劉洋洋,茹 煜,劉 彬,陳旭陽
·農(nóng)業(yè)航空工程·
直升機航空施藥全覆蓋航線規(guī)劃算法
劉洋洋,茹 煜※,劉 彬,陳旭陽
(南京林業(yè)大學機械電子工程學院,南京 210037)
為避免航空施藥過程中由于多施、漏施、重施等現(xiàn)象造成的覆蓋不精準問題,該研究開發(fā)了一種航程短,覆蓋范圍精準的航空施藥全覆蓋航線規(guī)劃算法。首先基于區(qū)域全覆蓋原理,通過對施藥作業(yè)區(qū)域外噴霧航程計算與分析,得出在全覆蓋的前提下,區(qū)域外最短噴霧航程計算公式。再結(jié)合全覆蓋航線規(guī)劃方法,得出全覆蓋航空施藥的最優(yōu)航線規(guī)劃算法,并通過軟硬件設計實現(xiàn)了實時采集飛行軌跡,通過OneNet物聯(lián)網(wǎng)平臺與移動終端進行信息雙向傳輸。最后分別對3種不同地形的試驗場地進行了7個不同航向的全覆蓋噴霧作業(yè)試驗。試驗結(jié)果表明,在3種試驗場地中,按照規(guī)劃航向作業(yè)的航程比試驗組按照其他6個航向作業(yè)的航程短,航程比其他航向的航程最大可分別縮短4.920、6.903、59.913 km;且多余覆蓋率均為最小,多余覆蓋率最小分別為2.08%、7.17%、0.57%。作業(yè)面積越大,規(guī)劃航向作業(yè)的航程縮短越明顯,多余覆蓋率越小,并且規(guī)則地形航線規(guī)劃的多余覆蓋率明顯小于不規(guī)則地形。所提出的航空施藥全覆蓋航線規(guī)劃算法,可為航空施藥航線規(guī)劃技術(shù)的發(fā)展提供理論支撐,為實際施藥作業(yè)提供指導。
路徑規(guī)劃;航空施藥;全覆蓋路徑;R44直升機
中國人工林保存面積高達7×107hm2,居世界首位,但是中國的森林資源分布不均勻,并且病蟲害頻繁發(fā)生,嚴重破壞林業(yè)生態(tài)系統(tǒng),導致林木產(chǎn)量較低[1-2]。近幾年中國林業(yè)病蟲害發(fā)生面積占人工林面積的23.7%,占林業(yè)有害生物總發(fā)生面積的80%,因病蟲害發(fā)生造成的經(jīng)濟損失和生態(tài)服務價值損失超過1 100億元,因此病蟲害的防治是糧食和林木生產(chǎn)不可或缺的重要環(huán)節(jié)[3-5]。中國林業(yè)目前最常用的病蟲害的防治方法,是通過噴灑化學藥品進行防治,而施藥主要有人工施藥、地面機械施藥和航空施藥3種方式[6]。航空施藥是現(xiàn)代農(nóng)業(yè)的重要組成部分,不僅反映農(nóng)業(yè)現(xiàn)代化的先進水平,也是精準農(nóng)業(yè)發(fā)展方向之一[7-8]。相比人工施藥和地面機械施藥,航空施藥作業(yè)具有速度快、成本低、效率高等特點,并且不受作物長勢以及林業(yè)地理因素的制約,尤其可以及時有效的防治突發(fā)性或爆發(fā)性病蟲草害[9-10]。
目前,航空施藥作業(yè)主要基于有人駕駛的固定翼飛機、直升機和無人機3種運載方式。與固定翼飛機相比,直升機不需要專用跑道,可以垂直起降,維護成本較低[11-13]。與無人機相比,直升機具有載藥量大、作業(yè)效率高、續(xù)航時間長、操控靈活等特點,可一次作業(yè)約70 hm2地,可適應丘陵、山區(qū)等地形復雜的施藥作業(yè)區(qū)域[14-15]。因此直升機兼具固定翼飛機和無人機的優(yōu)點,是林業(yè)植保作業(yè)的最佳選擇。直升機旋翼產(chǎn)生的渦流可以提高噴灑效果,能使農(nóng)藥均勻覆蓋在作物莖葉的背面,提高施藥效果,減少對周邊環(huán)境的危害[16-17]。
