董姍姍,隋 斌,趙立欣,孟海波,沈玉君,周海賓,丁京濤,程紅勝
基于能值分析的奶牛產(chǎn)業(yè)園區(qū)循環(huán)發(fā)展模式評價
董姍姍1,2,隋 斌2※,趙立欣1,3,孟海波1,2,沈玉君1,2,周海賓1,2,丁京濤1,2,程紅勝1,2
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設計研究院,北京 100125;2. 農(nóng)業(yè)農(nóng)村部資源循環(huán)利用技術(shù)與模式綜合性重點實驗室,北京 100125;3. 農(nóng)業(yè)農(nóng)村部廢棄物能源化利用重點實驗室,北京 100125)
以沼氣工程為紐帶的循環(huán)農(nóng)業(yè)模式是降低農(nóng)業(yè)產(chǎn)業(yè)園區(qū)廢棄物污染、提高資源利用率的有效方式。該研究構(gòu)建了適合園區(qū)規(guī)模的循環(huán)農(nóng)業(yè)模式能值評價指標體系,以河北省某典型奶牛產(chǎn)業(yè)園區(qū)為案例,將園區(qū)現(xiàn)行的利用全混式厭氧反應技術(shù)(Continuous Stirred Tank Reactor,CSTR)的濕法單相厭氧消化沼氣工程,與濕法兩相耦合厭氧消化、干法序批式厭氧消化、干法連續(xù)式厭氧消化3種不同沼氣工程模式進行對比,運用能值理論及計算方法對以沼氣工程為紐帶的農(nóng)業(yè)產(chǎn)業(yè)園循環(huán)模式進行了評價,選擇最適宜園區(qū)發(fā)展的沼氣工程模式。結(jié)果表明,該園區(qū)能值投入率為17.57,能值產(chǎn)出率為0.41,環(huán)境負載率0.33,可持續(xù)發(fā)展指數(shù)1.23,以CSTR濕法單相厭氧消化沼氣工程為紐帶的循環(huán)農(nóng)業(yè)模式整體效益優(yōu)于其他3種模式。研究對其他園區(qū)的循環(huán)農(nóng)業(yè)模式評價和以沼氣工程為紐帶的循環(huán)農(nóng)業(yè)發(fā)展具有借鑒意義。
循環(huán)農(nóng)業(yè);能值分析;奶牛養(yǎng)殖;產(chǎn)業(yè)園區(qū);資源化利用;沼氣工程
近年來,隨著中國奶業(yè)振興和全國奶牛養(yǎng)殖規(guī)模不斷擴大,2018年奶牛存欄量已達1 037.7萬頭[1],現(xiàn)代化、標準化和規(guī)?;膱@區(qū)式牧場逐漸成為主流。奶牛養(yǎng)殖供給優(yōu)質(zhì)乳品、滿足人們營養(yǎng)需求和促進經(jīng)濟發(fā)展的同時,也產(chǎn)生了大量的養(yǎng)殖糞污,對環(huán)境造成了較大的壓力[2]。如何資源化利用養(yǎng)殖糞污、減少環(huán)境污染已成為國內(nèi)外研究熱點。
循環(huán)農(nóng)業(yè)作為一種倡導最大限度提升資源的利用效率、多種途徑循環(huán)可再生資源的農(nóng)業(yè)可持續(xù)發(fā)展模式倍受關注[3-6]。將循環(huán)農(nóng)業(yè)理念運用在奶牛養(yǎng)殖廢棄物處理上也頗有成效,以沼氣工程為紐帶的種養(yǎng)結(jié)合循環(huán)模式是其中的典型模式之一,通過沼氣工程處理養(yǎng)殖糞污,沼渣沼液還田利用,可將養(yǎng)殖業(yè)和種植業(yè)有機結(jié)合在一起,形成物質(zhì)、能量循環(huán)利用的產(chǎn)業(yè)鏈,在減輕環(huán)境污染的同時,實現(xiàn)農(nóng)業(yè)生態(tài)系統(tǒng)資源循環(huán)利用[7]。現(xiàn)行的沼氣工程主要包括利用安裝攪拌裝置使發(fā)酵原料和微生物完全混合這全一混式厭氧反應技術(shù)(Continuous Stirred Tank Reactor,CSTR)的濕法單相厭氧消化、通過2個串聯(lián)裝置使酸化和甲烷化分別進行的濕法兩相耦合厭氧消化、利用車庫式反應器的干法序批式厭氧消化、利用立式-橫推流式反應器的干法連續(xù)式厭氧消化共4種模式[8-11]。對于以沼氣工程為紐帶的種養(yǎng)結(jié)合循環(huán)模式,現(xiàn)有研究主要關注沼氣工程發(fā)酵效率提升、三沼(沼氣、沼渣、沼液)綜合利用等方面,而從循環(huán)系統(tǒng)整體出發(fā)對模式資源利用程度和發(fā)展水平等進行效果評價的研究仍鮮有報道[12-13]。近年來,國內(nèi)學者已建立了一些評價體系,其中涉及到的評估方法眾多,如綜合指數(shù)評價、經(jīng)濟效益評價、專家打分法等,但由于具體模式的內(nèi)容和方法差異較大,評價指標選取較為多元,這類方法通常主觀性較強,操作困難,可比性不強[14-16]。
