江 鋒,李曦宇,陳建軍,吳恭成,黃紹燈,陳奕天
(1.浙江交工集團股份有限公司,浙江 杭州 310018;2.浙江理工大學建筑工程學院, 浙江 杭州 310018)
深基坑工程逐漸趨向“大、緊、深”的特點,基坑變形控制要求逐漸嚴格。尤其在軟土地區(qū),深基坑開挖過程引起的地面運動易使周圍建筑物、道路、地下管線等重要設施間接損傷[1]。因此深基坑開挖引起地面運動的預測和其對建構筑物的損害研究正逐漸被重視。
針對地表沉降運動預測問題的研究主要有模型試驗法[2-3]、解析理論解[4-5]、實測統(tǒng)計[6-7]和有限元法[8-9],但大多數(shù)研究集中討論基坑開挖引起圍護結構最大側向位移和地表豎向沉降之間的關系。地表沉降造成路面凹陷和建筑物下沉等影響是直觀可見的,實際工程也往往將建筑物與地表沉降的相互聯(lián)系來評估基坑開挖對鄰近建筑物的嚴重程度。但部分學者[10-13]逐漸認識到基坑開挖引起鄰近地表土體和建筑物產生的水平拉應變,會對建筑物造成較大裂縫甚至結構扭曲,其造成的破壞影響并不小于地表沉降。
綜上所述,本文將建立有限元模型來逐漸深入研究基坑開挖引起地表土體水平變形特性,及其與圍護結構變形之間的相互聯(lián)系;同時以有限元模擬結果提出合理的地表水平位移預測公式,并以實際工程案例進行誤差分析,驗證地表水平位移預測公式的有效性。
地鐵浙大國際學院站位于海寧海州東路與碧云南路交叉路口。車站主體長432.23 m,標準段寬19.7 m,標準段深16~17 m,圍護結構采用厚鋼筋混凝土地下連續(xù)墻加內支撐體系。車站開挖方式采用明挖法開挖。
本次有限元模型采用Plaxis2D進行分析,土體本構模型采用土體硬化小應變(HSS)模型,土體參數(shù)主要參考杭州海寧地區(qū)的實際工程案例中的勘察報告,主要輸入?yún)?shù)見表1。根據(jù)2組土質參數(shù)基坑案例,探討基坑開挖深度、土層厚度以及圍護結構剛度與鄰近基坑外地面水平位移的關系,其中相關的參數(shù)變化范圍見表2。
表1 有限元土質參數(shù)
表2 工況參數(shù)變化范圍
有限元模型建模長度為4He,建模深度為5He,其中基坑開挖寬度為20 m,地下連續(xù)墻深度為40 m,共設置4道水平內支撐,其深度位置分別為0、3.1、6.4 m和11.4 m。
有限元模擬開挖共分為:1)開挖第一層土,開挖深度達到地下1 m;2)施加第一道水平內支撐;3)開挖至地表以下3.5 m;4)施加第二道水平內支撐;5)開挖至地表以下6.9 m;6)施加第三道水平內支撐;7)開挖至地表以下11.9 m;8)施加第四道水平內支撐;9)開挖至地表以下16.6 m。
圖1顯示了地表土體水平位移以及豎向沉降,其中本文規(guī)定水平位移方向朝向基坑內為負,朝向基坑外為正;地表沉降沿開挖方向向下為正,向上為負。本文中字母含義如下:x為距離圍護墻的垂直距離,δvs為土體豎向沉降位移,δhm為土體水平位移,He為開挖深度,EI為圍護結構剛度,Dh為地下連續(xù)墻深度。從圖中可以看出地表土體水平和豎向位移變化趨勢基本相同。當基坑開挖較淺時,地表沉降呈 “凹槽型”趨勢,而地表水平位移向基坑外位移。當基坑開挖深度較大時,地表沉降和地表水平位移的趨勢較為一致,皆呈“凹槽型”模式。其中開挖深度達到16.6 m時,地表沉降在最大值距離基坑11.55 m處達到5.17 mm,而地表水平位移在距離基坑7 m處,其最大值為2.78 mm。
圖1 基坑開挖引起坑外土體位移
雖然,地表水平位移比地表沉降小,但地表水平位移仍有地表沉降的50%以上,且地表水平位移最大值更接近于基坑圍護結構。當x=0與xmax兩點處,地表水平位移變形率為0.39,地表沉降變形率為0.44。而基坑開挖引起鄰近建筑物的損傷評估,規(guī)范中曾指出對于水平位移阻力較小的建筑,其受到地表水平位移產生的拉應變作用引起的損傷遠大于地表豎向位移的作用[14]。