航空施藥的關(guān)鍵技術(shù)是航線規(guī)劃,針對直升機施藥作業(yè)的航線規(guī)劃主要分為點對點調(diào)度航線規(guī)劃和區(qū)域全覆蓋作業(yè)航線規(guī)劃。國內(nèi)外關(guān)于航空施藥航線規(guī)劃的研究較早,在區(qū)域偵察監(jiān)測、目標跟蹤、多區(qū)域調(diào)度、躲避火力威脅方面以及地形避障等方面的研究已較為成熟[18-24]。這些研究都是利用點對點的調(diào)度航線進行規(guī)劃研究,而在林業(yè)航空施藥方面,全覆蓋航線規(guī)劃尤為重要,國內(nèi)外學者在全覆蓋航線規(guī)劃方面的研究較少。Popescu等[25]對無人機航線控制與優(yōu)化的研究,Marina等[26]研究的無人機覆蓋航線規(guī)劃方法,徐博等[27-28]提出植保作業(yè)航跡規(guī)劃算法,以及黃小毛等研究的無人機自主作業(yè)路徑規(guī)劃[29],都可以實現(xiàn)區(qū)域全覆蓋施藥航線的規(guī)劃。然而以上研究皆是基于植保無人機平臺的區(qū)域全覆蓋施藥航線規(guī)劃。加拿大AG-NAV公司的Guia系統(tǒng)可根據(jù)指定航向規(guī)劃出作業(yè)航線,并可指引飛行員按照規(guī)劃航線駕駛[30]。但是該系統(tǒng)價格較高,并且未能體現(xiàn)規(guī)劃航線的航程最短和多余覆蓋率最低的特點。中國北京農(nóng)業(yè)智能裝備技術(shù)研究中心研發(fā)eFieldSuvey系統(tǒng)可體現(xiàn)航程最短的特點,但該產(chǎn)品規(guī)劃的航線越精準計算量越大,并且主要應用于無人機。目前大多數(shù)有人駕駛直升機施藥作業(yè)還主要是通過目視即時規(guī)劃航線的方式。這種作業(yè)方式對飛行員的主觀依賴過大,存在航線偏離嚴重,易產(chǎn)生多施、漏施、重施等現(xiàn)象,造成覆蓋不精準問題,并且存在航線冗余問題,造成燃油和農(nóng)藥的浪費,導致施藥效率較低、環(huán)境污染嚴重、作業(yè)成本高等問題。
因此本文針對R44有人駕駛直升機進行研究,提出一種航空施藥全覆蓋航線規(guī)劃算法,旨在根據(jù)不同的作業(yè)環(huán)境規(guī)劃出最優(yōu)全覆蓋施藥航線,使在施藥作業(yè)區(qū)域全覆蓋的前提下,噴霧航程最短,覆蓋范圍更加精準。
施藥作業(yè)過程中的航線可分為噴霧航線和轉(zhuǎn)向航線。其中噴霧航線是指進行農(nóng)藥噴灑作業(yè)時飛行的路線。由于噴霧作業(yè)過程中的噴幅不變,所以噴霧航線越長,噴灑面積越大,藥液使用量越大。轉(zhuǎn)向航線是飛機轉(zhuǎn)彎或者掉頭過程中飛行的路線,在該航線上飛機不進行噴霧作業(yè)。由于轉(zhuǎn)向航線會因飛行員駕駛技能差異、飛機型號不同、航速高低以及風速的變化而有所不同,不可控因素過多,所以本文只針對噴霧航線進行研究。通過以上分析可知,在全覆蓋的前提下使噴霧航線的航程最短,噴霧面積則最小,即可保證多余覆蓋面積最小,從而覆蓋范圍最精準。
由于林業(yè)的施藥作業(yè)區(qū)域多為不規(guī)則地形,為確保作業(yè)區(qū)域全覆蓋,噴霧航線需要超出作業(yè)區(qū)域的邊界線。因此減小邊界外的噴霧航線長度,即可減小多余噴灑面積,使噴灑范圍更加精準。
由以上分析可知,為確定最短的全覆蓋噴霧航線,應按以下5步進行分析:1)針對施藥作業(yè)區(qū)域建立環(huán)境坐標系;2)分別計算每個邊界的斜率;3)計算作業(yè)區(qū)域外噴霧航線總長度,即區(qū)域外總噴霧航程;4)確定區(qū)域外總噴霧航程最短的坐標系;5)根據(jù)全覆蓋航線規(guī)劃方法規(guī)劃出覆蓋最精準的噴霧航線。
2)計算每個邊界的斜率。
式中k為第條邊的斜率;(x,y)為第個頂點的坐標;為整數(shù)。
注:多邊形12…P區(qū)域為施藥作業(yè)區(qū)域;為坐標原點;ABCD為兩條平行且相等的區(qū)域外噴霧航線和轉(zhuǎn)向航線以及區(qū)域邊界線組成的平行四邊形。
Note: The area of polygon12…Pis the spray area;is the origin of coordinates; ABCD is a parallelogram composed of two parallel and equal out-of-area spray routes, turning routes, and regional boundary lines.