能值分析理論和方法是由美國著名生態(tài)學家H. T. Odum于20世紀80年代創(chuàng)立的,這一方法是從系統(tǒng)能量流動的角度出發(fā),引用太陽能值作為統(tǒng)一的單位,將系統(tǒng)中計量單位不同、不便于互相轉(zhuǎn)化的各種物質(zhì)、能量進行比較和分析,進而對系統(tǒng)中的自然資源消耗、人類參與程度等進行定量分析[17]。目前已廣泛應用于自然生態(tài)系統(tǒng)、農(nóng)業(yè)生態(tài)系統(tǒng)以及區(qū)域生態(tài)系統(tǒng)發(fā)展可持續(xù)性的分析、評價與比較中[18-20]。本研究以中國河北省具有典型代表性的某產(chǎn)業(yè)園區(qū)為案例,以“奶牛養(yǎng)殖—沼氣工程”循環(huán)農(nóng)業(yè)模式為研究對象,將濕法單相厭氧消化,濕法兩相耦合厭氧消化、干法序批式厭氧消化、干法連續(xù)式厭氧消化這4種常見的沼氣工程效果進行對比,對沼氣工程為紐帶的種養(yǎng)結(jié)合循環(huán)農(nóng)業(yè)模式效果進行評估。本研究運用能值分析方法構(gòu)建了評價指標體系,對園區(qū)內(nèi)循環(huán)農(nóng)業(yè)系統(tǒng)進行了深入分析,通過計算自然、人力等各種資源需求,綜合考慮該園區(qū)的可持續(xù)發(fā)展性和生態(tài)經(jīng)濟效益,最終選擇出最適宜園區(qū)發(fā)展的沼氣工程模式,并提出下一步發(fā)展建議?;诒狙芯康臄?shù)據(jù)基礎及所構(gòu)建的能值評價指標體系,其他同類型的產(chǎn)業(yè)園區(qū)也可進行類比分析,對產(chǎn)業(yè)園區(qū)中種植業(yè)與養(yǎng)殖業(yè)規(guī)模配比、沼氣工程處理能力等重點參數(shù)進行評估,有針對性地獲取相關發(fā)展建議,由此為以沼氣工程為紐帶的種養(yǎng)結(jié)合循環(huán)農(nóng)業(yè)模式的推廣提供科學依據(jù)。
河北省某典型奶牛養(yǎng)殖產(chǎn)業(yè)園區(qū)占地面積2×105m2,研究區(qū)域年太陽輻射5 016~5 852 MJ/m2,年平均氣溫15 ℃,年平均降雨量558.5 mm。園區(qū)內(nèi)年養(yǎng)殖奶牛5 500頭,養(yǎng)殖面積6.05×104m2,建有日處理1 000 m3奶牛糞污的沼氣工程一處,發(fā)酵工藝為CSTR,產(chǎn)生的沼氣用于產(chǎn)熱和發(fā)電以供給園區(qū)使用,沼渣用于生產(chǎn)有機肥,沼液作為種植業(yè)液態(tài)肥料施用,形成了農(nóng)業(yè)廢棄物多層次利用的循環(huán)農(nóng)業(yè)系統(tǒng)。本研究以“奶牛養(yǎng)殖—CSTR濕法單相厭氧消化沼氣工程”循環(huán)農(nóng)業(yè)模式(模式Ⅰ)為研究對象,與同規(guī)模的濕法兩相耦合厭氧消化(模式Ⅱ)、干法序批式厭氧消化(模式Ⅲ)、干法連續(xù)式厭氧消化(模式Ⅳ)3種沼氣工程模式進行分析、比較和評價。
對園區(qū)進行實地調(diào)研,從能值流動、資源利用、環(huán)境負載和經(jīng)濟發(fā)展4個方面入手,建立了園區(qū)的循環(huán)農(nóng)業(yè)系統(tǒng)的評價體系[17,21-23]。通過對以沼氣工程為紐帶的種養(yǎng)結(jié)合循環(huán)系統(tǒng)涉及的不同資源及環(huán)節(jié)進行劃分,將能值流量指標分為可更新環(huán)境資源(Renewable Natural Resources,)、不可更新環(huán)境資源(Non-renewable Natural Resources,)、可更新有機能(Renewable Organic Energy,1)、不可更新工業(yè)輔助能(Non-renewable Supplement Energy,)和系統(tǒng)總產(chǎn)出(Yield,)5個部分組成(圖1)[17]。其中,太陽、風、雨水屬于系統(tǒng)自身的環(huán)境資源,可更新有機能和不可更新工業(yè)輔助能屬于人類對系統(tǒng)投入的經(jīng)濟購買能值。另外,在可更新有機能中,有一部分資源作為生產(chǎn)過程中的中間產(chǎn)物,是可在經(jīng)進一步處理后在系統(tǒng)中重復利用的。
