雞肝臟進(jìn)行轉(zhuǎn)錄組測(cè)序,結(jié)果發(fā)現(xiàn)存在123個(gè)差異表達(dá)基因,其中50個(gè)比對(duì)上GO功能,且有50%參與代謝過(guò)程(Wang et al.,2015)。此外,對(duì)白來(lái)航雞產(chǎn)蛋前后的肝臟、盧氏綠殼蛋雞產(chǎn)蛋前期和高峰期的肝臟、雌激素處理蛋雞的肝臟進(jìn)行轉(zhuǎn)錄組測(cè)序,均發(fā)現(xiàn)有大量差異表達(dá)基因參與肝臟代謝(Li et al.,2015;李慧鋒等,2017;任俊曉,2017),進(jìn)而影響蛋雞對(duì)飼料中營(yíng)養(yǎng)物質(zhì)的利用效率?!颈狙芯壳腥朦c(diǎn)】本課題組前期使用不同能量水平的飼料飼喂育成期蛋雞,發(fā)現(xiàn)在12~21周齡間不同能量組的蛋雞體重始終保持著極顯著差異,且飼料能量水平越高,蛋雞開產(chǎn)日齡越早,產(chǎn)蛋數(shù)越多(李永峰,2017),但尚未針對(duì)育成期蛋雞能量調(diào)控進(jìn)行肝臟轉(zhuǎn)錄組測(cè)序研究?!緮M解決的關(guān)鍵問題】分別選取高能量(12.14 MJ/kg)和低能量(10.88 MJ/kg)飼料飼喂育成期蛋雞,然后對(duì)蛋雞肝臟進(jìn)行轉(zhuǎn)錄組測(cè)序,分析其表達(dá)譜,明確相關(guān)基因在育成期蛋雞肝臟脂質(zhì)代謝調(diào)控過(guò)程中的作用機(jī)理,為改善蛋雞的生產(chǎn)性能打下基礎(chǔ)。
1 材料與方法
1. 1 試驗(yàn)動(dòng)物及飼養(yǎng)管理
供試動(dòng)物選用本課題組培育的如皋黃雞品系,前8周齡按常規(guī)飼養(yǎng),于56日齡時(shí)選取體重相近的蛋雞160羽,隨機(jī)分成2組,各8個(gè)重復(fù),每個(gè)重復(fù)10羽。9~18周齡,分別定量飼喂代謝能水平為10.88 MJ/kg(低能組)和12.14 MJ/kg(高能組)的飼料,18周齡后自由采食標(biāo)準(zhǔn)營(yíng)養(yǎng)水平的飼料。參照美國(guó)NRC標(biāo)準(zhǔn)配制試驗(yàn)日糧,分9~18周齡和19周齡后2個(gè)階段進(jìn)行配制,同時(shí)配以粉料飼喂;9~16周齡在育成雞舍四層階梯籠內(nèi)飼養(yǎng)(5羽/籠),17周齡轉(zhuǎn)入產(chǎn)蛋雞舍三層階梯籠內(nèi)單羽飼養(yǎng)。整個(gè)試驗(yàn)周期內(nèi),所有蛋雞均自由飲水,并執(zhí)行常規(guī)光照和免疫等程序。
1. 2 轉(zhuǎn)錄組測(cè)序
20周齡時(shí)每組每個(gè)重復(fù)隨機(jī)選取1羽產(chǎn)蛋雞,稱重后各組取最接近平均值的3羽產(chǎn)蛋雞,屠宰并取出肝臟組織,放入液氮中保存?zhèn)溆谩J褂肨RIzol試劑提取肝臟組織總RNA,以瓊脂糖凝膠電泳和Agilent 2100檢測(cè)RNA質(zhì)量,通過(guò)rRNA去除試劑盒去除rRNA,以離子打斷方式將RNA打斷成200~300 bp的片段,反轉(zhuǎn)錄合成cDNA,PCR富集構(gòu)建cDNA文庫(kù),以實(shí)時(shí)熒光定量PCR檢測(cè)文庫(kù)大小及其濃度,再利用Illumina NextSeq 500平臺(tái)進(jìn)行轉(zhuǎn)錄組測(cè)序。
1. 3 序列分析
