胡曉輝,高子星,馬永博,薛建康,謝志龍,李 雪,張林陽,王君正,馬雪強(qiáng),屈 鋒,張 佼
·農(nóng)業(yè)水土工程·
基于產(chǎn)量品質(zhì)及水肥利用率的袋培辣椒水肥耦合方案
胡曉輝1,2,3,高子星1,2,馬永博1,薛建康1,謝志龍1,李 雪1,張林陽1,王君正1,2,馬雪強(qiáng)1,2,屈 鋒1,2,張 佼1,2
(1. 西北農(nóng)林科技大學(xué)園藝學(xué)院,楊凌 712100;2. 農(nóng)業(yè)農(nóng)村部西北設(shè)施園藝工程重點(diǎn)實(shí)驗(yàn)室,楊凌 712100;3. 陜西省設(shè)施農(nóng)業(yè)工程技術(shù)研究中心,楊凌 712100)
為探究水肥耦合對(duì)袋培辣椒產(chǎn)量、果實(shí)品質(zhì)、水分利用效率(Water Use Efficiency,WUE)和肥料利用率(Fertilizer Use Efficiency,F(xiàn)UE)的影響,構(gòu)建袋培辣椒水肥精準(zhǔn)化管理模式,該研究以‘博隴(37-94)Bolon RZ F1’辣椒為對(duì)象,設(shè)3種灌溉水平(基質(zhì)相對(duì)含水量70%~75%(W1)、55%~60%(W2)和40%~45%(W3))、3個(gè)營(yíng)養(yǎng)液濃度水平(設(shè)置150%(F1)、100%(F2)、80%(F3)標(biāo)準(zhǔn)山崎辣椒營(yíng)養(yǎng)液濃度)和2個(gè)營(yíng)養(yǎng)液供應(yīng)量(正常供應(yīng)、減量供應(yīng)(每次辣椒采收前6 d營(yíng)養(yǎng)液減量40%供應(yīng)))三因素耦合,共18個(gè)處理,分析各因子及其耦合效應(yīng),建立綜合評(píng)價(jià)辣椒產(chǎn)量、WUE、FUE及果實(shí)綜合品質(zhì)的多目標(biāo)優(yōu)化模型,并利用遺傳算法多目標(biāo)優(yōu)化法對(duì)該模型進(jìn)行尋優(yōu)。結(jié)果表明:灌溉量和營(yíng)養(yǎng)液濃度單因子及其耦合效應(yīng)均對(duì)辣椒產(chǎn)量、WUE和FUE有顯著性影響,產(chǎn)量、WUE和FUE均隨灌溉量和營(yíng)養(yǎng)液濃度的增加先增加后降低;利用Topsis法對(duì)各處理的果實(shí)品質(zhì)進(jìn)行綜合評(píng)價(jià),營(yíng)養(yǎng)液減量供應(yīng)可在維持產(chǎn)量和WUE較高的基礎(chǔ)上,顯著提高辣椒果實(shí)綜合品質(zhì)和FUE;營(yíng)養(yǎng)液減量供應(yīng)下W2F2處理的辣椒產(chǎn)量、WUE和FUE最高,營(yíng)養(yǎng)液減量供應(yīng)下W2F1處理果實(shí)綜合品質(zhì)最好。遺傳算法多目標(biāo)優(yōu)化法尋優(yōu)表明營(yíng)養(yǎng)液減量供應(yīng)結(jié)合W2F2處理效果最佳。該試驗(yàn)條件下,高產(chǎn)優(yōu)質(zhì)的袋培辣椒水肥耦合方案為:通過灌溉將基質(zhì)相對(duì)含水量控制在55%~60%,施用100%濃度的標(biāo)準(zhǔn)山崎辣椒營(yíng)養(yǎng)液,且每次辣椒采收前6 d營(yíng)養(yǎng)液減量40%供應(yīng)。該模式下的辣椒產(chǎn)量達(dá)到87 930.52 kg/hm2,果實(shí)品質(zhì)綜合評(píng)價(jià)貼合度達(dá)到0.742,WUE和FUE分別達(dá)到41.14 kg/m3和38.83%,此結(jié)果可為辣椒高產(chǎn)優(yōu)質(zhì)且水肥科學(xué)管理提供指導(dǎo)依據(jù)。
灌溉;施肥;產(chǎn)量;品質(zhì);辣椒;水分利用效率;肥料利用率;多目標(biāo)優(yōu)化評(píng)判
辣椒(L.)是中國(guó)重要的蔬菜作物之一,由于其生長(zhǎng)期長(zhǎng)、水肥需求量大,過量灌溉和濫用化肥導(dǎo)致栽培環(huán)境惡化等現(xiàn)象突出[1],基質(zhì)袋式栽培擺脫了傳統(tǒng)栽培對(duì)土壤的依賴,以其營(yíng)養(yǎng)物質(zhì)供應(yīng)精準(zhǔn)、節(jié)水省肥等優(yōu)勢(shì),已成為解決設(shè)施生產(chǎn)中土壤問題的最有效手段[2],也是中國(guó)設(shè)施蔬菜生產(chǎn)的重點(diǎn)推廣技術(shù)。
水肥是影響蔬菜作物生長(zhǎng)和生產(chǎn)效益的重要因素[3],基質(zhì)栽培中,基質(zhì)含水量可以反映灌溉量,作物所需要的肥料多以營(yíng)養(yǎng)液形式提供,因此灌溉量和營(yíng)養(yǎng)液管理(營(yíng)養(yǎng)液濃度和營(yíng)養(yǎng)液供應(yīng)量)是基質(zhì)栽培的關(guān)鍵因素,研究三者對(duì)設(shè)施蔬菜產(chǎn)量、品質(zhì)和水肥利用效率的影響,對(duì)制定高產(chǎn)高效的基質(zhì)栽培管理制度具有重要意義。前人在灌溉量及基質(zhì)含水量方面進(jìn)行了大量研究,有研究表明通過控制栽培介質(zhì)的水分含量,可提高果實(shí)品質(zhì)和灌溉水分利用效率[4-5],強(qiáng)浩然等研究發(fā)現(xiàn)灌水量過高或過低都不利于有機(jī)質(zhì)含量的提高,合理的基質(zhì)含水量可使辣椒植株獲得較優(yōu)的生長(zhǎng)環(huán)境[6],也有利于提高秧苗素質(zhì)和產(chǎn)量[7]。營(yíng)養(yǎng)元素的供應(yīng)對(duì)作物的養(yǎng)分吸收和元素利用率有著顯著影響[8],不同生育時(shí)期進(jìn)行不同營(yíng)養(yǎng)液管理對(duì)無土栽培作物的生長(zhǎng)發(fā)育有重要意義[9]。前人在營(yíng)養(yǎng)液濃度方面也進(jìn)行了大量研究,周元清研究認(rèn)為前期適當(dāng)降低營(yíng)養(yǎng)液濃度、后期正常營(yíng)養(yǎng)液濃度的供應(yīng)方式能夠維持霧培生菜較快的生長(zhǎng)速度及較高的產(chǎn)量[10],張芳等研究發(fā)現(xiàn)按照每增長(zhǎng)1片葉、營(yíng)養(yǎng)液電導(dǎo)率增加0.1 mS/cm的供給方法實(shí)現(xiàn)基質(zhì)栽培番茄的高產(chǎn)優(yōu)質(zhì)并提高營(yíng)養(yǎng)液養(yǎng)分利用率[11];也有研究發(fā)現(xiàn)標(biāo)準(zhǔn)營(yíng)養(yǎng)液濃度增加50%更有利于提高番茄果實(shí)營(yíng)養(yǎng)品質(zhì)和干物質(zhì)累積和礦質(zhì)元素的吸收[12]。