圖1 產(chǎn)業(yè)園區(qū)沼氣工程模式系統(tǒng)能流
結(jié)合園區(qū)奶牛養(yǎng)殖耦合沼氣工程的特點,本研究主要選用能值投入率(Emergy Input Ratio, EIR)、能值產(chǎn)出率(Emergy Yield Ratio, EYR)和能值自給率(Emergy Self-sufficiency Ratio, ESR)對園區(qū)資源循環(huán)利用情況進行分析,采用可更新能值比率(Renewable Emergy Ratio,RER)、環(huán)境貢獻率(Emergy Contribution Ratio, ECR)和環(huán)境負載率(Emergy Loading Ratio, ELR)度量資源利用對環(huán)境的影響,同時參考綜合指數(shù)評價方法,從中選取能值可持續(xù)指標(Emergy Sustainable Index, ESI)對該園區(qū)的循環(huán)農(nóng)業(yè)發(fā)展進行綜合評價。通過上述3類資源、環(huán)境、可持續(xù)發(fā)展的指標,構(gòu)建了產(chǎn)業(yè)園區(qū)循環(huán)農(nóng)業(yè)的綜合評價指標體系(表1)。
表1 2018年產(chǎn)業(yè)園區(qū)循環(huán)系統(tǒng)能值評價體系
研究中濕法單相厭氧消化模式的原始數(shù)據(jù)都來自2018年對研究區(qū)的實地調(diào)研和資料收集,以園區(qū)現(xiàn)有沼氣工程為紐帶,以完整生產(chǎn)年度為期進行數(shù)據(jù)記錄,以河北省統(tǒng)計局、河北省氣象局等機構(gòu)記錄為基準對自然資源數(shù)據(jù)進行收集(表2)。研究中涉及的原始數(shù)據(jù)計算方法參考Odum、陳阜等學者的研究[21-24]??紤]到初級自然資源的能值轉(zhuǎn)換率在不同地區(qū)變化不大,選擇Odum研究團隊的能值轉(zhuǎn)換率參數(shù),對太陽光能、風能、雨水化學能等環(huán)境資源進行測算。化肥、農(nóng)藥等經(jīng)濟系統(tǒng)資源的貢獻,采用《中國統(tǒng)計年鑒》、《中國農(nóng)村統(tǒng)計年鑒》及河北省統(tǒng)計局公布的2018年相關數(shù)據(jù)進行測算[25-28]。濕法兩相耦合厭氧消化、干法序批式厭氧消化、干法連續(xù)式厭氧消化3種模式的數(shù)據(jù)通過實地調(diào)研和已發(fā)表文獻中的相關工藝參數(shù)進行模擬測算后獲得[17,21-24]。
所有數(shù)據(jù)均用Excel整理和統(tǒng)計。
4種不同沼氣工程模式的能值數(shù)據(jù)見表2。總能值投入量由可更新環(huán)境資源能值、不可更新環(huán)境資源能值、可更新有機能值和不可更新工業(yè)輔助能值組成,統(tǒng)計后的能值流分析結(jié)果見表3。
注:模式I~IV分別為濕法單相厭氧消化、濕法兩相耦合厭氧消化、干法序批式厭氧消化、干法連續(xù)式厭氧消化,下同。
Note: Mode I-IV is wet single phase anaerobic digestionbasedoncontinuous stirred tank reactor anaerobic fermentation, wet two-phase couplinganaerobic digestion, dry sequential batch anaerobic digestion and dry continuous anaerobic digestion, respectively. Same below.