測(cè)序獲得的原始序列(Raw reads)進(jìn)行序列數(shù)、Q20和Q30等初步統(tǒng)計(jì)后,去除接頭并進(jìn)行質(zhì)量過(guò)濾,以獲得純凈序列(Clean reads);采用FastQC對(duì)純凈序列進(jìn)行堿基質(zhì)量分布檢測(cè),包括單堿基質(zhì)量、堿基含量分布及GC含量分布等;以雞參考基因組為對(duì)照,使用Tophat2比對(duì)分析過(guò)濾后獲得的純凈序列,包括外顯子、內(nèi)含子和基因間序列;運(yùn)用RSeQC對(duì)Tophat2比對(duì)結(jié)果進(jìn)行質(zhì)控分析,包括插入片段長(zhǎng)度分布和序列重復(fù)率;利用HTSeq計(jì)算基因原始表達(dá)量,經(jīng)RPKM標(biāo)準(zhǔn)化處理后采用DESeq進(jìn)行差異表達(dá)基因分析,按表達(dá)量倍數(shù)差異(Fold change)>2.0或<0.5且表達(dá)差異顯著性P<0.05篩選出差異表達(dá)基因;并以超幾何分布對(duì)差異表達(dá)基因進(jìn)行GO功能富集分析和KEGG信號(hào)通路富集分析。
2 結(jié)果與分析
2. 1 蛋雞肝臟RNA-seq測(cè)序質(zhì)量分析結(jié)果
低能組和高能組蛋雞肝臟轉(zhuǎn)錄組經(jīng)RNA-seq測(cè)序獲得的原始序列信息如表1所示。6個(gè)樣品測(cè)序獲得的原始序列均超過(guò)8000萬(wàn)條,且經(jīng)質(zhì)量過(guò)濾后,純凈序列/原始序列的比值均在99.00%以上,說(shuō)明低質(zhì)量序列很少,測(cè)序效果良好。此外,低能組與高能組蛋雞肝臟轉(zhuǎn)錄組測(cè)序獲得的原始序列和純凈序列數(shù)量相當(dāng),即測(cè)序質(zhì)量相近。
2. 2 蛋雞肝臟基因鑒定結(jié)果
將各樣品分析過(guò)濾后的純凈序列與雞參考基因組進(jìn)行比對(duì),統(tǒng)計(jì)比對(duì)上的序列結(jié)果見表2。6個(gè)樣品中能比對(duì)上基因組的序列均占純凈序列的80.00%以上,且絕大部分是基因序列(占87.32%~89.78%),而基因間序列所占比例較低(10.22%~12.68%),可能是基因組注釋不完善所致;外顯子序列在基因序列中所占比例很高(78.10%~82.88%),內(nèi)含子序列所占比例在17.12%~21.90%,推測(cè)是mRNA前體轉(zhuǎn)錄本殘留,或可變剪切過(guò)程中發(fā)生的內(nèi)含子滯留事件??梢姡?個(gè)樣品測(cè)序獲得的序列基本是有效基因序列,可對(duì)其進(jìn)行后續(xù)研究。
2. 3 高能飲食對(duì)蛋雞肝臟基因表達(dá)的影響
對(duì)鑒定獲得的蛋雞肝臟基因進(jìn)行RPKM表達(dá)量分析,并對(duì)比分析高能組和低能組樣品中的基因表達(dá)量,篩選出差異表達(dá)基因。由圖1可知,共篩選出188個(gè)差異表達(dá)基因;相對(duì)于低能組,高能組有82個(gè)基因上調(diào)表達(dá)、106個(gè)基因下調(diào)表達(dá)。差異表達(dá)基因聚類分析結(jié)果(圖2)表明,大多數(shù)基因聚集在同一大類上,即具有功能相關(guān)性。表3展示了表達(dá)差異最明顯的20個(gè)基因(10個(gè)上調(diào)基因,10個(gè)下調(diào)基因),上調(diào)或下調(diào)水平均在6倍以上,其中CRISP2和ENSGALG-00000036582基因在低能組均未檢測(cè)出,提示這2個(gè)基因可能在高能組具有特殊作用。
2. 4 蛋雞肝臟差異表達(dá)基因功能分析結(jié)果
2. 4. 1 GO功能富集分析 對(duì)高能組和低能組的差異表達(dá)基因進(jìn)行GO功能富集分析,結(jié)果發(fā)現(xiàn)有314個(gè)顯著富集的GO功能(P<0.05,下同)。其中,241個(gè)富集在生物過(guò)程(BP),18個(gè)富集在細(xì)胞組分(CC),55個(gè)富集在分子功能(MF)。富集最顯著的20個(gè)GO功能見圖3,其中富集較多的GO功能是脂質(zhì)代謝相關(guān)過(guò)程和免疫相關(guān)過(guò)程。脂質(zhì)代謝過(guò)程和細(xì)胞脂質(zhì)代謝過(guò)程富集的基因分別有16和14個(gè)(表4),占差異表達(dá)基因總數(shù)的8.51%和7.45%。脂質(zhì)代謝過(guò)程較細(xì)胞脂質(zhì)代謝過(guò)程多出的基因是PLIN1和FGF19。