營(yíng)養(yǎng)液供應(yīng)方面,蔡?hào)|升等研究發(fā)現(xiàn)適宜的營(yíng)養(yǎng)液供應(yīng)量可以提高番茄果實(shí)產(chǎn)量、增大果實(shí)的硬度、改善果實(shí)品質(zhì)[13],胡瑩瑩研究認(rèn)為間歇提供營(yíng)養(yǎng)液比連續(xù)供液更有利于提高番茄的產(chǎn)量和品質(zhì)[14]。盡管前人在基質(zhì)含水量、營(yíng)養(yǎng)液濃度及供應(yīng)方面進(jìn)行了大量研究,但多集中于番茄等其他蔬菜作物,在灌溉量、營(yíng)養(yǎng)液濃度和營(yíng)養(yǎng)液供應(yīng)量耦合效應(yīng)的基礎(chǔ)上,對(duì)基質(zhì)袋培辣椒產(chǎn)量、品質(zhì)和水肥料利用率多指標(biāo)綜合評(píng)價(jià)全生育期的精準(zhǔn)化水肥管理研究鮮有報(bào)道。
因此,本試驗(yàn)在基于前人研究的基礎(chǔ)上進(jìn)行袋培辣椒不同水肥耦合試驗(yàn),探索產(chǎn)量、果實(shí)品質(zhì)、水分利用效率和肥料利用率對(duì)水肥耦合的響應(yīng)規(guī)律,確定最適的灌溉和營(yíng)養(yǎng)液管理組合,旨在獲取基質(zhì)袋培辣椒最適水肥耦合精細(xì)化管理模式,為辣椒基質(zhì)栽培高效優(yōu)質(zhì)生產(chǎn)提供科學(xué)依據(jù)。
試驗(yàn)于2019年3-7月在陜西楊凌揉谷設(shè)施農(nóng)業(yè)基地(北緯34°28′,東經(jīng)108°07′,海拔498.68m)大跨度非對(duì)稱內(nèi)保溫雙層塑料薄膜覆蓋大棚(長(zhǎng)80 m,寬20 m)內(nèi)進(jìn)行。供試品種為‘博隴(37-94)Bolon RZ F1’(瑞克斯旺出口公司,荷蘭),采用基質(zhì)袋式栽培,基質(zhì)袋尺寸為90 cm×20 cm×16 cm,基質(zhì)體積為18 L/袋,每袋種植2株辣椒。栽培基質(zhì)配比為牛糞:菇渣:珍珠巖=2:4:1(體積比),其理化性質(zhì)為:速效氮1821.6 mg/kg、速效磷811.7 mg/kg、速效鉀2090.6 mg/kg、全氮19.80 mg/g、全磷7.34 mg/g、全鉀19.88 mg/g、pH值為6.88、EC為2.5 mS/cm。采用水肥一體化滴灌系統(tǒng)進(jìn)行水肥管理,灌溉和營(yíng)養(yǎng)液供應(yīng)流速為1 L/h。
以單株辣椒水肥需求為標(biāo)準(zhǔn),結(jié)合前人研究[4,6,10,14]和預(yù)試驗(yàn)的結(jié)果,設(shè)置灌溉量、營(yíng)養(yǎng)液濃度和營(yíng)養(yǎng)液供應(yīng)量3個(gè)因子。
灌溉量:設(shè)置3個(gè)水平,分別為基質(zhì)相對(duì)含水量的70%~75%(W1,52 112.5 mL/株)、55%~60%(W2,47 492.8 mL/株)和40%~45%(W3,44 193.8 mL/株)。每天上午8:00,用手持基質(zhì)水分測(cè)定儀(HH150,Delta-T Devices LTD,英國(guó),精度0.1%)測(cè)定基質(zhì)相對(duì)含水量,根據(jù)測(cè)定結(jié)果進(jìn)行灌溉,通過旋翼式水表(LXS-25mmC/E型,寧波埃美柯有限公司,精度0.1m3)記錄灌溉量。
營(yíng)養(yǎng)液濃度:設(shè)置3個(gè)水平,設(shè)置150%(F1:N-P2O5-K2O,8.42-3.96-13.93 g/株)、100%(F2:N-P2O5-K2O,7.41-3.48-12.26 g/株)和80%(F3:N-P2O5-K2O,6.36-2.99-10.53 g/株)標(biāo)準(zhǔn)山崎辣椒營(yíng)養(yǎng)液濃度。
營(yíng)養(yǎng)液供應(yīng)量:門椒成熟后每15 d進(jìn)行1次采收,共采收6次,在此基礎(chǔ)上設(shè)置2個(gè)營(yíng)養(yǎng)液供應(yīng)量水平(表1),正常供應(yīng)(A):前期(門椒開花至第三次果實(shí)采摘)單株?duì)I養(yǎng)液供應(yīng)量為500 mL/次;后期(第三次果實(shí)采摘后至第六次果實(shí)采摘)單株?duì)I養(yǎng)液供應(yīng)量為1 000 mL/次。減量供應(yīng)(B):每次果實(shí)采摘前6 d進(jìn)行營(yíng)養(yǎng)液減量處理,減為之前水平的60%,前后期單株?duì)I養(yǎng)液供應(yīng)量分別為300與600 mL/次;其余時(shí)間段營(yíng)養(yǎng)液正常供應(yīng)。所有處理營(yíng)養(yǎng)液供應(yīng)頻率均為2 d一次,為維持基質(zhì)相對(duì)含水量在設(shè)定范圍內(nèi),營(yíng)養(yǎng)液減量供應(yīng)與正常供應(yīng)水分差值部分在施肥后進(jìn)行補(bǔ)充。營(yíng)養(yǎng)液供應(yīng)量處理和試驗(yàn)設(shè)計(jì)見表1和表2。
表1 營(yíng)養(yǎng)液供應(yīng)量
注:W1、W2和W3分別為按照基質(zhì)相對(duì)含水量的70%~75%、55%~60%和40%~45%進(jìn)行灌溉;F1、F2和F3分別為150 %、100 %和80 %標(biāo)準(zhǔn)山崎辣椒營(yíng)養(yǎng)液濃度,下同。
Note: W1, W2 and W3 were irrigated according to 70%-75%, 55%-60% and 40%-45% of the relative water content of the substrate. F1, F2 and F3 are 150%, 100% and 80% of the standard Yamazaki pepper nutrient solution concentration, Same as below.