圖1 施藥作業(yè)區(qū)域及航線邊界示意圖
Fig.1 Spray area and schematic diagram of routes border
3)計算施藥作業(yè)區(qū)域外總噴霧航程。由于航空施藥大多采用牛耕往復法進行噴霧作業(yè),所以每條噴霧航線都平行于起始邊。在所建立的坐標系中,以軸為起始邊,結(jié)合噴幅可計算出在全覆蓋的前提下,每一個坐標系下除平行于軸以外的每一條邊界上需要多少條噴霧航線。
式中M為第條邊所需的施藥航線的條數(shù);為噴幅寬度,m。
計算第條邊上的作業(yè)區(qū)域外噴霧航程l,如圖1b所示。由于噴霧航線相互平行,間距為噴幅,所以圖1b中四邊形ABCD為平行四邊形,所以可得:
式中l為每條噴霧航線在施藥作業(yè)區(qū)域外的航程,km;為施藥作業(yè)區(qū)域邊界線的斜率。
由于每條邊界上的區(qū)域外總噴霧航程由該邊界線上的每條區(qū)域外航程的累加得到。所以結(jié)合式(2)和(3)可進一步得到:
式中l為第條邊界上區(qū)域外噴霧航程,km。
將式(1)代入式(4)得到
該施藥作業(yè)區(qū)域外總噴霧航程等于所有區(qū)域外噴霧航程的總和,即
式中為施藥作業(yè)區(qū)域外總噴霧航程,km。
4)確定最短的噴霧航程坐標系。由于施藥作業(yè)區(qū)域為多邊形,按順時針或逆時針給每個頂點編號,再分別以作業(yè)區(qū)域的每條邊界為軸,以該每條邊界的起始端點為坐標原點,建立坐標系,得坐標系1,2,…,Z。
再通過式(6)計算并對比得出個坐標系下的最短作業(yè)區(qū)域外總噴霧航程L,此時的坐標系Z即為最短的噴霧航程坐標系。
當所有坐標系下的施藥作業(yè)區(qū)域外總噴霧航程都為0時,即施藥作業(yè)區(qū)域為矩形區(qū)域。需要進一步對比區(qū)域外噴霧面積S與S的大小。若S較小,則以矩形的寬為軸建立的坐標系為最短的噴霧航程坐標系;若S較小,則以矩形的長為軸建立的坐標系為最短的噴霧航程坐標系。
式中S為噴霧航線平行于矩形的寬時,區(qū)域外噴霧面積,km2;S為噴霧航線平行于矩形的長時,區(qū)域外噴霧面積,km2;l為矩形的長,km;l為矩形的寬,km;0為施藥作業(yè)區(qū)域面積,km2。
5)根據(jù)全覆蓋規(guī)劃方法規(guī)劃出全覆蓋路徑。即在坐標系Z下,使噴霧航線平行于軸規(guī)劃出的全覆蓋航線為噴霧航程最短、多余覆蓋率最小的航線。
硬件設計需要滿足信號的采集處理以及操作顯示等功能的需求。本文采用杭州中科微電子有限公司生產(chǎn)的ATGM332D型號北斗導航模塊實時采集飛機的飛行軌跡,該模塊內(nèi)置天線短路保護功能,跟蹤靈敏度為?162 dBm,定位精度為2.5 m。采用3.97寸全視角IPS(In-Plane Switching)觸摸屏和中國移動物聯(lián)網(wǎng)公司開發(fā)的設備云App,實現(xiàn)對數(shù)據(jù)的輸入與對坐標信息、噴幅、規(guī)劃的航線和飛行航跡等信息的顯示。采用GSM通信模塊進行遠程信號傳輸,通過OneNet物聯(lián)網(wǎng)平臺與手機、平板、PC機等移動終端設備連接,進行信息雙向傳輸[31-34]。采用型號為STM32F103VET6的單片機作為微控制器,用于對信號進行綜合處理,根據(jù)算法規(guī)劃出最短全覆蓋航線。多元傳感器通過同步串行通信方式與微控制器進行數(shù)據(jù)交互,通信模塊通過異步串行通信口與微控制器相連進行數(shù)據(jù)的雙向傳輸。
該航線規(guī)劃系統(tǒng)的安裝位置及顯示界面如圖2所示。飛行員通過對比實際飛行軌跡和規(guī)劃的航線,判斷是否需要調(diào)整當前航向。
1.R44直升機儀表盤 2.航空施藥規(guī)劃裝置 3.系統(tǒng)規(guī)劃的噴霧航線 4.直升機飛行軌跡 5.直升機當前航向
系統(tǒng)的軟件算法包括2部分:根據(jù)式(6)~(8)確定最短的噴霧航程坐標系Z;在坐標系Z下規(guī)劃出全覆蓋噴霧航線。
全覆蓋施藥航線如圖3所示,噴霧航線規(guī)劃方法步驟為:1)在坐標系Z中,做軸的平行線,每條平行線相距0.5個噴幅,直到全部覆蓋施藥作業(yè)區(qū)域,其中奇數(shù)平行線即為噴霧航線。2)以偶數(shù)線與邊界的交點為起點,向軸作垂線,交于最近的邊界外的噴霧航線上。3)以各個頂點為起點,向軸作垂線,交于最近的邊界外的噴霧航線上。4)取每個噴霧航線上最長的線段,為規(guī)劃的噴霧航線。5)計算所有的噴霧航線的長度,即得到最短全覆蓋航程。如圖3所示。
注:ABCDE為施藥作業(yè)區(qū)域,粗虛線為奇數(shù)平行線,細虛線為偶數(shù)平行線,粗實線為噴霧航線。
系統(tǒng)工作流程圖如圖4所示。
圖4全覆蓋航線規(guī)劃系統(tǒng)工作流程圖