2. 4. 2 KEGG信號(hào)通路富集分析 對(duì)高能組和低能組的差異表達(dá)基因進(jìn)行KEGG信號(hào)通路富集分析,結(jié)果發(fā)現(xiàn)有4條顯著富集的KEGG信號(hào)通路。4條KEGG信號(hào)通路及其相關(guān)差異表達(dá)基因詳見表5,其中,脂肪酸生物合成、脂肪酸降解和鞘脂代謝均與脂質(zhì)代謝相關(guān);PPAR信號(hào)通路除了與內(nèi)分泌系統(tǒng)相關(guān)外,還與脂肪組織分化和脂肪代謝相關(guān)(Siersbaek et al.,2010;王璟等,2016),說(shuō)明脂質(zhì)相關(guān)信號(hào)通路與能量攝入量存在密切聯(lián)系。
3 討論
隨著轉(zhuǎn)錄組測(cè)序技術(shù)的不斷進(jìn)步,測(cè)序數(shù)據(jù)的容量和質(zhì)量均有明顯提高,RNA-seq測(cè)序數(shù)據(jù)量(原始序列)一般在5000萬(wàn)條以上(李瀅等,2010;Gan et al.,2010;袁茂等,2019;吳夢(mèng)等,2020)。本研究RNA-seq測(cè)序獲得的原始序列均超過(guò)8000萬(wàn)條,且測(cè)序數(shù)據(jù)質(zhì)量較高,能比對(duì)上基因組和基因的序列均在80.00%以上;Q30也在90%附近,堿基識(shí)別準(zhǔn)確率高;AT含量和GC含量基本相等,處于堿基平衡狀態(tài)。差異表達(dá)基因?qū)Ρ确治鼋Y(jié)果表明,在表達(dá)差異最明顯的20個(gè)基因(10個(gè)上調(diào)基因,10個(gè)下調(diào)基因)中,CRISP2和ENSGALG00000036582基因在低能組均未檢測(cè)出,而ENSGALG00000038668和ANKEF1基因在高能組均未檢測(cè)出。CRISP2基因在哺乳動(dòng)物中參與精子的形成(Lim et al.,2019),而其他3個(gè)基因至今尚無(wú)相關(guān)功能研究報(bào)道。表達(dá)差異在10倍以上的基因有6個(gè),分別是ENSGALG00000041767、ENSGALG00000031866、SGIP1、VGLL1、ENSGALG-00000038535和ENSGALG00000042179。SGIP1基因在哺乳動(dòng)物中與體脂重相關(guān)(Cummings et al.,2012),VGLL1基因在哺乳動(dòng)物中與腫瘤發(fā)生相關(guān)(Yamaguchi,2020),其他4個(gè)基因也未見相關(guān)研究報(bào)道。這些基因中除了SGIP1基因可能參與脂質(zhì)代謝外,其他基因雖然在肝臟對(duì)能量攝入量的影響中發(fā)揮重要作用,但其作用機(jī)理尚不明確,還需進(jìn)一步探究。
本研究的差異表達(dá)基因GO功能富集分析結(jié)果表明,脂質(zhì)代謝相關(guān)功能在富集最顯著的20個(gè)GO功能中共有16個(gè)基因,說(shuō)明脂質(zhì)代謝是受能量攝入影響較明顯的生物過(guò)程。甘油三酯含量與ACSBG1、BCO2、IRS2和FGF19基因表達(dá)呈負(fù)相關(guān)(Chen et al.,2018;Lim et al.,2018;Struik et al.,2019;Yang et al.,2019),而與PRKAR2B、MSMO1、FABP5、PLIN1、AGPAT2和MID1IP1基因表達(dá)呈正相關(guān)(Triantafyllou et al.,2018;Kerr et al.,2019;Kim et al.,2019;Liu et al.,2019);CYP26B1基因與膽固醇流出呈正相關(guān)(Bechor et al.,2016),CYP2W1基因與催化溶血磷脂氧化相關(guān)(Xiao and Guengerich,2012),AGTR1基因與增加脂質(zhì)的去飽和化相關(guān)(Zhang et al.,2019)。