以基質(zhì)相對(duì)含水量60%進(jìn)行灌溉但不施加營(yíng)養(yǎng)液為空白對(duì)照(用于計(jì)算肥料利用率)。試驗(yàn)共18個(gè)耦合處理,每個(gè)處理3次重復(fù),隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),每小區(qū)面積8.4 m2,定植24株辣椒。2019年3月20日將長(zhǎng)勢(shì)一致的五葉一心壯苗定植,定植密度為48 000株/hm2,株距為35 cm,大小行間隔種植,大行距為80 cm,小行距40 cm。門椒開花時(shí)開始進(jìn)行試驗(yàn)處理。第六次果實(shí)采收后拉秧(7月28日),其余栽培技術(shù)按常規(guī)管理。
1.3.1 產(chǎn)量測(cè)定
每個(gè)處理選取10株,每次采摘果實(shí)用電子天平(JE1002型,上海浦春計(jì)量?jī)x器有限公司,精度0.001 g)測(cè)定單位面積產(chǎn)量,并記錄單株果數(shù),每公頃產(chǎn)量由單位面積產(chǎn)量折算。
1.3.2 果實(shí)品質(zhì)測(cè)定
在辣椒采收期,分別在各處理的相同位點(diǎn)取樣,選取10個(gè)大小和色澤基本相同的果實(shí)進(jìn)行品質(zhì)測(cè)定。辣椒果實(shí)維生素C含量采用鉬藍(lán)比色法測(cè)定[15];可溶性蛋白含量采用考馬斯亮藍(lán)G-250染色法測(cè)定[15];游離氨基酸含量采用茚三酮顯色法測(cè)定[15],可溶性糖含量采用蒽酮比色法測(cè)定[15];還原糖含量采用3,5-二硝基水楊酸法測(cè)定[15];硝酸鹽含量采用水楊酸法測(cè)定[15];辣椒素含量采用高效液相色譜法(LC-30A,日本島津制作所)測(cè)定[16]。
1.3.3 水分利用效率和肥料利用率計(jì)算
水分利用效率(WUE)=/ET(1)
式中為產(chǎn)量,kg/hm2;ET為全生育期每公傾作物耗水量,m3/hm2。
肥料利用率(FUE)=(1?0)/×100%(2)
式中1為施肥區(qū)吸收N、P2O5和K2O總量,kg/株;0為對(duì)照區(qū)吸收N、P2O5和K2O總量,kg/株;為全生育期投入的N、P2O5和K2O總量,kg/株。
Topsis法計(jì)算步驟如下[17]:
1)構(gòu)建原始評(píng)價(jià)參數(shù)矩陣:設(shè)有個(gè)評(píng)價(jià)對(duì)象,個(gè)評(píng)價(jià)指標(biāo),原始數(shù)據(jù)可寫為矩陣(x),x為第個(gè)處理的第個(gè)指標(biāo),本試驗(yàn)中,==18,=8,對(duì)指標(biāo)進(jìn)行歸一化,即:
2)得到歸一化矩陣(z),其各列最大值最小值構(gòu)成的最優(yōu)、最劣向量分別記為:
Z(max1,max2,…,maxb)(4)
Z(min1,min2…,minb)(5)
3)第個(gè)評(píng)價(jià)對(duì)象與最優(yōu)、最劣方案的距離分別為:
4)第個(gè)評(píng)價(jià)對(duì)象與最優(yōu)方案的貼合度C為:
由于貼合度分值取值在0~1之間,當(dāng)評(píng)價(jià)對(duì)象指標(biāo)的向量為最優(yōu)解向量時(shí),C=1;當(dāng)評(píng)價(jià)對(duì)象指標(biāo)向量為最劣解值時(shí),C=0,C越接近1則表示相應(yīng)的評(píng)價(jià)目標(biāo)越接近最優(yōu)水平,相應(yīng)的評(píng)價(jià)對(duì)象排序越靠前;反之,C越接近0,表示評(píng)價(jià)目標(biāo)越接近最劣水平。評(píng)價(jià)結(jié)果最靠近最優(yōu)解同時(shí)又最遠(yuǎn)離最劣解時(shí),為最好。
用SPSS 23.0統(tǒng)計(jì)分析軟件進(jìn)行數(shù)據(jù)處理,Duncan 法進(jìn)行多重比較;采用Microsoft Excel 2016作圖并進(jìn)行Topsis法評(píng)價(jià);用DPS7.05建立回歸方程,利用MATLAB 2019a對(duì)回歸方程進(jìn)行遺傳算法并列選擇法計(jì)算。
多目標(biāo)優(yōu)化問題的一般數(shù)學(xué)模型可描述為
式中-max為向量極大化,為因子,為目標(biāo)函數(shù)個(gè)數(shù),為初始個(gè)體數(shù)目,為最大遺傳代數(shù),為耦合處理,為因子個(gè)數(shù)。
本文采用遺傳算法中的并列選擇法求解多目標(biāo)函數(shù)的 Pareto 解,其原理如圖1所示[18]。即將各項(xiàng)指標(biāo)均等分到各處理中,指標(biāo)數(shù)等于目標(biāo)函數(shù)的數(shù)目,然后將各個(gè)指標(biāo)分配給每個(gè)目標(biāo)函數(shù)并進(jìn)行獨(dú)立運(yùn)算,每個(gè)處理各自選出適應(yīng)度高的指標(biāo)組成新的指標(biāo)并與其余各目標(biāo)函數(shù)新的指標(biāo)合并,進(jìn)行交叉和變異運(yùn)算,從而生成下一代完整處理,不斷進(jìn)行循環(huán)迭代,最終可得到多目標(biāo)問題的Pareto解。
圖1 并列選擇法原理圖
灌溉量、營(yíng)養(yǎng)液濃度及灌溉量與營(yíng)養(yǎng)液濃度的交互效應(yīng)對(duì)辣椒產(chǎn)量表現(xiàn)出極顯著的影響(<0.01),其他因子及交互效應(yīng)對(duì)辣椒的產(chǎn)量無顯著影響,且營(yíng)養(yǎng)液濃度對(duì)產(chǎn)量的影響效應(yīng)大于灌溉量(表3)。從灌水水平看,產(chǎn)量由大到小為W2、W1、W3;從營(yíng)養(yǎng)液濃度水平看,產(chǎn)量由大到小為F2、F1、F3(圖2)。由圖2可知,相同灌溉量水平下,產(chǎn)量隨營(yíng)養(yǎng)液濃度的增加呈先增加后減少的趨勢(shì),在F2水平時(shí)產(chǎn)量最高;相同營(yíng)養(yǎng)液濃度水平下,產(chǎn)量隨灌溉量的增加呈先增加后不變的趨勢(shì),W2水平時(shí)產(chǎn)量最高,超過W2水平后產(chǎn)量無顯著性變化。營(yíng)養(yǎng)液減量供應(yīng)W2F2處理的辣椒產(chǎn)量最大(87 930.52 kg/hm2),營(yíng)養(yǎng)液減量供應(yīng)W3F3處理的產(chǎn)量最低(53 797.44 kg/hm2)。
表3 各單因子及其耦合對(duì)辣椒產(chǎn)量、水分利用效率及肥料利用率顯著性檢驗(yàn)結(jié)果
注:*表示差異顯著(<0.05),**表示差異極顯著(<0.01),下同。
Note: * means significant difference (<0.05), ** meansmuch significant difference (<0.01), The same as below.