試驗使用羅賓遜直升機公司研制的型號為R44雷鳥系列直升機,平均油耗57L/h,林業(yè)施藥作業(yè)飛行速度為90~160 km/h,本試驗設置航速為120km/h,噴幅寬度為70m,藥耗為10L/km[35]。試驗時把本文研發(fā)的裝置放置在駕駛室內(nèi),試驗現(xiàn)場如圖5所示。選取位于東經(jīng)北緯地區(qū)的3處面積不同并且形狀各異的試驗場地,其中試驗場地1為面積約1.101km2的矩形場地,如圖6a所示,頂點經(jīng)緯度分別是A1(117°30′0.00″,39°19′0.01″),B1(117°30′0.00″,39°18′35.23″),C1(117°30′59.98″,39°18′35.23″),D1(117°31′0.00″,39°19′0.01″)。
場地2為面積約1.765km2的任意四邊形場地,如圖6b所示,頂點經(jīng)緯度分別是A2(117°36′58.67″,39°17′53.51″),B2(117°36′52.72″,39°17′19.72″),C2(117°38′14.78″,39°17′57.16″),D2(117°38′10.82″,39°18′26.33″)。
場地3為面積約4.17km2的任意多邊形場地,如圖6c所示,頂點經(jīng)緯度分別是A3(117°29′30.89″,39°18′23.68″),B3(117°29′38.46″,39°17′8.95″),C3(117°30′39.73″,39°17′3.50″),D3(117°30′49.75″,39°17′29.33″),E3(117°30′44.64″,39°18′20.13″),F(xiàn)3(117°30′23.34″,39°18′26.60″)。
圖5 試驗現(xiàn)場
注:A1B1C1D1為矩形場地,A2B2C2D2為任意四邊形場地,A3B3C3D3E3F3為任意多邊形場地。
以檢驗該算法規(guī)劃的航線是否為最優(yōu)的噴霧航線,即在施藥作業(yè)區(qū)域內(nèi)噴霧航程最短,覆蓋范圍最為精準的航線為試驗目的,設置對照組和試驗組。
對照組:系統(tǒng)先通過算法根據(jù)每處試驗場地特點,規(guī)劃出最短噴霧航程坐標系。再根據(jù)全覆蓋噴霧航線規(guī)劃方法,在坐標系下規(guī)劃出最優(yōu)的噴霧航線。此時航向角為0°,再按照規(guī)劃的航線進行全覆蓋噴霧作業(yè)。
試驗組:由于施藥區(qū)域在第一象限,航向角的變化范圍在0°~90°,所以本文在最短噴霧航程坐標系下每間隔15°選取一個航向角,即分別選取15°、30°、45°、60°、75°和90°的6個航向角進行全覆蓋噴霧作業(yè),作為與0°航向角的對照試驗。由于北斗導航存在誤差,并且環(huán)境風速對直升機的航線影響較大,以及飛行員的駕駛技能無法保證完全按照規(guī)劃航線飛行。因此為保證數(shù)據(jù)的準確性,需要多次試驗,本文對每個航向角重復5次試驗,記錄每次試驗的噴霧航程,取平均值為有效值,以提高數(shù)據(jù)的可靠性。
在全覆蓋噴霧的前提下,噴霧面積越小,多余覆蓋率越低,覆蓋面積越精準,通過式(9)計算多余覆蓋率。
式中為多余覆蓋率,%;′為實際噴霧總航程,km。
R44直升機在3種試驗場地上7個不同航向下的噴霧作業(yè)的航跡圖如表1所示。
表1 R44直升機在3種試驗場地上7個航向的噴霧作業(yè)航跡
從表1中可得,試驗的實際航跡均存在偏移現(xiàn)象。是由飛行員駕駛技術(shù)、環(huán)境中的風向和風速不穩(wěn)定以及北斗導航系統(tǒng)定位的誤差造成的,但是試驗組航跡偏移較大,航跡間距不穩(wěn)定,漏施重施現(xiàn)象嚴重。而對照組的航跡偏移量少,航線間距較穩(wěn)定,噴霧范圍較精準。初步驗證了該系統(tǒng)可以減少漏施重施現(xiàn)象,以及穩(wěn)定航線間距提高覆蓋的均勻性的效果。
由圖7可知,在同一場地上,不同航向角對應的噴霧航程也有所不同。其中無論在哪種場地上,當航向角為0°時對應的噴霧航程都為最短。由于航向角為0°時的噴霧航線即為算法規(guī)劃的噴霧航線,因此驗證了該算法規(guī)劃的航線是噴霧航程最短的全覆蓋噴霧航線。
圖7 不同場地下各航向角的噴霧航程
通過圖中誤差線可知,數(shù)據(jù)集的離散程度小,數(shù)值較接近平均值,數(shù)據(jù)可靠性較強。在場地1中,航程最小為16.055km,航程最大為20.975km。因此按照本文算法規(guī)劃的航線作業(yè),實際噴霧航程比未規(guī)劃作業(yè)的航程最多可縮短4.92km。在場地2中,航程最小為27.022 km,最大為33.925km,最多可縮短6.903km。在場地3中,航程最小為59.913km,最大為68.71km,最多可縮短8.797km。由此可見施藥作業(yè)區(qū)域的面積越大,航程縮短越明顯,算法規(guī)劃的航線優(yōu)勢越明顯。
而噴霧航程的長短決定噴霧面積的大小,以及作業(yè)時長、能耗與藥耗的高低等。噴霧航程越短,噴霧面積越小,作業(yè)時間越短,農(nóng)藥噴灑量越少。因此縮短噴霧航程可以最大程度降低作業(yè)成本,提高覆蓋精準率。場地3中縮短8.797km航程,不僅節(jié)約時間,還節(jié)省了4.19 L航空汽油和88L農(nóng)藥,大大降低了作業(yè)成本。
從圖8可知,不同航向角對應的多余覆蓋率有所不同。通過圖中誤差線可知,數(shù)據(jù)集的離散程度小,數(shù)值較接近平均值,數(shù)據(jù)可靠性較強。