王雪瑩等(2005)使用低能量飼料飼喂干乳期奶牛,發(fā)現(xiàn)其圍產(chǎn)期肝臟中脂質(zhì)代謝相關(guān)基因低密度脂蛋白受體的mRNA顯著升高,且促進(jìn)極低密度脂蛋白組裝和分泌;陳仕均等(2007)以高能量飼料飼喂圍產(chǎn)期奶牛,結(jié)果發(fā)現(xiàn)產(chǎn)后14 d其肝臟中脂質(zhì)代謝相關(guān)基因微粒體甘油三酯轉(zhuǎn)運(yùn)蛋白的mRNA顯著升高。本研究還發(fā)現(xiàn),除脂質(zhì)代謝相關(guān)過(guò)程外,免疫相關(guān)過(guò)程的富集程度也較高,與Agrawal等(2017)的研究結(jié)論相似,說(shuō)明能量攝入量主要影響蛋雞肝臟的脂質(zhì)代謝和免疫功能。
本研究的差異表達(dá)基因KEGG信號(hào)通路富集分析發(fā)現(xiàn),顯著富集的4條KEGG信號(hào)通路均與脂質(zhì)代謝相關(guān),與Minuti等(2020)的研究結(jié)論相似。脂質(zhì)在雞肝臟中經(jīng)一系列代謝轉(zhuǎn)運(yùn)至卵母細(xì)胞中沉積形成卵黃(Walzem et al.,1999),即脂質(zhì)代謝與蛋雞的產(chǎn)蛋性能密切相關(guān)。此外,已有研究表明在日糧中添加糞腸球菌或葎草水提物能降低甘油三酯和膽固醇含量,提高蛋雞產(chǎn)蛋率(劉松等,2017;王中華等,2017);添加茶多酚雖然能降低甘油三酯和膽固醇含量,但同時(shí)降低蛋雞產(chǎn)蛋率(何俊金等,2018)??梢姡芰繑z入量通過(guò)影響肝臟脂質(zhì)代謝相關(guān)基因表達(dá)及其脂質(zhì)代謝,進(jìn)而影響蛋雞的產(chǎn)蛋性能。
4 結(jié)論
育成期對(duì)蛋雞進(jìn)行高能量飼喂,主要是通過(guò)上調(diào)或下調(diào)脂質(zhì)代謝相關(guān)基因表達(dá)而影響肝臟脂質(zhì)代謝,最終實(shí)現(xiàn)蛋雞生產(chǎn)性能調(diào)控。
參考文獻(xiàn):
陳黎,黃學(xué)濤,田勇,陶爭(zhēng)榮,盧立志. 2016. 利用轉(zhuǎn)錄組測(cè)序篩選與鴨青殼性狀形成相關(guān)的基因[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),24(7):1064-1072. [Chen L,Huang X T,Tian Y,Tao Z R,Lu L Z. 2016. Identifying genes associated with blue eggshell in ducks(Anas platyrhynchos domesticus) by transcriptome analysis[J]. Journal of Agricultural Biotechnology,24(7):1064-1072.]
陳仕均,孫玉成,劉國(guó)文,王哲,鄧俊良,唐海蓉,王雪瑩. 2007. 不同能量攝入水平對(duì)圍產(chǎn)期奶牛肝MTP mRNA豐度的影響[J]. 中國(guó)獸醫(yī)學(xué)報(bào),27(3):382-386. [Chen S J,Sun Y C,Liu G W,Wang Z,Deng J L,Tang H R,Wang X Y. 2007. Effect of different energy intakes on abundance of MTP mRNA in liver of periparturient dairy cows[J]. Chinese Journal of Veterinary Science,27(3):382-386.]
費(fèi)強(qiáng). 2013. 蛋雞產(chǎn)蛋性能下降的原因及對(duì)策[J]. 家禽科學(xué),(2):32-33. [Fei Q. 2013. The reason and countermeasure of performance decrease of laying hens[J]. Poultry Science,(2):32-33.]