由表3可知,模式Ⅰ中的總能值投入量為1.69×1018sej,其中可更新環(huán)境資源能值為3.87×1016sej,不可更新環(huán)境資源能值為5.24×1016sej,環(huán)境資源能值投入占總能值投入的5.39%;可更新有機能值為3.70×1017sej,不可更新工業(yè)輔助能值為1.23×1018sej,外界資源能值投入占主導地位,占總能值投入的94.62%,其中原材料和能源的投入是主要部分;能值產(chǎn)出量為6.55×1017sej,玉米、牛奶、沼氣、有機肥等產(chǎn)品能值為4.18×1017sej,占產(chǎn)出能值的63.77%;沼渣、沼液等再利用資源的能值為2.37×1017sej,占產(chǎn)出能值的36.23%。與模式Ⅰ相似,模式Ⅱ、Ⅲ、Ⅳ均以外界資源投入為主。模式Ⅱ中總能值投入量為2.93×1018sej,環(huán)境資源能值投入占總能值投入的3.11%;能值產(chǎn)出量為2.67×1017sej,牛奶、沼氣、有機肥等產(chǎn)品能值為2.36×1017sej,占產(chǎn)出能值的88.18%;沼渣、沼液等再利用資源的能值為3.16×1016sej,占產(chǎn)出能值的11.82%。模式中Ⅲ總能值投入量為3.00×1018sej,環(huán)境資源能值投入占總能值投入的3.04%;能值產(chǎn)出量為5.39×1017sej,牛奶、沼氣、有機肥等產(chǎn)品能值為2.78×1017sej,占產(chǎn)出能值的51.67%;沼渣這一再利用資源的能值為2.60×1017sej,占產(chǎn)出能值的48.33%。模式Ⅳ中總能值投入量為3.15×1018sej,環(huán)境資源能值投入占總能值投入的2.89%;能值產(chǎn)出量為4.04×1017sej,牛奶、沼氣、有機肥等產(chǎn)品能值為2.69×1017sej,占產(chǎn)出能值的66.51%;沼渣等再利用資源的能值為1.35×1017sej,占產(chǎn)出能值的33.49%。
對比4種不同沼氣工程模式可以發(fā)現(xiàn),相比其他3種模式,模式Ⅰ中系統(tǒng)總投入能值1.69×1018sej更低,而能值產(chǎn)出量6.55×1017sej更高,系統(tǒng)的能值產(chǎn)出量占總投入能值的38.75%,如能提高系統(tǒng)的能值產(chǎn)出量,則能促進系統(tǒng)的進一步發(fā)展。
表3 4種沼氣工程模式能值流比較
根據(jù)能值投入產(chǎn)出分析,進一步計算園區(qū)內(nèi)各綜合指標值,具體見表4。其中,模式Ⅰ、模式Ⅱ、模式Ⅲ和模式Ⅳ的可更新能值比均較低,分別為0.02、0.01、0.01和0.01,說明以這4種沼氣工程為紐帶的循環(huán)系統(tǒng)仍對不可更新能值的依賴較高,其原因主要是沼氣工程運行過程中產(chǎn)生的大量能值被消耗。
表4 能值評價指標計算值
環(huán)境貢獻率反映了系統(tǒng)中自然環(huán)境對農(nóng)業(yè)經(jīng)濟發(fā)展的貢獻,而環(huán)境負載率則評價了系統(tǒng)對周圍環(huán)境造成的壓力,如表4所示,模式Ⅰ、模式Ⅱ、模式Ⅲ和模式Ⅳ所生產(chǎn)的ECR值分別為0.05、0.03、0.03和0.03,ELR值分別為0.33、0.25、0.27和0.31,其來源主要是因為養(yǎng)殖及生產(chǎn)過程中大量水、電、肥的投入,是中國農(nóng)業(yè)ELR平均水平(2.72)[29]的9.19%~12.13%,說明以這4種沼氣工程為紐帶的循環(huán)系統(tǒng)對周圍環(huán)境造成了較小的壓力。
能值投入率衡量了系統(tǒng)的資源投入情況,能值產(chǎn)出率衡量了系統(tǒng)本身的資源利用能力對經(jīng)濟系統(tǒng)的貢獻,EYR越高則系統(tǒng)的資源利用效率越高[29]。如表4所示,模式Ⅰ、模式Ⅱ、模式Ⅲ和模式Ⅳ所生產(chǎn)的EIR值分別為17.57、31.28、31.92和33.63,整體高于發(fā)達國家7.00的標準[30],說明園區(qū)的資源投入程度較高,能夠吸引投資者,經(jīng)濟發(fā)展有良好的走勢[2];EYR值分別為0.41、0.09、0.19和0.13,對于4種不同沼氣工程模式,模式Ⅰ對于本地資源的依賴度最低,其次是模式Ⅱ和模式Ⅳ,同時,模式Ⅰ對資源的利用效率最高,其次是模式Ⅲ和模式Ⅳ。
能值自給率反映了以沼氣工程為紐帶的循環(huán)系統(tǒng)中各組分對于該沼氣循環(huán)系統(tǒng)的支撐能力[13]。對于4種不同沼氣工程模式,模式Ⅰ及模式Ⅱ中系統(tǒng)的循環(huán)特征主要表現(xiàn)在沼渣有機肥和沼液再利用上,模式Ⅲ和模式Ⅳ中系統(tǒng)的循環(huán)特征主要表現(xiàn)在沼渣有機肥再利用上。如表4所示,模式Ⅰ的ESR值為0.39,模式Ⅱ、模式Ⅲ和模式Ⅳ所生產(chǎn)的ESR值分別為0.09、0.18和0.13,均低于模式Ⅰ,說明系統(tǒng)中本地環(huán)境資源的貢獻更低,外部能量需求度相較于模式Ⅰ更高。