注:不同的小寫字母表示不同處理之間的差異顯著(P<0.05)。下同。
將各果實(shí)品質(zhì)指標(biāo)實(shí)測(cè)值歸一化后利用Topsis法可得到各處理的綜合品質(zhì)貼合度C值(表4),因硝態(tài)氮對(duì)果實(shí)營(yíng)養(yǎng)品質(zhì)的影響為負(fù)效應(yīng),故處理為負(fù)值,各處理的綜合品質(zhì)貼合度C如表4所示,C值越大,說明此處理綜合品質(zhì)越好,各單一指標(biāo)的實(shí)測(cè)量與所有處理貼合度的排序進(jìn)行spearman 相關(guān)分析,結(jié)果表明,除硝態(tài)氮外所有指標(biāo)實(shí)測(cè)量都與貼合度的排序呈極顯著正相關(guān),硝態(tài)氮實(shí)測(cè)量與貼合度的排序呈極顯著負(fù)相關(guān),表明依據(jù)Topsis法對(duì)辣椒果實(shí)綜合品質(zhì)進(jìn)行評(píng)價(jià)可信度高。相同灌溉量的條件下,除F3處理外,C值隨營(yíng)養(yǎng)液濃度的增加呈增加的趨勢(shì),在F3水平下,C值隨營(yíng)養(yǎng)液濃度的增加呈先增加后減少的趨勢(shì);相同營(yíng)養(yǎng)液濃度的條件下,C值隨灌溉量的增加呈先增加后減少的趨勢(shì),當(dāng)灌溉量大于W2,C值降低,低灌溉量(W3)處理的果實(shí)綜合品質(zhì)評(píng)分最低;灌溉量和營(yíng)養(yǎng)液濃度一致的情況下,除W1F3和W2F3處理外,其他處理的C值均為營(yíng)養(yǎng)液正常供應(yīng)(A)小于減量供應(yīng)(B),營(yíng)養(yǎng)液減量供應(yīng)W2F1 的C值最高為0.749,營(yíng)養(yǎng)液正常供應(yīng)W3F3的C值最低為0.078。
表4 基于Topsis法的各處理辣椒果實(shí)綜合品質(zhì)評(píng)價(jià)及排序
注:C表示貼合度;Z、Z分別表示最優(yōu)和最劣解向量;D、D分別表示各處理與最優(yōu)和最劣解的距離。
Note:Cdenotes the fitness;Z,Zdenotes the optimal and the worst solution vectors respectively; D,Ddenotes the distance between each treatment and the optimal and the worst solution respectively.
灌溉量和營(yíng)養(yǎng)液濃度均對(duì)WUE表現(xiàn)出極顯著的影響(<0.01),灌溉量與營(yíng)養(yǎng)液濃度的交互效應(yīng)對(duì)WUE表現(xiàn)出顯著的影響(<0.05),其他因子及交互效應(yīng)對(duì)袋培辣椒的WUE無顯著影響,且灌溉量對(duì)WUE的影響效應(yīng)大于營(yíng)養(yǎng)液濃度(表3)。從灌水水平看,WUE由大到小為W2、W1、W3;從營(yíng)養(yǎng)液濃度水平看,WUE由大到小為F2、F1、F3(圖3)。由圖3可知,相同灌溉量水平下,WUE隨營(yíng)養(yǎng)液濃度的增加呈先增加后減少的趨勢(shì),在F2水平時(shí)WUE最高;相同營(yíng)養(yǎng)液濃度水平下,WUE隨灌溉量的增加呈先增加后減少的趨勢(shì),在W2水平時(shí)WUE最高。營(yíng)養(yǎng)液減量供應(yīng)W2F2處理的WUE達(dá)到最高(41.14 kg/m3),營(yíng)養(yǎng)液正常供應(yīng)W1F3處理的WUE最低(26.04 kg/m3)。
圖3 灌溉量和營(yíng)養(yǎng)液管理耦合對(duì)袋培辣椒水分利用效率的影響
由表3可知,灌溉量、營(yíng)養(yǎng)液濃度和營(yíng)養(yǎng)液供應(yīng)量的交互效應(yīng)對(duì)FUE表現(xiàn)出顯著影響(<0.05),其他因子及交互效應(yīng)對(duì)FUE表現(xiàn)出極顯著影響(<0.01),且灌溉量、營(yíng)養(yǎng)液濃度和營(yíng)養(yǎng)液供應(yīng)量對(duì)FUE的影響均表現(xiàn)為營(yíng)養(yǎng)液濃度>灌溉量>營(yíng)養(yǎng)液供應(yīng)量。從灌水水平看,F(xiàn)UE由大到小為W2、W1、W3;從營(yíng)養(yǎng)液濃度水平看,F(xiàn)UE由大到小為F2、F1、F3;從營(yíng)養(yǎng)液供應(yīng)量水平來看,營(yíng)養(yǎng)液正常供應(yīng)的FUE均小于營(yíng)養(yǎng)液減量供應(yīng)(圖4)。由圖4可知,相同灌溉量水平下,F(xiàn)UE隨營(yíng)養(yǎng)液濃度的增加呈先增加后減少的趨勢(shì),在F2水平時(shí)FUE最高;相同營(yíng)養(yǎng)液濃度水平下,F(xiàn)UE隨灌溉量的增加呈先增加后減少的趨勢(shì),在W2水平時(shí)FUE最高。營(yíng)養(yǎng)液供應(yīng)減量處理(B)顯著提高了FUE,營(yíng)養(yǎng)液減量供應(yīng)W2F2處理的袋培辣椒FUE達(dá)到最大(38.83%),營(yíng)養(yǎng)液正常供應(yīng)W3F1處理的FUE最低(15.64%)。
對(duì)產(chǎn)量、果實(shí)綜合品質(zhì)、肥料利用率及水分利用效率試驗(yàn)數(shù)據(jù)進(jìn)行三元二次擬合,得到袋培辣椒產(chǎn)量()、果實(shí)綜合品質(zhì)貼合度(C值)(F)、水分利用效率(WUE)及肥料利用率(FUE)與灌溉量編碼值(1)、營(yíng)養(yǎng)液濃度編碼值(2)、營(yíng)養(yǎng)液供應(yīng)量編碼值(3)的回歸模型為
經(jīng)檢驗(yàn),上述4個(gè)回歸方程的決定系數(shù)R分別為0.983、0.992、0.987與0.987,回歸關(guān)系顯著。利用式(10)~(13)建立多目標(biāo)優(yōu)化問題模型:
利用Matlab2019a進(jìn)行遺傳算法中的并列選擇法計(jì)算上述多目標(biāo)優(yōu)化問題的 Pareto 解,設(shè)定初始個(gè)體數(shù)目為 1 200,最大遺傳代數(shù)為80,變量的二進(jìn)制數(shù)目取20,交叉概率取0.7,代溝取0.9。最終得到最優(yōu)化產(chǎn)量為87 930.52/hm2,最優(yōu)化水分利用效率為41.14 kg/m3,最優(yōu)化肥料利用率為38.83 %,最優(yōu)化果實(shí)綜合品質(zhì)貼合度(C值)為0.742,取得最優(yōu)解時(shí)的處理為營(yíng)養(yǎng)液減量下的W2F2。
產(chǎn)量是評(píng)判蔬菜作物生長(zhǎng)狀況的重要指標(biāo),在單株灌水量一定的條件下,植株產(chǎn)量隨施肥量的增加表現(xiàn)為先增加后降低的拋物線關(guān)系[18-19]。Liu等研究發(fā)現(xiàn),按照累積蒸發(fā)量的90%灌溉的基礎(chǔ)上增加灌溉量,番茄的產(chǎn)量未顯著性增加[20],本研究也與其得出了相似的結(jié)論,即在W2的基礎(chǔ)上增加灌溉量,辣椒產(chǎn)量無顯著性變化。在F2的基礎(chǔ)上增加營(yíng)養(yǎng)液濃度,產(chǎn)量會(huì)顯著性降低,產(chǎn)量對(duì)灌溉量和營(yíng)養(yǎng)液濃度表現(xiàn)出一定的飽和效應(yīng),這與王鵬勃所得結(jié)果一致[19],可能是由于灌溉量高或營(yíng)養(yǎng)液濃度大的情況下,植株?duì)I養(yǎng)生長(zhǎng)過度,影響生殖生長(zhǎng),進(jìn)而抑制產(chǎn)量的增加[21]。本研究中,較低灌溉水平下(W3)增加營(yíng)養(yǎng)液濃度會(huì)降低辣椒的產(chǎn)量,與馬國(guó)禮[22]所得結(jié)論相同,這可能是由于低灌溉量高濃度營(yíng)養(yǎng)液耦合處理對(duì)辣椒的生長(zhǎng)產(chǎn)生拮抗作用增強(qiáng),蔣靜靜等[23]研究表明低灌溉量高濃度營(yíng)養(yǎng)液耦合處理的黃瓜產(chǎn)量最高,這與本研究結(jié)果相反,表明不同的蔬菜作物的對(duì)水肥要求存在差異。