何俊金,王建萍,丁雪梅,曾秋鳳,白世平,張克英. 2018. 飼糧中添加高劑量茶多酚對(duì)產(chǎn)蛋后期蛋雞生產(chǎn)性能、蛋品質(zhì)和脂質(zhì)代謝的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),30(11):4601-4610. [He J J,Wang J P,Ding X M,Zeng Q F,Bai S P,Zhang K Y. 2018. Effects of adding high doses of tea polyphenols into diets on performance,egg quality and lipid metabolism of laying hens during later laying period[J]. Chinese Journal of Animal Nutrition,30(11):4601-4610.]
李慧鋒,張臻,朱文進(jìn),張同玉,郭文婕,蔡永強(qiáng),朱芷葳,張利環(huán). 2017. 白來(lái)航蛋雞產(chǎn)蛋前后肝轉(zhuǎn)錄組功能分析[J]. 畜牧獸醫(yī)學(xué)報(bào),48(9):1624-1634. [Li H F,Zhang Z,Zhu W J,Zhang T Y,Guo W J,Cai Y Q,Zhu Z W,Zhang L H. 2017. Functional analysis of liver transcriptome before and after White Leghorn hen begin laying eggs[J]. Acta Veterinaria et Zootechnica Sinica,48(9):1624-1634.]
李娜,徐廷生,雷雪芹,劉寧,文鳳云,吳秋玨,高靈照. 2019. 盧氏綠殼蛋雞育成期適宜能量水平的研究[J]. 中國(guó)農(nóng)學(xué)通報(bào),35(5):154-159. [Li N,Xu T S,Lei X Q,Liu N,Wen F Y,Wu Q J,Gao L Z. 2019. Appropriate energy level for Lushi green-shell egg laying pullets during gro-wing period[J]. Chinese Agricultural Science Bulletin,35(5):154-159.]
李瀅,孫超,羅紅梅,李西文,牛云云,陳士林. 2010. 基于高通量測(cè)序454 GS FLX的丹參轉(zhuǎn)錄組學(xué)研究[J]. 藥學(xué)學(xué)報(bào),45(4):524-529. [Li Y,Sun C,Luo H M,Li X W,Niu Y Y,Chen S L. 2010. Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX[J]. Acta Pharmaceutica Sinica,45(4):524-529.]
李永峰. 2017. 育成期能量攝入量對(duì)蘇禽綠殼蛋雞母本早期蛋用性能的影響[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院. [Li Y F. 2017. The impact of energy intake during growing period on early laying performance of Suqin green eggshell layer female parent[D]. Beijing:Chinese Academy of Agricultural Sciences.]
劉松,董曉芳,佟建明,鮑延娥,王志紅. 2017. 飼糧添加糞腸球菌對(duì)蛋雞生產(chǎn)性能、蛋品質(zhì)、脂質(zhì)代謝和腸道微生物數(shù)量的影響[J]. 動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),29(1):202-213. [Liu S,Dong X F,Tong J M,Bao Y E,Wang Z H. 2017. Effects of dietary Enterococcus faecalis on performance,egg quality,lipid metabolism and intestinal microflora numbers of laying hens[J]. Chinese Journal of Animal Nutrition,29(1):202-213.]
劉振. 2016. 飼糧類型對(duì)雞脂肪肝形成的影響及表觀調(diào)控機(jī)制[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院. [Liu Z. 2016. Study of the effect of diets type on fatty liver syndrome in chicken and the underlying epigenetic mechanisms in chicken[D]. Beijing:Chinese Academy of Agricultural Sciences.]
呂秋鳳,董公麟,王玉璘,邱波寧,呂允濤,董欣,王楠,楊洋. 2014. 不同能量水平日糧對(duì)育成蛋雞生長(zhǎng)性能與脛骨長(zhǎng)的影響[C]//中國(guó)畜牧獸醫(yī)學(xué)會(huì). 全國(guó)動(dòng)物生理生化第七屆全國(guó)代表大會(huì)暨第十三次學(xué)術(shù)交流會(huì)論文摘要匯編. [Lü Q F, Dong G L,Wang Y L,Qiu B N,Lü Y T,Dong X,Wang N,Yang Y. 2014. Effects of different energy le-vels on growth performance and tibial length of laying hens during growing period[C]//Chinese Association of Animal Science and Veterinary Medicine. The 7th Natio-nal Congress and the 13th Academic Meeting of Animal Physiology and Biochemistry.]