能值可持續(xù)指標通過能值產(chǎn)出率和環(huán)境負載率的比值來反映系統(tǒng)可持續(xù)性的高低,可持續(xù)性高則表明系統(tǒng)在維持資源供給的同時,也可降低對環(huán)境的潛在影響,實現(xiàn)污染降級[31]。對于4種不同沼氣工程模式,ESI值分別為1.23、0.37、0.68和0.43,其中模式Ⅰ的ESI值均大于1,說明經(jīng)濟系統(tǒng)具有活力和發(fā)展?jié)摿?,其可持續(xù)性最好;而模式Ⅱ、模式Ⅲ和模式Ⅳ的ESI值小于1,表示現(xiàn)行系統(tǒng)仍屬于消費型經(jīng)濟系統(tǒng),可持續(xù)發(fā)展性能有待提高[32]。
本文以中國河北省具有典型代表性的某產(chǎn)業(yè)園區(qū)為例,根據(jù)該園區(qū)“奶牛養(yǎng)殖—沼氣工程”的循環(huán)農(nóng)業(yè)模式,構(gòu)建了適合園區(qū)規(guī)模的循環(huán)農(nóng)業(yè)模式能值評價指標體系,選擇4種常見的沼氣工程模式,以園區(qū)現(xiàn)行的利用全混式厭氧反應技術(shù)(Continuous Stirred Tank Reactor,CSTR)的濕法單相厭氧消化沼氣工程為參照,與濕法兩相耦合厭氧消化、干法序批式厭氧消化、干法連續(xù)式厭氧消化3種沼氣工程模式進行對比,根據(jù)能值分析方法分析了園區(qū)內(nèi)循環(huán)農(nóng)業(yè)模式環(huán)境安全性、資源減量率及可持續(xù)發(fā)展度。結(jié)果表明,相對于其他3種沼氣工程模式,CSTR濕法單相厭氧消化沼氣工程更適合園區(qū)發(fā)展,通過CSTR濕法單相厭氧消化處理奶牛養(yǎng)殖廢棄物,提升廢棄物循環(huán)利用效率后,園區(qū)能值投入率為17.57,明顯高于其他3種模式,達到了系統(tǒng)資源減量化目標;能值產(chǎn)出率為0.41,沼渣沼液等廢棄物在系統(tǒng)內(nèi)消耗占比高于其他3種模式,降低了系統(tǒng)的整體投入成本,提高了系統(tǒng)的生產(chǎn)效率;環(huán)境負載率0.33;可持續(xù)發(fā)展指數(shù)1.23,系統(tǒng)更具活力和發(fā)展?jié)摿Α?/p>
由于現(xiàn)行的多數(shù)種養(yǎng)結(jié)合循環(huán)模式、沼氣工程生產(chǎn)流程存在一定的共性,本研究的數(shù)據(jù)基礎及所構(gòu)建的能值評價指標體系對其他產(chǎn)業(yè)園區(qū)的發(fā)展評價也有借鑒意義,可用于評估同等規(guī)模的循環(huán)模式,分析改進系統(tǒng)中種植與養(yǎng)殖規(guī)模配比、沼氣工程處理能力等重要參數(shù)。但本研究也存在一定的欠缺,由于所選用的能值分析方法主要是基于系統(tǒng)循環(huán)過程中投入資源種類和數(shù)量進行計算及評價,當系統(tǒng)的投入或產(chǎn)出發(fā)生較大變化時,會影響量化計算結(jié)果,進而影響整體評價結(jié)果,如何對這一問題進行改進,使評價體系更具普遍適用性,是進一步研究的重要方向。
[1] 國家統(tǒng)計局農(nóng)村社會經(jīng)濟調(diào)查司. 中國農(nóng)村統(tǒng)計年鑒2019[M]. 北京:中國統(tǒng)計出版社,2019.
[2] 田宜水. 中國規(guī)?;B(yǎng)殖場畜禽糞便資源沼氣生產(chǎn)潛力評價[J]. 農(nóng)業(yè)工程學報,2012,28(8):230-234.
Tian Yishui. Potential assessment on biogas production by using livestock manure of large-scale farm in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(8): 230-234. (in Chinese with English abstract)
[3] 陳德敏,王文獻. 循環(huán)農(nóng)業(yè):中國未來農(nóng)業(yè)的發(fā)展模式[J]. 經(jīng)濟師,2002(11):8-9.
Chen Demin, Wang Wenxian. Circular agriculture: The development model of China's future agriculture[J]. China Economist, 2002(11): 8-9. (in Chinese with English abstract)
[4] 高旺盛,陳源泉,梁龍. 論發(fā)展循環(huán)農(nóng)業(yè)的基本原理與技術(shù)體系[J]. 農(nóng)業(yè)現(xiàn)代化研究,2007,28(6):731-734.