圖8 不同場地下各航向角的多余覆蓋率
4.2.1 規(guī)則地形
圖8中的場地1多余覆蓋率先增大后減小,因為場地1為矩形(圖6a),當航向角為0°時,噴霧航線平行于矩形的長即A1D1邊;當航向角為90°時,噴霧航線平行于矩形的寬即A1B1邊。而其他航向角的噴霧航線均不平行于邊界線。所以從圖8場地1數(shù)據(jù)分析可得出:平行于區(qū)域邊界的多余覆蓋率比非平行于邊界的多余覆蓋率小。通過式(9)可知多余覆蓋率越小噴霧航程越短,因此驗證了由式(6)得出的噴霧航線平行于邊界線時,航程比非平行于邊界線時短的推論。
雖然航向角為0°和90°時噴霧航線都平行于邊界,但是航向角為0°時的多余覆蓋率最小。驗證了算法規(guī)劃的航線為噴霧航程最短和多余覆蓋率最小的航線。證明了前文推導出的噴霧航線平行于施藥作業(yè)區(qū)域的邊界時,可以得到最優(yōu)航線的理論。
4.2.2 不規(guī)則多邊地形
從如圖8中場地2和場地3的分析可知,在不規(guī)則多邊形中,隨著航向角的增大,多余覆蓋率的變化無明顯規(guī)律。
在場地2中,當航向角為0°時多余覆蓋率為7.17%,此時的多余覆蓋率最小。當航向角為45°時多余覆蓋率為8.67%,此時的多余覆蓋率也較小。因為場地2近似為平行四邊形(圖6b),當航向角為0°時,噴霧航線平行于該四邊形的B2C2邊;當航向角為45°時,噴霧航線近似平行于場地2的A2B2;而其他航向角均不平行于邊界。所以航向角為0°的航程最短,航向角為45°的航程較小,其他角度的航程較大。與本文理論分析內(nèi)容相符合,驗證了理論分析的正確性。
此外,當航向角為30°時和60°時的多余覆蓋率較為接近,并且均大于航向角為45°的多余覆蓋率。是因為航向角為30°和60°時,噴霧航線與A2B2邊的夾角近似相同。因此可得航線與邊界線存在夾角時,無論角度為正負均會增大多余覆蓋率。
在場地3中,當航向角為0°時多余覆蓋率為0.57%,此時的多余覆蓋率最小。當航向角為75°時多余覆蓋率為5.39%,此時的多余覆蓋率也較小。是因為當航向角為0°時,噴霧航線平行于場地3的A3B3邊,并且近似平行于E3D3邊;當航向角為75°時,噴霧航線近似平行于B3C3邊和F3E3邊。而A3B3邊的長度大于B3C3邊和F3E3邊的總長度。在場地2中,B2C2邊的長度大于A2B2的長度,平行于B2C2邊作業(yè)的航程比平行于A2B2邊作業(yè)的航程小。
通過以上分析可進一步得出:在不規(guī)則施藥作業(yè)區(qū)域中,當噴霧航線平行于施藥作業(yè)區(qū)域最長的邊界時,多余覆蓋率最小。因此在作業(yè)過程中,盡可能使噴霧航線平行于作業(yè)區(qū)域最長的邊界線,以使噴霧面積最精準,多余覆蓋面積最小。
場地1與場地2的作業(yè)面積接近,但是從圖8可知,在航向角為0°時,場地2的多余覆蓋率為7.17%,而場地1的多余覆蓋率僅為2.08%。兩處場地的區(qū)別在于,場地1的地形為規(guī)則四邊形,而場地2的地形為不規(guī)則四邊形,因此在規(guī)則地形上規(guī)劃航線的多余覆蓋率明顯小于不規(guī)則地形。由于R44直升機單架次作業(yè)面積有限,并且需要起降平臺,常常在對大面積林地作業(yè)時,需要對林地進行區(qū)域劃分。因此在進行區(qū)域劃分時,盡可能劃分成規(guī)則的地形,可以減少多余覆蓋面積,提高作業(yè)效率。
場地3的地形雖然為不規(guī)則多邊形,但是其作業(yè)面積遠遠大于場地1、2,并且從圖8可知,在航向角為0°時,其多余覆蓋率為0.57%,小于場地1與場地2的多余覆蓋率。因此在對林地進行區(qū)域劃分時,盡可能劃分大面積的規(guī)則地形,可以最大程度上減少多余覆蓋面積,使覆蓋的范圍更為精準。
1)提出了航空施藥全覆蓋航線規(guī)劃算法,該算法可以滿足在施藥作業(yè)區(qū)域被完全覆蓋的前提下,規(guī)劃出噴霧航程最短,多余覆蓋率最小的作業(yè)航線。為航空施藥航線規(guī)劃技術(shù)的發(fā)展提供理論支撐。
2)通過試驗驗證了該算法的可行性,與試驗組其他航向的作業(yè)航線相比,該算法規(guī)劃的航線航間距穩(wěn)定,覆蓋范圍精準,3種場地的最短噴霧航程分別為16.055、27.022、59.913km;最小多余覆蓋率分別為2.08%、7.17%、0.57%,有效減少多噴、漏噴、重噴現(xiàn)象。驗證了規(guī)則地形航線規(guī)劃的范圍精準性明顯高于不規(guī)則地形;在不規(guī)則地形中,當噴霧航線平行于施藥作業(yè)區(qū)域最長的邊界線時,噴霧航程最短,噴霧范圍最精準;作業(yè)區(qū)域面積越大,規(guī)劃的航線覆蓋范圍越精準。該算法可以提高施藥效率、減少成本和降低污染。
3)在進行施藥作業(yè)區(qū)域劃分時,應劃分成大面積的規(guī)則地形。在對不規(guī)則地形作業(yè)時,使噴霧航線平行于最長的邊界進行作業(yè),可以最大程度上縮短航程,降低多余覆蓋率,使覆蓋范圍最為精準。
[1]楊銀布. 林業(yè)資源管理對林區(qū)可持續(xù)發(fā)展的影響[J]. 現(xiàn)代園藝,2019(10):152-153.