果實(shí)品質(zhì)指標(biāo)眾多且分析單個(gè)指標(biāo)不能全面反映果實(shí)的綜合品質(zhì),運(yùn)用算法對(duì)果實(shí)品質(zhì)進(jìn)行綜合評(píng)價(jià)更全面更具有科學(xué)性。Topsis算法是一種有限方案多目標(biāo)決策的綜合評(píng)判方法[17,24],運(yùn)用該算法進(jìn)行多指標(biāo)評(píng)價(jià)的結(jié)果能夠充分反映各處理方案間的差距,具有真實(shí)性、可靠性和全面性。朱常安等[25]研究發(fā)現(xiàn)通過Topsis組合評(píng)價(jià)法構(gòu)建的黃瓜果實(shí)綜合營(yíng)養(yǎng)品質(zhì)評(píng)價(jià)體系,與根據(jù)單一品質(zhì)指標(biāo)排序的相關(guān)性很好,能夠較好地評(píng)價(jià)黃瓜綜合營(yíng)養(yǎng)品質(zhì)。潘銅華[26]研究發(fā)現(xiàn),中等水平灌溉量下,施加高濃度營(yíng)養(yǎng)液與中等濃度營(yíng)養(yǎng)液可獲得番茄最佳品質(zhì)。本研究通過Topsis法對(duì)袋培辣椒的各項(xiàng)果實(shí)品質(zhì)指標(biāo)進(jìn)行評(píng)價(jià),發(fā)現(xiàn)中等灌溉量高濃度營(yíng)養(yǎng)液耦合處理下(W2F1)的果實(shí)品質(zhì)綜合評(píng)分最高,中等灌溉量中濃度營(yíng)養(yǎng)液耦合處理(W2F2)次之,本研究結(jié)果與潘銅華[26]的結(jié)果一致,這與果實(shí)接近采收其最佳施肥濃度上升有關(guān),該結(jié)果與李建明等[27]的結(jié)果略有不同,這表明栽培條件不同的作物對(duì)水肥需求存在差異。
在一定范圍內(nèi)增加灌溉量和施肥量均會(huì)提高作物的WUE和FUE,而過高的水肥供應(yīng)則會(huì)導(dǎo)致WUE和FUE的降低[19,28]。本試驗(yàn)結(jié)果表明,灌溉量和營(yíng)養(yǎng)液濃度對(duì)袋培辣椒的WUE和FUE的影響顯著且均存在閾值,且灌溉量對(duì)WUE的影響大于營(yíng)養(yǎng)液濃度,營(yíng)養(yǎng)液濃度對(duì)FUE的影響大于灌溉量,這與張鈞恒等[28]在番茄上得出的結(jié)論一致。高肥供應(yīng)會(huì)造成根區(qū)氮、磷、鉀離子濃度過高,抑制根系生長(zhǎng),不利于植株根系對(duì)水分、養(yǎng)分的吸收[29],故適當(dāng)?shù)氖┓视欣谠黾赢a(chǎn)量和養(yǎng)分利用率,過多的施氮量反而會(huì)降低辣椒的氮素利用效率。本試驗(yàn)中,中等灌溉量中濃度營(yíng)養(yǎng)液耦合處理(W2F2)的WUE和FUE均達(dá)到最大,這與李建明等[27]的研究結(jié)果一致,說明該管理模式下水肥利用率均存在閾值,而與蔣靜靜等[23]得出的結(jié)果不同,這可能與蔬菜作物種類和設(shè)施環(huán)境不同有關(guān)。采收前的營(yíng)養(yǎng)液減量并未造成顯著性減產(chǎn),同時(shí)顯著提高了FUE,表明該管理模式可能促進(jìn)了基質(zhì)中的酶活性與有益微生物含量[30]。
蔬菜各指標(biāo)是農(nóng)業(yè)生產(chǎn)需要考慮的因素,單一目標(biāo)評(píng)價(jià)的結(jié)果具有一定程度的不確定性[31-32],難以真正實(shí)現(xiàn)作物的高效優(yōu)質(zhì)生產(chǎn)和節(jié)約水肥的目的,因此,現(xiàn)代農(nóng)業(yè)生產(chǎn)中,需建立依據(jù)產(chǎn)量、品質(zhì)和水肥料利用率等目標(biāo)評(píng)判的最優(yōu)水肥耦合評(píng)價(jià)體系,定量確定更有效的灌水和營(yíng)養(yǎng)液管理制度。遺傳算法并列選擇法是通過模擬自然進(jìn)化過程搜索多目標(biāo)最優(yōu)解的方法,目前已在多個(gè)領(lǐng)域表現(xiàn)出強(qiáng)大的求解能力[18,33],與傳統(tǒng)求解方法比較,該方法在求解較為復(fù)雜的多目標(biāo)優(yōu)化問題時(shí)能夠獲得更為滿意的方案[34],張忠學(xué)等[18]已驗(yàn)證遺傳算法并列選擇法在解決作物水肥合理配比問題方面的優(yōu)越性和可靠性。本研究利用該法對(duì)不同灌溉量和營(yíng)養(yǎng)液管理耦合處理的產(chǎn)量、果實(shí)品質(zhì)綜合評(píng)分、水分利用效率和肥料利用率進(jìn)行尋優(yōu),建立灌溉量和營(yíng)養(yǎng)液管理方式對(duì)產(chǎn)量、果實(shí)品質(zhì)綜合評(píng)分、水分利用效率及肥料利用率的回歸模型,并通過遺傳算法多目標(biāo)優(yōu)化法對(duì)袋培辣椒該模型進(jìn)行多目標(biāo)尋優(yōu),得到最佳方案為W2F2B,該方案兼顧了產(chǎn)量、果實(shí)品質(zhì)與水肥投入,與以往產(chǎn)生不確定因素的綜合分析法相比,更具有科學(xué)性和廣泛適用性。
1)灌溉量、營(yíng)養(yǎng)液濃度及其交互效應(yīng)對(duì)產(chǎn)量、水分利用效率和肥料利用率均有顯著影響,采收前期進(jìn)行營(yíng)養(yǎng)液減量處理可在維持產(chǎn)量和水分利用效率較高的基礎(chǔ)上顯著提高袋培辣椒的果實(shí)綜合品質(zhì)和肥料利用率。
2)運(yùn)用Topsis法對(duì)辣椒果實(shí)綜合品質(zhì)評(píng)價(jià)的基礎(chǔ)上,建立了袋培辣椒產(chǎn)量、果實(shí)綜合品質(zhì)評(píng)分、水分利用效率和肥料利用率的多目標(biāo)優(yōu)化模型,利用遺傳算法對(duì)模型進(jìn)行尋優(yōu),得到最佳的灌溉量和營(yíng)養(yǎng)液管理耦合處理:按照基質(zhì)含水量的55%~60%進(jìn)行灌溉,全生育期施加100%濃度的營(yíng)養(yǎng)液,在每層果實(shí)開花到采收前的6 d進(jìn)行營(yíng)養(yǎng)液減量40%處理,該處理下得到最優(yōu)袋培辣椒產(chǎn)量為87 930.52 kg/hm2,水分利用效率為41.14 kg/m3,肥料利用率為38.83%,果實(shí)綜合評(píng)價(jià)貼合度C值為0.742。
[1]劉霓紅,蔣先平,程俊峰,等. 國(guó)外有機(jī)設(shè)施園藝現(xiàn)狀及對(duì)中國(guó)設(shè)施農(nóng)業(yè)可持續(xù)發(fā)展的啟示[J].農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):1-9.
Liu Nihong, Jiang Xianping, Cheng Junfeng, et al. Current situation offoreign organic greenhouse horticulture and its inspiration for sustainable development of Chinese protected agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 1-9. (in Chinese with English abstract)