Gao Wangsheng, Chen Yuanquan, Liang Long. Basic principles and technology supporting for circular agriculture[J]. Development Research of Agricultural Modernization[J]. 2007, 28(6): 731-734. (in Chinese with English abstract)
[5] 周震峰. 循環(huán)農(nóng)業(yè)的發(fā)展模式研究[J]. 農(nóng)業(yè)現(xiàn)代化研究,2008(1):61-64.
Zhou Zhenfeng. Research on development model of circular agriculture[J]. Research of Agricultural Modernization, 2008(1): 61-64. (in Chinese with English abstract)
[6] 尹昌斌,周穎,劉利花. 我國循環(huán)農(nóng)業(yè)發(fā)展理論與實踐[J]. 中國生態(tài)農(nóng)業(yè)學報,2013,21(1):47-53.
Yin Changbin, Zhou Ying, Liu Lihua. Theory and practice of recycle agriculture in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 47-53. (in Chinese with English abstract)
[7] 趙立欣,孟海波,沈玉君,等. 中國北方平原地區(qū)種養(yǎng)循環(huán)農(nóng)業(yè)現(xiàn)狀調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學報,2017,33(18):1-10.
Zhao Lixin, Meng Haibo, Shen Yujun, et al. Investigation and development analysis of planting-breeding circulating agriculture ecosystem in northern plains in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 1-10. (in Chinese with English abstract)
[8] 趙蘭蘭,馮晶,趙立欣,等. 全混式厭氧發(fā)酵反應器優(yōu)化研究進展[J]. 中國沼氣,2018,36(4):35-40.
Zhao Lanlan, Feng Jing, Zhao Lixin, et al. Research progress on optimization of completely mixed anaerobic fermentation reactor[J]. China Biogas, 2018, 36(4): 35-40. (in Chinese with English abstract)
[9] 張議心,趙立欣,馮晶,等. 干-濕聯(lián)合兩相厭氧發(fā)酵技術(shù)處理村鎮(zhèn)固體廢棄物研究進展[J]. 中國沼氣,2018,36(6):72-78.
Zhang Yixin, Zhao Lixin, Feng Jing, et al. A review on dry-wet combined two-phase anaerobic digestion treating rural solid waste[J]. China Biogas, 2018, 36(6): 72-78. (in Chinese with English abstract)
[10] 于佳動,趙立欣,馮晶,等. 序批式秸稈牛糞混合厭氧干發(fā)酵影響因素研究[J]. 農(nóng)業(yè)工程學報,2018,34(15):215-221.
Yu Jiadong, Zhao Lixin, Feng Jing, et al. Influence factors of batch dry anaerobic digestion for corn stalks-cow dung mixture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(15): 215-221. (in Chinese with English abstract)
[11] 胡鑫,馮晶,趙立欣,等. 干法厭氧發(fā)酵反應器及過程控制技術(shù)研究進展[J]. 中國沼氣,2018,36(2):68-75.
Hu Xin, Feng Jing, Zhao Lixin, et al. Research progress of dry anaerobic fermentation reactors and its process control technique[J]. China Biogas, 2018, 36(2): 68-75. (in Chinese with English abstract)
[12] 丁京濤,張朋月,華冠林,等. 北京大中型沼氣工程冬季運行狀況及發(fā)酵前后物料理化生物特性[J]. 農(nóng)業(yè)工程學報,2018,34(23):213-220.
Ding Jingtao, Zhang Pengyue, Hua Guanlin, et al. Running status of large and medium scale biogas project and physical, chemical and biological characteristics of materials before and after fermentation in winter of Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 213-220. (in Chinese with English abstract)
[13] 鐘珍梅,黃勤樓,翁伯琦,等. 以沼氣為紐帶的種養(yǎng)結(jié)合循環(huán)農(nóng)業(yè)系統(tǒng)能值分析[J]. 農(nóng)業(yè)工程學報,2012,28(14):196-200.
Zhong Zhenmei, Huang Qinlou, Weng Boqi, et al. Energy analysis on planting-breeding circulating agriculture ecosystem linked by biogas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14): 196-200. (in Chinese with English abstract)
[14] 楊增玲,楚天舒,韓魯佳,等. 秸稈飼料化集成技術(shù)模式及其區(qū)域適用性評價[J]. 農(nóng)業(yè)工程學報,2013,29(23):186-193.
Yang Zengling, Chu Tianshu, Han Lujia, et al. Regional applicability evaluation of technical integration for straw feed utilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 186-193. (in Chinese with English abstract)
[15] 姚萍,張曉辛. 江蘇現(xiàn)代循環(huán)農(nóng)業(yè)評價指標體系構(gòu)建與運用[J]. 安徽農(nóng)學通報,2015,21(18):1-3.