[2]趙新邦. 林業(yè)資源管理存在的問題及解決措施分析[J]. 現(xiàn)代農(nóng)業(yè)2019(04):72-73.
[3]周志艷,臧英,羅錫文,等. 中國農(nóng)業(yè)航空植保產(chǎn)業(yè)技術(shù)創(chuàng)新發(fā)展戰(zhàn)略[J]. 農(nóng)業(yè)工程學報,2013,29(24):1-10.
Zhou Zhiyan, Zang Ying, Luo Xiwen, et al. Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 1-10. (in Chinese with English abstract)
[4]詹春明. 造林工程病蟲害特點及處理辦法[J]. 綠色科技,2016(5):123-124.
[5]張東彥,蘭玉彬,陳立平,等. 中國農(nóng)業(yè)航空施藥技術(shù)研究進展與展望[J]. 農(nóng)業(yè)機械學報,2014,45(10):53-59.
Zhang Dongyan, Lan Yubin, Chen Liping, et al. Current status and future trends of agricultural aerial spraying technology in China [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 53-59. (in Chinese with English abstract)
[6]陳盛德,蘭玉彬,李繼宇,等. 小型無人直升機噴霧參數(shù)對雜交水稻冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學報,2016,32(17):40-46.
Chen Shengde, Lan Yubin, Li Jiyu, et al. Effects of small unmanned helicopter spray parameters on the distribution of canopy droplets in hybrid rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 40-46. (in Chinese with English abstract)
[7]Lan Y B, Chen S D. Current status and trends of plant protection UAV and its spraying technology in China[J]. Int J Prec Agric Aviat, 2018, 1(1): 1-9.
[8]Pathak R, Barzin R, Bora G C. Data-driven precision agricultural applications using field sensors and unmanned aerial vehicle[J]. International Journal of Precision Agricultural Aviation, 2018, 1(1):19-23.
[9]茹煜,金蘭,賈志成,等. 無人機靜電噴霧系統(tǒng)設計及試驗[J]. 農(nóng)業(yè)工程學報,2015,31(8):42-47.
Ru Yu, Jin Lan, Jia Zhicheng. Design and experiment on electrostatic spraying system for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 42-47. (in Chinese with English abstract)
[10]陳盛德,蘭玉彬,李繼宇,等. 航空噴施與人工噴施方式對水稻施藥效果比較[J]. 華南農(nóng)業(yè)大學學報,2017,38(4):103-109.
Chen Shengde, Lan Yubin, Li Jiyu, et al. Comparison of the pesticide effects of aerial and artificial spray applications for rice[J]. Journal of South China Agricultural University, 2017, 38(4): 103-109. (in Chinese with English abstract)
[11]周志艷,明銳,臧禹,等. 中國農(nóng)業(yè)航空發(fā)展現(xiàn)狀及對策建議[J]. 農(nóng)業(yè)工程學報,2017,33(20):1-13.
Zhou Zhiyan, Ming Rui, Zang Yu, et al. Development status and countermeasures of agricultural aviation in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 1-13. (in Chinese with English abstract)
[12]李會,李玉榮,許斐斐,等. R44直升機飛防春尺蠖技術(shù)研究[J]. 山東林業(yè)科技,2014,44(5):82-85.
Li Hui, Li Yurong, Xu Feifei, et al. R44 Helicopte control apocheima cinerari technology research. Journal of Shandong Forestry Science and Technology, 2014, 44(5): 82-85. (in Chinese with English abstract)
[13]鄧鐵軍,白先進,廖憲成,等. R44型直升機噴霧防治柑橘木虱的效果初報[J]. 植物保護,2018,44(4):226-229.
Den Teijun, Bai Xianjin, Liao Xiancheng, et al. Control effect of spraying pesticides by R44 helicopter against diaphorina citri[J]. Plant Protection, 2018, 44(4): 226-229. (in Chinese with English abstract)
[14]包瑞,茹煜,朱傳銀,等. 固定翼飛機噴霧作業(yè)霧滴飄移規(guī)律研究[J]. 林業(yè)工程學報,2018,3(2):129-135.