[2]段彥丹,樊力強(qiáng),吳志剛,等. 蔬菜無土栽培現(xiàn)狀及發(fā)展前景[J]. 北方園藝,2008(8):63-65.
Duan Yandan, Fan Liqiang, Wu Zhigang, et al. Present situation and development prospect of vegetable soilless cultivation[J]. Northern Horticulture, 2008(8): 63-65. (in Chinese with English abstract)
[3]劉小剛,孫光照,彭有亮,等. 水肥耦合對(duì)芒果光合特性和產(chǎn)量及水肥利用的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):125-133.
Liu Xiaogang, Sun Guangzhao, Peng Youliang, et al. Effect of water-fertilizer coupling on photosynthetic characteristics, fruit yield, water and fertilizer use of mango[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 125-133. (in Chinese with English abstract)
[4]樊懷福,杜長(zhǎng)霞,朱祝軍,等. 基質(zhì)含水量對(duì)番茄生長(zhǎng)、品質(zhì)和產(chǎn)量的影響[J]. 浙江農(nóng)業(yè)科學(xué),2011(3):496-499.
Fan Huaifu, Du Changxia, Zhu Zhujun, et al. Effects of substrate water content on tomato growth, quality and yield[J]. Journal of Zhejiang Agricultural Sciences, 2011(3): 496-499. (in Chinese with English abstract)
[5]魏曉然. 日光溫室番茄基質(zhì)含水量及輻射累積量控制灌溉模式研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019.
Wei Xiaoran. Research of the Irrigation Mode Controlled by Substrate Moisture Content and Cumulative Radiation on Tomato in Greenhouse[D]. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2019. (in Chinese with English abstract)
[6]強(qiáng)浩然,張國(guó)斌,郁繼華,等. 不同水氮供應(yīng)對(duì)日光溫室辣椒栽培基質(zhì)固氮微生物數(shù)量和理化性質(zhì)的影響[J]. 中國(guó)土壤與肥料,2017(6):71-81.
Qiang Haoran, Zhang Guobin, Yu Jihua, et al. Effects of different water and nitrogen supply on azotobacters and physicochemical properties in greenhouse pepper cultural substrate[J]. Soil and Fertilizer Sciences in China, 2017(6): 71-81. (in Chinese with English abstract)
[7]黎星,胡啟星,成臣,等. 基質(zhì)含水量對(duì)機(jī)插水稻秧苗素質(zhì)及產(chǎn)量的影響[J]. 中國(guó)稻米,2019,25(4):63-67.
Li Xing, Hu Qixing, Cheng Chen, et al. Effects of water content of substrate on seedling quality and yield of machine-trans-planted rice[J]. China Rice, 2019, 25(4): 63-67. (in Chinese with English abstract)
[8]蔣靜靜,常曉曉,胡曉輝. 供氮水平對(duì)基質(zhì)袋培黃瓜養(yǎng)分吸收分配和產(chǎn)量的影響[J]. 浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2018,44(6):678-686.
Jiang Jingjing, Chang Xiaoxiao, Hu Xiaohui. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system[J]. Journal of Zhejiang University: Agriculture and Life Sciences, 2018, 44(6): 678-686. (in Chinese with English abstract)
[9]王萍. 生育期營(yíng)養(yǎng)液濃度調(diào)控對(duì)番茄生長(zhǎng)、產(chǎn)量及品質(zhì)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.
Wang Ping. Effects of Nutrient Solution Concentration Supply on Tomato Growth Yield and Quality During Growth Stage[D]. Yangling: Northwest Agriculture & Forestry University, 2017. (in Chinese with English abstract)
[10]周元清. 營(yíng)養(yǎng)液供應(yīng)對(duì)霧培生菜產(chǎn)量和營(yíng)養(yǎng)品質(zhì)的影響[D]. 杭州:浙江大學(xué),2014.
Zhou Yuanqing. Effect of Nutrient Solution Supply on Yield and Nutrient Quality of Aeroponically Grown Lettuce (L.)[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
[11]張芳,薛緒掌,張建豐,等. 基于葉片數(shù)增長(zhǎng)動(dòng)態(tài)的營(yíng)養(yǎng)液供給對(duì)番茄生長(zhǎng)、產(chǎn)量和品質(zhì)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(5):1374-1383.
Zhang Fang, Xue Xuzhang, Zhang Jianfeng, et al. Effects of nutrient solution supplying mode on growth, yield and quality oftomatoes using leaf number growth dynamic[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(5): 1374-1383. (in Chinese with English abstract)
[12]金莉,肖雪梅,郁繼華,等. 營(yíng)養(yǎng)液濃度對(duì)基質(zhì)栽培番茄果實(shí)礦質(zhì)元素含量的影響[J]. 甘肅農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,55(2):76-82.