圖2變化參數(shù)為不同基坑開挖深度。地表水平位移值隨著開挖深度增加而逐漸增大,同時地表水平位移最大值所處位置與基坑間距逐漸增大。地表水平位移最大值在開挖深度為7.1、11.9、16.6 m 時,A組圍護結構間距為8、12、15.57 m。B組與圍護結構間距為7、11、12.80 m。顯然,兩組間距與開挖深度的比值皆接近于1。同時,水平位移最大值點(xhmax)與初始點(x=0)兩點之間的位移差值隨著開挖深度的增加而逐漸增大,但B組地表水平位移差值比A組大。
圖2 不同開挖深度地表水平位移曲線
圖3變化參數(shù)為不同圍護結構剛度。墻體圍護結構剛度的增加必然會使圍護結構側向位移減小,地表水平位移運動也隨之減少。因此,基坑圍護結構剛度EI與地表水平位移成反比。而A組地表水平位移最大值點(xhmax)皆在12.80 m附近,B組地表水平位移最大值點(xhmax)在11.00 m附近??梢?圍護結構剛度的改變并不影響地表水平位移最大值所處位置。
圖3 不同剛度地表水平位移
圖4變化參數(shù)為不同土層厚度。當頂部粉質黏土厚度逐漸增大時(即1、2、3),地表水平位移值也相應的增加,地表水平位移最大值點變化并不明顯。當中間層淤泥質黏土厚度如4、5、6依次增大時,地表水平位移同樣增加,地表水平位移最大值所處位置逐漸遠離圍護結構。
圖4 不同土層厚度地表水平位移
地表水平位移與地表沉降具有較大的相似性,圖5給出地表水平位移最大值(δhvmax)與圍護結構側向位移最大值(δhmax)之間的關系。從圖中看出,地表水平位移最大值大約為圍護結構側向位移最大值的0.3倍左右,且不同土質情況、開挖深度以及土層厚度對其比值影響變化不大,因此可得:
圖5 地表水平位移最大值與圍護結構側向位移最大值
δhvmax=0.3δhmax
(1)
劉濤[13]基于上海地鐵182個實測斷面得出地表豎向沉降最大值點距離基坑水平位移x值大約為基坑開挖深度He的0.5~0.7倍。但基坑開挖深度大于16.6 m時,基坑最大的變形位置逐漸上移。圖6則給出地面水平位移最大值點(xhmax)與圍護結構側向位移最大值(zmax)之間的關系,可以看出,xhmax與zmax皆隨著開挖深度的增加而逐漸增加,但兩者比值仍在一定范圍內,其比值上限接近于1.1zmax,下限接近于0.6zmax。
圖6 地表水平位移最大值點與圍護結構側向位移最大值所處深度
xhmax=0.6~1.1zmax
(2)
由上述分析可知,地表水平位移曲線不僅與地表豎向沉降曲線類似,同時與圍護結構側向變形有著一定的聯(lián)系。值得一提的是,地表豎向沉降預測曲線能用正態(tài)函數(shù)[14]或者偏態(tài)函數(shù)[15]擬合,兩種擬合公式都具有較好的適用性。
不妨假定偏態(tài)函數(shù)亦適用于地表水平位移曲線,其具體公式如下:
(3)
式(3)中:A、B、C和D為待定研究的參數(shù)。
通過公式擬合108次凹槽型地表水平位移值來評估參數(shù)對地表水平位移曲線的擬合影響。
圖7為參數(shù)A與地表水平位移最大值之間的關系。顯然,參數(shù)A的取值與地表水平位移最大值的比值接近于1,此比值受不同土質、不同土層厚度、開挖深度和圍護結構剛度的影響較小。由于圍護結構最大側向位移值與地表水平位移最大值幾乎相等,因此,參數(shù)A也可以由圍護結構最大側向位移值得到:
圖7 參數(shù)A與地表水平位移最大值
A=δhv=0.3δhm
(4)