Yao Ping, Zhang Xiaoxin. Construction and application of evaluation indicator system for Jiangsu modern circulation agricultural[J]. Anhui Agricultural Science Bulletin, 2015, 21(18): 1-3. (in Chinese with English abstract)
[16] 尹昌斌,周穎,劉利花. 我國循環(huán)農(nóng)業(yè)發(fā)展理論與實踐[J]. 中國生態(tài)農(nóng)業(yè)學報,2013,21(1):47-53.
Yin Changbin, Zhou Ying, Liu Lihua. Theory and practice of recycle agriculture in China[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 47-53. (in Chinese with English abstract)
[17] 藍盛芳,欽佩,陸宏芳. 生態(tài)經(jīng)濟系統(tǒng)能值分析[M]. 北京:化學工業(yè)出版社,2002.
[18] 李富佳,李宇,李澤紅,等. 基于SD模型的循環(huán)農(nóng)業(yè)系統(tǒng)構(gòu)建及其綜合效益評價研究[J]. 干旱區(qū)資源與環(huán)境,2015,29(6):45-50.
Li Fujia, Li Yu, Li Zehong, et al. Comprehensive benefit evaluation on the circular agricultural system based on system dynamics[J]. Journal of Arid Land Resources and Environment, 2015, 29(6): 45-50. (in Chinese with English abstract)
[19] 楊濱娟,黃國勤,陳洪俊,等. 稻田復種輪作模式的生態(tài)經(jīng)濟效益綜合評價[J]. 中國生態(tài)農(nóng)業(yè)學報,2016,24(1):112-120.
Yang Binjuan, Huang Guoqin, Chen Hongjun, et al. Comprehensive evaluation of eco-economic benefits of multi-crop rotation in paddy field systems[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1): 112-120. (in Chinese with English abstract)
[20] 王小龍. 基于生命周期評價與能值分析的循環(huán)農(nóng)業(yè)評價理論、方法與實證研究[D]. 北京:中國農(nóng)業(yè)大學,2016.
Wang Xiaolong. A Intergrated Framework Based On Life Cycle Assessment And Emergy Evaluation For Circular Agriculture: Methods And Cases[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract)
[21] Odum E C, Odum H T. Energy systems and environmental education[M]. Environmental Education. US: Springer, 1980: 213-231.
[22] Odum H T. Environmental accounting: EMERGY and environmental decision making[J]. Child Development, 1996, 42(4): 1187-201.
[23] Odum H T, Brown M T, Brandt-William S. Handbook of emergy envaluation[M]. US: Center for Environmental Policy, University of Florida, 2000: 245-248.
[24] 陳阜. 農(nóng)業(yè)生態(tài)學[M]. 北京:中國農(nóng)業(yè)大學出版社,2002.
[25] 國家統(tǒng)計局. 中國統(tǒng)計年鑒2019[M]. 北京:中國統(tǒng)計出版社,2019.
[26] 國家統(tǒng)計局農(nóng)村社會經(jīng)濟調(diào)查司. 中國農(nóng)村統(tǒng)計年鑒2019[M]. 北京:中國統(tǒng)計出版社,2019.
[27] 河北省統(tǒng)計局. 2018年統(tǒng)計數(shù)據(jù)[EB/OL]. 2019-05-10[2020-01-10] http://www.hetj.gov.cn/hetj/tjsj/jjnj/101556102743865.html.
[28] 石家莊市人民政府. 2018年統(tǒng)計數(shù)據(jù). 2019-09-10[2020-01-10] http://www.sjz.gov.cn/col/1493102265832/2019/09/10/1577770888846.html.
[29] 高旺盛,陳源泉,隋鵬. 循環(huán)農(nóng)業(yè)理論與研究方法[M]. 北京:中國農(nóng)業(yè)大學出版社,2015.
[30] 張潔瑕,郝晉珉,段瑞娟,等. 黃淮海平原農(nóng)業(yè)生態(tài)系統(tǒng)演替及其可持續(xù)性的能值評估[J]. 農(nóng)業(yè)工程學報,2008,24(6):102-108.
Zhang Jiexia, Hao Jinmin, Duan Ruijuan, et al. Emergy assessment on succession and sustainability of the agro-ecosystem in Huang-Huai-Hai Plain, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 102-108. (in Chinese with English abstract)
[31] 陸宏芳,藍盛芳,彭少麟. 系統(tǒng)可持續(xù)發(fā)展的能值評價指標的新拓展[J]. 環(huán)境科學,2003,24(3):150-154.
Lu Hongfang, Lan Shengfang, Peng Shaolin. Extending study onenergy indices for sustainable development[J]. Chinese Journal of Environmental Science, 2003,24(3): 150-154. (in Chinese with English abstract)
[32] 田宜水,姚一晨,宋成軍,等. 基于能值分析的農(nóng)業(yè)園區(qū)循環(huán)經(jīng)濟發(fā)展評價研究[J]. 農(nóng)業(yè)工程學報,2019,35(4):241-247.