Jin Li, Xiao Xuemei, Yu Jihua, et al. Effect of nutrient solution concentration on mineral element content in tomato fruit under substrate culture[J]. Journal of Gansu Agricultural University, 2020, 55(2): 76-82. (in Chinese with English abstract)
[13]蔡?hào)|升,李建明,李惠,等. 營(yíng)養(yǎng)液供應(yīng)量對(duì)番茄產(chǎn)量、品質(zhì)和揮發(fā)性物質(zhì)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2018,29(3):921-930.
Cai Dongsheng, Li Jianming, Li Hui, et al. Effects of nutrient solution supply amount on yield, quality and volatile matter of tomato[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 921-930. (in Chinese with English abstract)
[14]胡瑩瑩. 日光溫室番茄架式栽培營(yíng)養(yǎng)液量化管理技術(shù)研究[D].泰安:山東農(nóng)業(yè)大學(xué),2014.
Hu Yingying. Study on Quantitative Management of Nutrient Solution for Elevated Cultivation of Tomato in Solar Greenhouse[D]. Taian: Shandong Agricultural University, 2014. (in Chinese with English abstract)
[15]高君鳳. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:高等教育出版社,2006.
[16]彭瓊,童建華,黃志剛,等. 茉莉酸甲酯和苯丙氨酸對(duì)辣椒果實(shí)品質(zhì)的影響[J]. 植物生理學(xué)報(bào),2012,48(7):654-658.
Peng Qiong, Tong Jianhua, Huang Zhigang, et al. Effects of methyl jasmonate and phenylalanine on quality of pepper (Capsicum frutescens L.) Fruit[J]. Plant Physiology Journal, 2012, 48(7): 654-658. (in Chinese with English abstract)
[17]游進(jìn)軍,紀(jì)昌明,付湘. 基于遺傳算法的多目標(biāo)問題求解方法[J]. 水利學(xué)報(bào),2003,34(7):64-69.
You Jinjun, Ji Changming, Fu Xiang. New method for solving multi-objective problem based on genetic algorithm[J]. Journal of Hydraulic Engineering, 2003, 34(7): 64-69. (in Chinese with English abstract)
[18]張忠學(xué),張世偉,郭丹丹,等. 玉米不同水肥條件的耦合效應(yīng)分析與水肥配施方案尋優(yōu)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):206-214.
Zhang Zhongxue, Zhang Shiwei, Guo Dandan, et al. Coupling effects of different water and fertilizer conditions and optimization of water and fertilizer schemes on maize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 206-214. (in Chinese with English abstract)
[19]王鵬勃,李建明,丁娟娟,等. 水肥耦合對(duì)溫室袋培番茄品質(zhì)、產(chǎn)量及水分利用效率的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(2):314-323.
Wang Pengbo, Li Jianming, Ding Juanjuan, et al. Effect of water and fertilizer coupling on quality, yield and water use efficiency of tomato cultivated by organic substrate in bag[J]. Scientia Agricultura Sinica, 2015, 48(2): 314-323. (in Chinese with English abstract)
[20]Liu H, Li H H, Ning H F, et al. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato[J]. Agricultural Water Management, 2019, 226.
[21]劉燕. 不同水肥處理對(duì)有機(jī)基質(zhì)型砂培番茄生理特性及產(chǎn)量品質(zhì)的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2011.
Liu Yan. Effects of Different Water and Fertilizer Treatment on Physiological Characteristics and Yield Quality of Tomato Grown in Organic Sand Substrate[D]. Yangling: Northwest Agriculture & Forestry University, 2011. (in Chinese with English abstract)
[22]馬國(guó)禮,張國(guó)斌,強(qiáng)浩然,等. 水氮耦合對(duì)日光溫室辣椒生長(zhǎng)、光合特性及養(yǎng)分分配的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究,2018,36(5):130-141.
Ma Guoli, Zhang Guobin, Qiang Haoran, et al. Effects of water and nitrogen coupling on growth, photosynthetic characteristics and nutrient allocation of pepper in solar greenhouse[J]. Agricultural Research in the Arid Areas, 2018, 36(5): 130-141. (in Chinese with English abstract)
[23]蔣靜靜,屈鋒,蘇春杰,等. 不同肥水耦合對(duì)黃瓜產(chǎn)量品質(zhì)及肥料偏生產(chǎn)力的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(1):86-97.
Jiang Jingjing, Qu Feng, Su Chunjie, et al. Effects of different water and fertilizer coupling on yield and quality of cucumber and partial factor productivity of fertilizer[J]. Scientia Agricultura Sinica, 2019, 52(1): 86-97. (in Chinese with English abstract)
[24]管孝艷,王少麗,呂燁,等. 基于Topsis方法的北方地區(qū)農(nóng)業(yè)干旱應(yīng)對(duì)能力分析[J]. 灌溉排水學(xué)報(bào),2014,33(4/5):374-377.
Guan Xiaoyan, Wang Shaoli, Lü Ye, et al. Analysis of the ability to mitigate agricultural drought in china north based on topsis method[J]. Journal of Irrigation and Drainage, 2014, 33(4/5): 374-377. (in Chinese with English abstract)
[25]朱常安,和志豪,蔡澤林,等. 融合鎂元素的水肥多因子耦合對(duì)黃瓜綜合營(yíng)養(yǎng)品質(zhì)的調(diào)控[J]. 中國(guó)農(nóng)業(yè)科學(xué),2019,52(18):3258-3270.
Zhu Chang’an, He Zhihao, Cai Zelin, et al. Regulation of comprehensive nutritional quality of cucumber by water and fertilizer coupling with magnesium[J]. Scientia Agricultura Sinica, 2019, 52(18): 3258-3270. (in Chinese with English abstract)
[26]潘銅華. 溫室番茄長(zhǎng)季節(jié)基質(zhì)袋培水肥耦合效應(yīng)研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2015.
Pan Tonghua. Study on the Effect of Water and Fertilizer Coupling on Tomato Long-Season Cultivated in Bag With Substrate in Greenhouse[D]. Yangling: Northwest Agriculture & Forestry University, 2015. (in Chinese with English abstract)
[27]李建明,于雪梅,王雪威,等. 基于產(chǎn)量品質(zhì)和水肥利用效率西瓜滴灌水肥制度優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(9):75-83.
Li Jianming, Yu Xuemei, Wang Xuewei, et al. Optimization of fertigation scheduling for drip-irrigated watermelon based on its yield, quality andfertilizer and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(9): 75-83. (in Chinese with English abstract)
[28]張鈞恒,馬樂樂,李建明. 全有機(jī)營(yíng)養(yǎng)肥水耦合對(duì)番茄品質(zhì)、產(chǎn)量及水分利用效率的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(14):2788-2798.
Zhang Junheng, Ma Lele, Li Jianming. Effects of all-organic nutrient solution and water coupling on quality, yield and water use efficiency of tomato[J]. Scientia Agricultura Sinica, 2018, 51(14): 2788-2798. (in Chinese with English abstract)
[29]岳文俊,張富倉(cāng),李志軍,等. 水氮耦合對(duì)甜瓜氮素吸收與土壤硝態(tài)氮累積的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(2):88-96,119.