圖8為參數(shù)C與地表水平位移最大值所處位置的關系。從圖中可以看出,當?shù)乇硭轿灰谱畲笾迭c與基坑邊距離增加時,參數(shù)C的取值逐漸增加,兩者比值接近于1。因此,地表水平位移與基坑的距離可用圍護結構水平位移最大值所處深度表示,參數(shù)C的取值為:
圖8 參數(shù)C與地表水平位移最大值所處位置
C=xmax=0.6~1.1zmax
(5)
圖9為參數(shù)B和地表水平位移最大值(δhv)之間的關系。可以看出,參數(shù)B隨著地表水平位移最大值的增加而逐漸減小。在第一組(A組)土質情況下,參數(shù)B更偏向于下限(yb1曲線)。當處于第二組(B組)土質情況時,參數(shù)B更偏向于上限(yb2曲線)。顯然,參數(shù)B不僅與地表水平位移最大值有一定的聯(lián)系,且與不同土質情況有聯(lián)系。結合地表水平位移最大值與圍護結構最大側向位移值之間的關系,給出參數(shù)B的經驗公式,如公式(6)所示。
圖9 參數(shù)B與地表水平位移最大值
圖10為參數(shù)D和地表水平位移最大值(δhv)之間的關系。可以看出,參數(shù)D隨著地表水平位移最大值的增加反而逐漸增加。當開挖深度較淺時,圍護結構最大側向位移值較小,地表水平位移最大值與參數(shù)D皆較小。而隨著開挖深度逐漸增加,參數(shù)D與地表水平位移最大值也同時增加,但數(shù)據(jù)皆在曲線yd1和yd2之間。因此公式(7)給出參數(shù)D的經驗公式。
圖10 參數(shù)D與地表水平位移最大值
(6)
D=4×e(δhmax/2)+Td
(7)
其中Tb、Td的參數(shù)在軟土地區(qū)中分別取值1.6~2.1和-3~-4。
基坑開挖引起的地表水平位移實測數(shù)據(jù)較少且不完整,無法像地表豎向沉降一樣能獲得較好的曲線以驗證地表豎向沉降曲線的合理性。
基坑開挖深度內土質較差,淤泥質粉質黏土在土層中厚度較大,見表4。圍護結構采用0.8 m厚地下連續(xù)墻兼主體結構外墻?;娱_挖深度He=16.5 m,并且共設置3道混凝土內支撐,地下連續(xù)墻插入深度為35 m。在距離基坑圍護結構10 m處布置測斜管。
表4 工程案例相關地層信息
根據(jù)土質情況分析可得,其Tb與Td值分別取1.6和-4。根據(jù)公式可得參數(shù)A、B、C和D,再將其代入公式中。
圖11給出地下連續(xù)墻側向位移值與測斜管的實測值對比,其中Hhm為地下連續(xù)墻側向位移值??梢钥闯?預測曲線較接近于實測值,誤差平均值僅有6%。說明本文提出的預測公式能較好地預測軟土地區(qū)基坑開挖引起的地表水平位移。
圖11 實測值與預測曲線
本文基于土體小應變特性與海寧地鐵基坑車站實測土層數(shù)據(jù)的基礎上建立數(shù)值模型。并在此基礎上研究不同土質情況、土層厚度、圍護結構剛度下,基坑開挖對鄰近地表土體水平位移的影響,具體結論如下:
1)基坑開挖引起地表水平位移曲線與地表豎向沉降曲線形態(tài)上類似,但地表水平位移最大值點相較于地表豎向沉降最大值點更接近基坑,且地表水平位移最大值要小于地表豎向沉降。因此,實際工程中地表水平位移造成周邊環(huán)境及建筑物影響不容忽視。
2)圍護結構剛度僅影響地表水平位移數(shù)值大小,軟弱土層厚度、開挖深度、不同土質參數(shù)不僅影響地表水平位移數(shù)值大小,而且影響地表水平位移影響范圍和最大水平位移點與基坑的距離。
3)偏態(tài)函數(shù)能較好地擬合軟土地區(qū)中深基坑開挖引起鄰近地表水平位移曲線。通過實測值與其對比, 證明了本文提出的地表水平位移曲線能較好地預測基坑開挖對鄰近土體的地表水平位移值的影響。地表水平位移值的影響因素不僅僅與基坑開挖的過程相關,而且與基坑降水、不同內支撐形式、鄰近建筑物對其的影響等因素相關,這些因素仍需進一步研究。