任俊曉. 2017. 雌激素處理雞肝臟轉(zhuǎn)錄組分析及候選基因受雌激素調(diào)控的分子機(jī)制研究[D]. 鄭州:河南農(nóng)業(yè)大學(xué). [Ren J X. 2017. Study on estrogen treated chicken liver transcriptome and estrogen regulation molecular mechanism on the candidate genes[D]. Zhengzhou:Henan Agri-cultural University.]
唐玉娟,黃國(guó)第,羅世杏,周俊岸,莫永龍,李日旺,趙英,張宇,宋恩亮,寧琳. 2018. 芒果2個(gè)不同花芽分化時(shí)期轉(zhuǎn)錄組分析[J]. 南方農(nóng)業(yè)學(xué)報(bào),49(7):1257-1264. [Tang Y J,Huang G D,Luo S X,Zhou J A,Mo Y L,Li R W,Zhao Y,Zhang Y,Song E L,Ning L. 2018. Transcriptome of Mangifera indica L. in two different flower bud differentiation stages[J]. Journal of Southern Agriculture,49(7):1257-1264.]
王璟,白獻(xiàn)曉,張家慶,高彬文,陳俊峰,高原,任巧玲,馬強(qiáng),郭紅霞,梁永紅,邢寶松. 2016. 去勢(shì)對(duì)淮南豬皮下脂肪PPAR信號(hào)通路基因表達(dá)量的影響[J]. 華北農(nóng)學(xué)報(bào),31(2):92-97. [Wang J,Bai X X,Zhang J Q,Gao B W,Chen J F,Gao Y,Ren Q L,Ma Q,Guo H X,Liang Y H,Xing B S. 2016. Effect of castration on PPAR signal pathway expression in Huainan pig subcutaneous fat tissue[J]. Acta Agriculturae Boreali-Sinica,31(2):92-97.]
王雪瑩,孫玉成,李紅梅,王哲,楊連玉. 2005. 攝入不同能量的圍產(chǎn)期乳牛肝低密度脂蛋白受體mRNA豐度的比較[J]. 中國(guó)獸醫(yī)科技,35(10):811-815. [Wang X Y,Sun Y C,Li H M,Wang Z,Yang L Y. 2005. Comparison of abundance of LDLR mRNA in liver of periparturient dairy cows intaking different energy[J]. Chinese Journal of Veterinary Science and Technology,35(10):811-815.]
王中華,黃修奇,趙香菊. 2017. 葎草水提物對(duì)蛋雞產(chǎn)蛋性能、脂質(zhì)代謝和抗氧化能力的影響[J]. 中國(guó)畜牧雜志,53(12):97-100. [Wang Z H,Huang X Q,Zhao X J. 2017. Effects of Humulus scandens on product performance,lipid metabolism and antioxidant ability of laying hens[J]. Chinese Journal of Animal Science,53(12):97-100.]
吳夢(mèng),楊明,馬琳,葉紹輝. 2020. 產(chǎn)蛋和停產(chǎn)武定雞卵巢轉(zhuǎn)錄組SNP分析[J]. 中國(guó)家禽,42(3):8-12. [Wu M,Yang M,Ma L,Ye S H. 2020. SNP analysis of ovarian transcriptome in laying and laying-discontinued Wuding chic-kens[J]. China Poultry,42(3):8-12.]
楊和川,蘇文英,譚一羅,周振玲,秦裕營(yíng),李曉. 2020. 玉木耳轉(zhuǎn)錄組測(cè)序及褐變相關(guān)基因的挖掘[J]. 江西農(nóng)業(yè)學(xué)報(bào),32(5):7-12. [Yang H C,Su W Y,Tan Y L,Zhou Z L,Qin Y Y,Li X. 2020. Transcriptome sequencing of Auri-cularia cornea and investigating of genes involved in browning[J]. Acta Agriculturae Jiangxi,32(5):7-12.]
袁茂,江明鋒,徐亞歐,林亞秋,蔣小松,楊朝武,余春林,李志雄. 2019. 藏雞不同發(fā)育階段腿部肌肉組織轉(zhuǎn)錄組及microRNA聯(lián)合分析[J]. 畜牧獸醫(yī)學(xué)報(bào),50(12):2400-2412. [Yuan M,Jiang M F,Xu Y O,Lin Y Q,Jiang X S,Yang C W,Yu C L,Li Z X. 2019. Analysis of transcriptome and microRNA in leg muscle of Tibetan chicken at different developmental stages[J]. Acta Veterinaria et Zootechnica Sinica,50(12):2400-2412.]