Yue Wenjun, Zhang Fucang, Li Zhijun, et al. Effects of water and nitrogen coupling on nitrogen uptake of muskmelon and nitrate accumulation in soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 88-96, 119. (in Chinese with English abstract)
[30]任靜,劉小勇,韓富軍,等. 施氮水平對(duì)旱塬覆沙蘋果園土壤酶活性及果實(shí)品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):206-213.
Ren Jing, Liu Xiaoyong, Han Fujun, et al. Effects of nitrogen fertilizer levels on soil enzyme activity and fruit quality of sand-covered apple orchard in Loess Plateau of Eastern Gansu[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 206-213. (in Chinese with English abstract)
[31]龔雪文,劉浩,劉東鑫,等. 基于模糊算法的溫室番茄調(diào)虧滴灌制度綜合評(píng)判[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(14):144-151.
Gong Xuewen, Liu Hao, Liu Dongxin, et al. Fuzzy comprehensive evaluation on regulated deficit irrigation scheduling of tomato drip irrigated in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(14): 144-151. (in Chinese with English abstract)
[32]楊慧,曹紅霞,李紅崢,等. 基于空間分析法研究溫室番茄優(yōu)質(zhì)高產(chǎn)的水氮模式[J]. 中國(guó)農(nóng)業(yè)科學(xué),2016,49(5):896-905.
Yang Hui, Cao Hongxia, Li Hongzheng, et al. An investigation on optimal irrigation and nitrogen rates of greenhouse tomato based on spatial analysis for high yield and quality[J]. ScientiaAgriculturaSinica, 2016, 49(5): 896-905. (in Chinese with English abstract)
[33]陳南祥,李躍鵬,徐晨光. 基于多目標(biāo)遺傳算法的水資源優(yōu)化配置[J]. 水利學(xué)報(bào),2006,7(3):308-313.
Chen Nanxiang, Li Yuepeng, Xu Chenguang. Optimal deployment of water resources based on multi objective genetic algorithm[J]. Journal of Hydraulic Engineering, 2006, 7(3): 308-313. (in Chinese with English abstract)
[34]單寶英,郭萍,張帆,等. 基于遺傳算法與方案優(yōu)選的多目標(biāo)優(yōu)化模型求解方法[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,24(6):157-165.
Shan Baoying, Guo Ping, Zhang Fan, et al. A multi-objective optimization model solving method based on genetic algorithm and scheme evaluation[J]. Journal of China Agricultural University, 2019, 24(6): 157-165. (in Chinese with English abstract)
Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing
Hu Xiaohui1,2,3, Gao Zixing1,2, Ma Yongbo1, Xue Jiankang1, Xie Zhilong1, Li Xue1, Zhang Linyang1, Wang Junzheng1,2, Ma Xueqiang1,2, Qu Feng1,2, Zhang Jiao1,2
(1.,,712100,; 2.,,712100,; 3.,712100,)
This study aims to establish a precise management model of water and fertilizer, in order to clarify the coupling effect of water and fertilizer on yield, fruit quality, water use efficiency (WUE) and fertilizer use efficiency (FUE) for pepper planting in bag. Taking "Bolong (37-94) Bolon RZ F1" pepper as the test material, 18 coupling treatments were conducted, with three levels of irrigation (control the relative water content of substrate in 70%-75% (W1), 55%-60% (W2), and 40%-45% (W3)), three levels concentration of nutrient solution (set up 150% (F1: each plant supplies N-P2O5-K2O, 8.42-3.96-13.93 g), 100% (F2: each plant supplies N-P2O5-K2O, 7.41-3.48-12.26 g), 80% (F3: each plant supplies N-P2O5-K2O, 6.36-2.99-10.53 g) Yamazaki pepper nutrient solution formula), and two supply amounts of nutrient solution (regular supply; reduce supply, where six days before each harvest reduced 40% nutrient solution supply). Randomized block design was used in the whole experiment, which was repeated for three times, where each block was 7 m×1.2 m with 24 plants. Pepper seedlings with five leaves were transplanted into the matrix bag, with 60 cm row spacing and 30 cm plant spacing, on March 20, 2019, and uprooted on July 28, 2019. A handheld matrix moisture meter (HH150, Delta-T Devices LTD, UK) was used to determine the relative moisture content of matrix. The irrigation was carried out according to the measured data at 8:00 am every day, whereas, the frequency of nutrient solution supply was once every two days, as well as the water and fertilizer integrated drip irrigation system was used for water and fertilizer management. A multi-objective model of yield, comprehensive fruit quality, WUE and FUE was established, according to the obtained data of the factors and the coupling effects, and then to be optimized using the genetic algorithm. The results showed that the single factor of irrigation, nutrient solution concentration, and their coupling effect can pose a significant influence on the yield, WUE and FUE of pepper. Specifically, the yield, WUE and FUE all increased first, and then decreased with the increase of irrigation and nutrient solution concentration. A Topsis method was used for the comprehensive evaluation of fruit quality. The reduction of nutrient supply amount before pepper fruit harvest can maintain the higher yield and WUE, while significantly improve the quality of pepper fruit and FUE. The combined W2F2 treatment under a reduced supply of nutrient solution can achieved the largest yield, WUE and FUE, whereas, the W2F1 treatment under a reduced supply of nutrient solution has showed the optimal comprehensive evaluation of fruit quality. The optimal coupling scheme of water and fertilizer was obtained using the genetic algorithm multi-objective optimization method, where the combined W2F2 treatment under a reduction supply of nutrient solution was the best management model. The specific coupling scheme of water and fertilizer can achieved high yield and quality of pepper in bag: Irrigation according to the relative moisture content of substrate 55%-60%, applying 100% Yamazaki pepper nutrient solution formula, and six days before each harvest reduced 40% nutrient solution supply. The pepper yield can reach 87 930.52 kg/hm2, where the fitness of fruit quality comprehensive evaluation reached 0.749, the WUE and FUE were 41.14 kg/m3and 38.83%, respectively. The findings can provide an insightful guidance for high yield and quality of pepper production, and further for the scientific management of water and fertilizer in pepper farming.
irrigation;fertilization; yield; quality; pepper; water use efficiency; fertilizer use efficiency; multi-objective optimization evaluation
胡曉輝,高子星,馬永博,等. 基于產(chǎn)量品質(zhì)及水肥利用率的袋培辣椒水肥耦合方案[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(17):81-89.doi:10.11975/j.issn.1002-6819.2020.17.010 http://www.tcsae.org
Hu Xiaohui, Gao Zixing, Ma Yongbo, et al. Coupling scheme of water and fertilizer based on yield, quality, use efficiency of water and fertilizer in bag pepper growing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 81-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.010 http://www.tcsae.org
2020-03-11
2020-07-31
國(guó)家大宗蔬菜現(xiàn)代產(chǎn)業(yè)技術(shù)體系(CARS-23-C07);陜西省重點(diǎn)研發(fā)計(jì)劃(2018TSCXL-NY-05-01,2019TSLNY01-05)
胡曉輝,博士,教授,博士生導(dǎo)師,主要從事設(shè)施農(nóng)業(yè)理論與生產(chǎn)技術(shù)研究。Email:hxh1977@163.com
10.11975/j.issn.1002-6819.2020.17.010
S641.3
A
1002-6819(2020)-17-0081-09