Tian Yishui, Yao Yichen, Song Chengjun, et al. Cycle economic development evaluation of agricultural park based on emergy analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(4): 241-247. (in Chinese with English abstract)
Evaluation of circular development mode for dairy cow industrial parks based on emergy value analysis
Dong Shanshan1,2, Sui Bin2※, Zhao Lixin1,3, Meng Haibo1,2, Shen Yujun1,2, Zhou Haibin1,2, Ding Jingtao1,2, Cheng Hongsheng1,2
(1.100125,;2.100125,; 3.100125,)
The circular agriculture mode with the biogas project as a link is one of the critical modes to reduce waste pollution and improve resource utilization in industrial parks. This research was to construct an emergy evaluation index system suitable for the circular agriculture mode of the industrial park. A typical representative industrial park in Hebei Province was chosen as a case study. The results of four common biogas projects were compared, including anaerobic fermentation using continuous stirred tank reactor (CSTR), wet two-phase anaerobic digestion, dry sequential batch anaerobic digestion and dry steady anaerobic digestion. To compared with each other, the effect of the circular agriculture mode with the biogas project as a link was evaluated. In the industrial park, a total of 5 500 dairy cows were bred annually and the park had a breeding area of 6.05×104m2. A biogas project that could treat 1 000 m3of dairy cow manure per day was built. The CSTR anaerobic fermentation biogas project was used to produce the biogas. The biogas slurry was used as a liquid fertilizer for the planting industry, forming a circular agricultural system for multi-level utilization of agricultural waste. The results showed that, compared with the other three biogas engineering modes, the CSTR anaerobic fermentation biogas project was more suitable for the industrial park. The total emergy input of this mode was 1.69×1018sej. Among them, the emergy value of renewable environmental resources was 3.87×1016sej and the emergy value of non-renewable environmental resources was 5.24×1016sej. The emergy input of environmental resources, accounting for 5.38% of the total emergy input. The renewable organic emergy value was 3.70×1017sej and the non-renewable supplement emergy value was 1.23×1018sej. The emergy input from external resources dominates, accounting for 94.62% of the total emergy input. The input of raw materials and emergy was the central part of the external resource input. The emergy yield was 6.55×1017sej, of which the energy value of maize, milk, biogas, organic fertilizer and other products was 4.18×1017sej, accounting for 63.77% of the output emergy value. And the emergy value of reused resources such as biogas residue and biogas slurry was 2.37×1017sej, accounting for 36.23% of the output emergy value. Based on the analysis of emergy input and output, the total index values in the industrial park were further calculated and the results showed that the emergy input rate of the circular agriculture mode with the CSTR anaerobic fermentation biogas project was 17.57. It was lower than the other three modes and the goal of reducing system resources was achieved. The emergy yield ratio of the CSTR anaerobic fermentation biogas project was 0.41. The proportion of wastes such as biogas residue and biogas slurry in the system was higher than those of the other three modes, decreasing the overall input cost of the system and improving the production efficiency of the system. The environmental loading ratio of the CSTR anaerobic fermentation biogas project was 0.33. The emergy sustainable index of the CSTR anaerobic fermentation biogas project was 1.23, indicating that the system has more vitality and development potential. On the whole, the overall benefit of this model was better than the other three models, and it was the most suitable biogas project mode for the industrial park. The database and the constructed evaluation index system of emergy value is also relevant to the evaluation of other industrial parks. The results can be used to evaluate the circulation model on the same scale and to analyze important parameters such as the ratio of cultivation to breeding scale and the treatment capacity of biogas projects in the system.
circular agriculture; emergy analysis; dairy farming; industrial park; resource utilization; biogas project
董姍姍,隋斌,趙立欣,等. 基于能值分析的奶牛產(chǎn)業(yè)園區(qū)循環(huán)發(fā)展模式評價[J]. 農(nóng)業(yè)工程學報,2020,36(17):227-233.doi:10.11975/j.issn.1002-6819.2020.17.027 http://www.tcsae.org
Dong Shanshan, Sui Bin, Zhao Lixin, et al. Evaluation of circular development mode for dairy cow industrial parks based on emergy value analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 227-233. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.027 http://www.tcsae.org
2020-04-28
2020-07-10
國家重點研發(fā)計劃項目(2017YFD0800800)
董姍姍,博士,主要從事農(nóng)業(yè)廢棄物資源化利用理論研究及技術(shù)研發(fā)。Email:dongshanshan@aape.org.cn
隋斌,研究員,農(nóng)業(yè)農(nóng)村部資源循環(huán)利用技術(shù)與模式學科群暨綜合性重點實驗室主任,國家“十三五”重點研發(fā)計劃項目首席專家,主要從事農(nóng)業(yè)工程管理、農(nóng)業(yè)農(nóng)村建設及資源循環(huán)利用研究。Email:suibin@agri.gov.cn
10.11975/j.issn.1002-6819.2020.17.027
S210.3
A
1002-6819(2020)-17-0227-07