Bao Rui, Ru Yu, Zhu Chuanyin, et al. Study on spray droplet drift pattern based on fixed-wing aircraft[J]. Journal of Forestry Engineering, 2018, 3(2): 129-135. (in Chinese with English abstract)
[15]Jacopo P, Salvatore Filippo D G, Edoardo F, et al. A flexible unmanned aerial vehicle for precision agriculture[J]. Precision Agriculture, 2012, 13(4): 517-523.
[16]秦維彩,薛新宇,周立新,等. 無人直升機噴霧參數(shù)對玉米冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學報,2014,30(5):50-56.
Qin Weicai, Xue Xinyu, Zhou Lixin, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 50-56. (in Chinese with English abstract)
[17]張鐵,董祥,尹素珍,等. 輕便型高地隙噴桿噴霧機大豆田間施藥試驗[J]. 農(nóng)業(yè)機械學報,2016,47(S):182-188.
Zhang Tie, Dong Xiang, Yin Suzhen, et al. Spraying performance of lightweight high clearance boom sprayer in soybean field[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S): 182-188. (in Chinese with English abstract)
[18]李繼宇,蘭玉彬,施葉茵. 旋翼無人機氣流特征及大田施藥作業(yè)研究進展[J]. 農(nóng)業(yè)工程學報,2018,34(12):104-118.
Li Jiyu, Lan Yubin, Shi Yeyin. Research progress on airflow characteristics and field pesticide application system of rotary-wing UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 104-118. (in Chinese with English abstract)
[19]Yao P, Wang H, Su Z. Cooperative path planning with applications to target tracking and obstacle avoidance for multi-UAVs[J]. Aerospace Science & Technology, 2016, 54: 10-22.
[20]Ramana M V, Varma S A, Kothari M. Motion planning for a fixed-wing UAV in urban environments[J]. IFAC-Papers Online, 2016, 49(1): 419-424.
[21]譚雁英,唐偉賢. 基于參考點法的無人機跟蹤目標導引策略設計[J]. 西北工業(yè)大學學報,2020,38(1):176-182.
Tan Yanying, Tang Weixian. Guidance strategy for UAV tracking target based on reference point guidance method[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 176-182. (in Chinese with English abstract)
[22]劉芳,孫亞楠,王洪娟,等. 基于殘差學習的自適應無人機目標跟蹤算法[J/OL]. 北京航空航天大學學報:1-12 [2020-03-27]. https://doi.org/10.13700/j.bh.1001-5965.2019.0551.
Liu Fang, Sun Yanan, Wang Hongjuan, et al. Adaptive UAV target tracking algorithm based on residual learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-12 [2020-03-27]. https://doi.org/ 10.13700/j.bh.1001-5965.2019.0551. (in Chinese with English abstract)
[23]汪沛,羅錫文,周志艷,等. 基于微小型無人機的遙感信息獲取關(guān)鍵技術(shù)綜述[J]. 農(nóng)業(yè)工程學報,2014,30(18):1-12.
Wang Pei, Luo Xiwen, Zhou Zhiyan, et al. Key technology for remote sensing information acquisition based on micro UAV[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(18): 1-12. (in Chinese with English abstract)
[24]曹光喬,張慶凱,陳聰,等. 基于多目標優(yōu)化的飛防隊作業(yè)調(diào)度模型研究[J]. 農(nóng)業(yè)機械學報,2019,50(11):92-101.
Cao Guangqiao, Zhang Qingkai, Chen Cong, et al. Scheduling model of UAV plant protection team based on multi-objective optimization[J].Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 92-101. (in Chinese with English abstract)
[25]Popescu D, Stoican F, Ichim L. Control and optimization of UAV trajectory for aerial coverage in photogrammetry applications[J]. Advances in Electrical and Computer Engineering, 2016, 16( 3) : 99-106.
[26]Marina Torres, David A. Pelta, José L, et al. Coverage path planning with unmanned aerial vehicles for 3D terrain reconstruction[J]. Expert Systems with Applications, 2016, 55: 441-451.
[27]徐博,陳立平,譚彧,等. 多架次作業(yè)植保無人機最小能耗航跡規(guī)劃算法研究[J]. 農(nóng)業(yè)機械學報,2015,46(11):36-42.
Xu Bo, Chen Liping, Tan Yu, et al. Path planning based on minimum energy consumption for plant protection UAVs in sorties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 36-42. (in Chinese with English abstract)
[28]徐博,陳立平,譚彧,等. 基于無人機航向的不規(guī)則區(qū)域作業(yè)航線規(guī)劃算法與驗證[J]. 農(nóng)業(yè)工程學報,2015,31(23):173-178.
Xu Bo, Chen Liping, Tan Yu, et al. Route planning algorithm and verification based on UAV operation path angle in irregulararea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(23): 173-178. (in Chinese with English abstract)
[29]黃小毛,張壘,Tang Lie,等. 復雜邊界田塊旋翼無人機自主作業(yè)路徑規(guī)劃[J]. 農(nóng)業(yè)機械學報,2020,51(3):34-42.
Huang Xiaomao, Zhang Lei, Tang Lie, et al. Path planning for autonomous operation of a drone in fields with complex boundaries[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 34-42. (in Chinese with English abstract)
[30] Yao W X, Lan Y B, Wen S, et al. Evaluation of droplet deposition and effect of variable-rate application by a manned helicopter with AG-NAV Guía system [J]. International Journal of Agricultural and Biological Engineering, 2019, 12(1): 172-178.