張李俊,魏清宇,葉紅心,李溫. 2005. 育成期白殼蛋雞不同能量飼料的試驗(yàn)[J]. 養(yǎng)禽與禽病防治,(11):4-5. [Zhang L J,Wei Q Y,Ye H X,Li W. 2005. Experiment on white layer fed by different energy feeds during growing period[J]. Poultry Husbandry and Disease Control,(11):4-5.]
張利敏,姚軍虎,董延. 2012. 產(chǎn)蛋雞粗蛋白質(zhì)與代謝能需要量研究進(jìn)展與應(yīng)用[J]. 飼料工業(yè),33(3):13-16. [Zhang L M,Yao J H,Dong Y. 2012. Research progress and application on crude protein and metabolic energy requirement in laying hens[J]. Feed Industry,33(3):13-16.]
趙彥花,區(qū)又君,溫久福,李加兒,周慧. 2019. 基于轉(zhuǎn)錄組測(cè)序技術(shù)的黃唇魚SSR分子標(biāo)記篩選[J]. 南方農(nóng)業(yè)學(xué)報(bào),50(9):2078-2087. [Zhao Y H,Ou Y J,Wen J F,Li J E,Zhou H. 2019. Development of SSR markers in Bahaba flavolabiata by transcriptome sequencing[J]. Journal of Southern Agriculture,50(9):2078-2087.]
Agrawal A,Khan M J,Graugnard D E,Vailati-Riboni M,Rodriguez-Zas S L,Osorio J S,Loor J J. 2017. Prepartal energy intake alters blood polymorphonuclear leukocyte transcriptome during the peripartal period in Holstein cows[J]. Bioinformatics and Biology Insights,11:1177932217-704667. doi:10.1177/1177932217704667.
Bechor S,Relevy N Z,Harari A,Almog T,Kamari Y,Ben-Amots A,Harats D,Shaish A. 2016. 9-cis β-carotene increased cholesterol efflux to HDL in macrophages[J]. Nutrients,8(7):435.
Chen Q,Niu L Q,Hua C F,Geng Y L,Cai L P,Tao S Y,Ni Y D,Zhao R Q. 2018. Chronic dexamethasone exposure markedly decreased the hepatic triglyceride accumulation in growing goats[J]. General and Comparative Endocrinology,259:115-121.
Cummings N,Shields K A,Curran J E,Bozaoglu K,Trevaskis J,Gluschenko K,Cai G,Comuzzie A G,Dyer T D,Walder K R,Zimmet P,Collier G R,Blangero J,Jowett J B M. 2012. Genetic variation in SH3-domain GRB2-like (endophilin)-interacting protein 1 has a major impact on fat mass[J]. International Journal of Obesity,36(2):201-206.
Gan Q,Chepelev I,Wei G,Tarayrah L,Cui K R,Zhao K J,Chen X. 2010. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq[J]. Cell Research,20(7):763-783.
Kerr A G,Sinha I,Dadvar S,Arner P,Dahlman I. 2019. Epigenetic regulation of diabetogenic adipose morphology[J]. Molecular Metabolism,25:159-167.
Kim M J,Sim D Y,Lee H M,Lee H J,Kim S H. 2019. Hypolipogenic effect of shikimic acid via inhibition of MID1IP1 and phosphorylation of AMPK/ACC[J]. International Journal of Molecular Sciences,20(3):582.
Li H,Wang T A,Xu C L,Wang D D,Ren J X,Li Y M,Tian Y D,Wang Y B,Jiao Y P,Kang X T,Liu X J. 2015. Transcriptome profile of liver at different physiological stages reveals potential mode for lipid metabolism in la-ying hens[J]. BMC Genomics,16:763. doi:10.1186/s12 864-015-1943-0.
Lim J Y,Liu C,Hu K Q,Smith D E,Wang X D. 2018. Ablation of carotenoid cleavage enzymes(BCO1 and BCO2) induced hepatic steatosis by altering the farnesoid X receptor/miR-34a/sirtuin 1 pathway[J]. Archives of Biochemistry adn Biophysics,654:1-9.
Lim S,Kierzek M,OConnor A E,Brenker C,Merriner D J,Okuda H,Volpert M,Gaikwad A,Bianco D,Potter D,Prabhakar R,Strünker T,OBryan M K. 2019. CRISP2 is a regulator of multiple aspects of sperm function and male fertility[J]. Endocrinology,160(4):915-924.
Liu L,Liu X J,Cui H X,Liu R R,Zhao G P,Wen J. 2019. Transcriptional insights into key genes and pathways controlling muscle lipid metabolism in broiler chickens[J]. BMC Genomics,20(1):863.
Minuti A,Bionaz M,Lopreiato V,Janovick N A,Rodriguez-Zas S L,Drackley J K,Loor J J. 2020. Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows[J]. Journal of Animal Science and Biotechnology,11:1. doi:10.1186/s40104-019-0409-7.
Siersbaek R,Nielsen R,Mandrup S. 2010. PPARgamma in adi-pocyte differentiation and metabolism—Novel insights from genome-wide studies[J]. FEBS Letter,584(15):3242-3249.
Skugor A,Kjos N P,Sundaram A Y M,Mydland L T,?nestad R,Tauson A H,?verland M. 2019. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome,production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs[J]. PLoS One,14(8):e0220441.
Struik D,Dommerholt M B,Jonker J W. 2019. Fibroblast growth factors in control of lipid metabolism:From biological function to clinical application[J]. Current Opinion in Lipidology,30(3):235-243.
Triantafyllou E A,Georgatsou E,Mylonis I,Simos G,Paraskeva E. 2018. Expression of AGPAT2,an enzyme involved in the glycerophospholipid/triacylglycerol biosynthesis pathway,is directly regulated by HIF-1 and promotes survival and etoposide resistance of cancer cells under hypoxia[J]. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids,1863(9):1142-1152.
van Bussel I P G,F(xiàn)azelzadeh P,F(xiàn)rost G S,Rundle M,Afman L A. 2019. Measuring phenotypic flexibility by transcriptome time-course analyses during challenge tests before and after energy restriction[J]. FASEB Journal,33(9):10280-10290.
Walzem R L,Hansen R J,Williams D L,Hamilton R L. 1999. Estrogen induction of VLDLy assembly in egg-laying hens[J]. The Journal of Nutrition,129(2S):467S-472S.
Wang X G,Shao F,Yu J F,Jiang H L,Gong D Q,Gu Z L. 2015. MicroRNA-122 targets genes related to liver metabolism in chickens[J]. Comparative biochemistry and physiology. Part B:Biochemistry & Molecular Biology,184:29-35.
Wang X G,Yang L,Wang H J,Shao F,Yu J F,Jiang H L,Han Y P,Gong D P,Gu Z L. 2014. Growth hormone-re-gulated mRNAs and miRNAs in chicken hepatocytes[J]. PLoS One,9(11):e112896.
Xiao Y,Guengerich F P. 2012. Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids[J]. Journal of Lipid Research,53(8):1610-1617.
Yamaguchi N. 2020. Multiple roles of vestigial-like family members in tumor development[J]. Frontiers in Onco-logy,10:1266. doi:10.3389/fonc.2020.01266.
Yang P J,Liang Y Z,Luo Y C,Li Z M,Wen Y M,Shen J,Li R W,Zheng H,Gu H F,Xia N. 2019. Liraglutide ameliorates nonalcoholic fatty liver disease in diabetic mice via the IRS2/PI3K/Akt signaling pathway[J]. Diabetes,Metabolic Syndrome and Obesity,12:1013-1021.
Zhang Q Y,Yu S,Lam M M T,Poon T C W,Sun L T,Jiao Y F,Wong A S T,Lee L T O. 2019. Angiotensin II promotes ovarian cancer spheroid formation and metastasis by upregulation of lipid desaturation and suppression of endoplasmic reticulum stress[J]. Journal of Experimental & Clinical Cancer Research,38(1):116. doi:10.1186/s13046-019-1127-x.
(責(zé)任編輯 蘭宗寶)
收稿日期:2020-06-07
基金項(xiàng)目:江蘇省屬公益類科研院所自主科研項(xiàng)目(BM2018026);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-40-K01);江蘇省農(nóng)業(yè)重大新品種創(chuàng)制項(xiàng)目(PZCZ201729);江蘇省家禽遺傳育種重點(diǎn)實(shí)驗(yàn)室科研項(xiàng)目(JQLAB-ZZ-202003)
作者簡(jiǎn)介:*為通訊作者,王克華(1962-),博士,研究員,主要從事蛋雞育種及健康養(yǎng)殖研究工作,E-mail:sqbreeding@126.com。王星果(1984-),博士,副研究員,主要從事蛋雞遺傳育種及脂質(zhì)代謝研究工作,E-mail:yzwangxingguo@163.com