[31]Debiao H, Zeadally S, An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve cryptography[J]. Ieee Internet of Things Journal, 2015, 2(1): 72-83.
[32]Sebastian S, Petors S. Wireless technologies for smart agricultural monitoring using internet of things devices with energy harvesting capabilities[J]. Computers and Electronics in Agriculture, 2020, 172: 105338.
[33]Liu Yalin, Dai Hongning,Wang Qubeijian, et al. Unmanned aerial vehicle for internet of everything: Opportunities and challenges[J]. Computer Communications, 2020, 155: 66-83.
[34]Zhou Yushan, Liu Liu, Xie Chengjun, et al. An effective automatic system deployed in agricultural internet of things using multi-context fusion network towards crop disease recognition in the wild[J]. Applied Soft Computing Journal, 2020, 89: 106128.
[35]張瑞瑞,李楊,伊銅川,等. 有人直升機變量施藥控制系統(tǒng)的設計與試驗[J]. 農(nóng)機化研究,2017,39(10):124-127.
Zhang Ruirui, Li Yang, Yi Tongchuan, et al. Design and experiments of control system of variable pesticide application for manned helicopter[J]. Journal of Agricultural Mechanization Research, 2017, 39(10): 124-127. (in Chinese with English abstract)
Algorithm for planning full coverage route for helicopter aerial spray
Liu Yangyang, Ru Yu※, Liu Bin, Chen Xuyang
(,,210037,)
At present, there is redundancy in the route of helicopter spray, which leads to waste of fuel and pesticides, and serious environmental pollution and high spray cost. In order to improve the aerial spray efficiency and avoid the phenomenon of overspray, missed spray and respray in the process of aerial spray, and solve the problem of inaccurate coverage was caused, the optimal full coverage route planning method was proposed and the corresponding device was developed. Firstly, Based on the analysis of previous research on the full coverage path planning technology of aerial spray, full coverage spray route planning for R44 helicopter was studied, a set of shortest spray voyage and the most accurate full coverage route planning algorithm for aerial spray was developed. The optimal full coverage route planning method showed that the longer the spray route, the larger the spray area and the larger the pesticide consumption. Therefore, under the premise of full coverage, the shortest distance of spray route can ensure the most accurate coverage. Under the premise of without repeated spray, to ensure full coverage of the spray area, the spray route needs to be beyond the boundary of the spray area. Moreover, the excess spray area was reduced by reducing the length of spray route outside the boundary. Based on the principle of full area coverage, the spray voyage of outside the spray area was calculated and analyzed to obtain the shortest spray voyage calculation formula on the premise of full coverage, and draw the conclusion that the spray voyage was shorter when the boundary of the spraying region was parallel to the-axis of the coordinate system. Furthermore, each boundary was taken as the-axis to establish the coordinate system, and the shortest coordinate system of spray voyage could be obtained through the calculation formula of spray voyage. Then combined with the full coverage route planning method, the optimal full coverage routes according to different operating environments were achieved. Therefore, under the premise of full coverage of the spraying area, the spray voyage was the shortest and the coverage was the most accurate. Real-time monitoring of flight track was realized through designing of software and hardware, and information was transmitted bidirectional between plane and mobile terminal through OneNet IoT platform. Seven full coverage spray experiments with different course were carried out on three different terrain sites with different areas of rectangle, arbitrary quadrilateral and arbitrary polygon. The experiments results showed that the spray voyages of the planned course was the shortest and the redundant coverage was the least among the three test sites. The distance can be shortened by 4.920, 6.903, 59.913 km than other courses spray voyages in the three test sites; the minimum redundant coverage was 2.08%, 7.17%, and 0.57%, respectively. With the increase of spray area, the shorter the voyage was, the less redundant coverage was. And the redundant coverage of regular terrain of route planning was obviously less than that of irregular terrain. The full coverage route planning algorithm proposed in this paper can provide theoretical support for the development of aerial route planning technology and provides guidance for actual spray operations.
route planning; aerial spray; full coverage routes; R44 helicopte
劉洋洋,茹煜,劉彬,等. 直升機航空施藥全覆蓋航線規(guī)劃算法[J]. 農(nóng)業(yè)工程學報,2020,36(17):73-80.doi:10.11975/j.issn.1002-6819.2020.17.009 http://www.tcsae.org
Liu Yangyang, Ru Yu, Liu Bin, et al. Algorithm for planning full coverage route for helicopter aerial spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 73-80. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.009 http://www.tcsae.org
2020-05-20
2020-08-05
國家重點研發(fā)計劃項目(2018YFD0600202-04);江蘇省研究生科研與實踐創(chuàng)新計劃項目(KYCX18-0969)
劉洋洋,主要從事農(nóng)林植保技術(shù)與裝備研究。Email:GWGLYY@163.com
茹煜,教授,博士生導師,主要從事農(nóng)林植保技術(shù)與裝備研究,Email:superchry@163.com
10.11975/j.issn.1002-6819.2020.17.009
S252+3
A
1002-6819(2020)-17-0073-08