劉孟凱,關(guān) 惠,郭 輝,畢 勝
南水北調(diào)中線工程封凍期閘門群開度控制器改進設(shè)計
劉孟凱1,關(guān) 惠1,郭 輝2,畢 勝2
(1. 武漢科技大學恒大管理學院,武漢 430081;2. 長江科學院,武漢 430010)
大型串聯(lián)渠系封凍期容易產(chǎn)生較大的水力波動,增大了冰塞形成風險,如何通過閘門群聯(lián)合調(diào)度減小水力波動,能夠在一定程度上抑制封凍期冰塞發(fā)生。該研究通過設(shè)計PI(Proportional Integral)控制器和OF(Optimization Feedback)控制器2個控制環(huán)節(jié),以最小水位偏差為目標函數(shù),考慮渠池間流量約束、閘門開度約束和閘門調(diào)整速率約束,結(jié)合遺傳算法,建立封凍期渠系閘門群優(yōu)化調(diào)度模擬模型,并以南水北調(diào)中線古運河節(jié)制閘至北拒馬河節(jié)制閘之間的渠系為背景,進行模型效果分析與參數(shù)敏感性分析。模擬結(jié)果表明,在模擬工況下,控制器中加入OF控制器較僅用PI控制器顯著降低最大水位偏差,其中下游最大水位偏差減小約36%,且系統(tǒng)恢復穩(wěn)定時刻提前近2.9 h,所建模型對抑制封凍期水力響應(yīng)過大有一定的效果;減小了各閘門的最大開度,其中渠池11閘門最大開度減小近20%,但對于部分渠池增大了單次閘門開度調(diào)整幅度;遺傳算法求解過程對擾動流量取值范圍設(shè)定不宜過大。
遺傳算法;仿真;封凍期;閘門群;控制器;運行安全
南水北調(diào)中線工程總干渠長1 432 km(含天津段干渠155 km),沿線共有64座節(jié)制閘,88座分水口門。由于南水北調(diào)中線工程總干渠輸水線路長、調(diào)水規(guī)模大,沿線無在線調(diào)節(jié)水庫,全線采用自流輸水,因此,為了實現(xiàn)安全的適時適量輸水,該工程在運行調(diào)度過程中對閘門群的流量調(diào)節(jié)與控制的要求非常高[1-2]。而南水北調(diào)中線干渠受水波傳播速度限制,具有大滯后性,且沿線任一分水口或節(jié)制閘的流量變化都將引起一定渠道范圍內(nèi)的水位波動,表現(xiàn)出很強的耦合作用[3]。冬季運行時,在結(jié)冰期生成冰蓋的瞬間,渠道的糙率、過水面積和濕周都會明顯變化,導致渠系原來的穩(wěn)定非恒定流狀態(tài)發(fā)生變化[4-5]。因此,渠系封凍期水力響應(yīng)規(guī)律復雜,對封凍期運行調(diào)度安全與適時適量供水造成威脅,需要對渠系閘門群進行聯(lián)合調(diào)度,促使封凍期水位波動幅度和變化速率減小且盡快穩(wěn)定。
目前,研究渠道冰期運行調(diào)度問題主要涉及渠道自動化控制、冰期輸水及閘門群優(yōu)化3個方面。在渠道自動化控制方面,管光華等[6]基于蓄量階躍補償及蓄量二次補償2類算法,結(jié)合PI(Proportional Integral)反饋控制器,對現(xiàn)有算法控制性能進行比較,并提出了簡化時滯參數(shù)顯示算法;Hashemy等[7]采用在線調(diào)蓄策略,將模型預(yù)測控制應(yīng)用于水位控制,提高渠系運行能力;Shahdany等[8]利用分散比例積分和集中式線性二次調(diào)節(jié)控制器緩解渠道中來流波動影響;Kong等[9]提出一種精確模擬水力的兩級控制方法,能一定程度抑制多池渠道系統(tǒng)水位波動和增加穩(wěn)定時間;葉雯雯等[10]提出一種自適應(yīng)PID(Proportional Integral Derivative)控制算法,能夠針對特定性能指標實現(xiàn)控制器參數(shù)的自我優(yōu)化;黃凱等[11]在PID算法的積分環(huán)節(jié)中引入啟動閾值,并采用慣性環(huán)節(jié)串聯(lián)補償微分環(huán)節(jié),降低了系統(tǒng)超調(diào),提高了控制性能;李晨[12]則采用動態(tài)矩陣預(yù)測控制對渠系控制系統(tǒng)的實時信息進行反饋校正,有效應(yīng)對擾動帶來的影響。
在渠道冰期輸水方面,Rokaya等[13]采用相關(guān)效應(yīng)的抽樣方法,研究了常用河冰模型參數(shù)與邊界條件之間的相關(guān)性;Yang等[14]基于Muskingum水文方法,建立了融冰期洪水演進過程模型,確定了黃河包頭段融冰期的出流路徑線,模擬過程與實測結(jié)果吻合較好;穆祥鵬等[15]通過構(gòu)建一維渠道冰水力學數(shù)學模型,研究了渠道流冰輸移和發(fā)展規(guī)律,并提出冰水二相流渠道的安全運行措施;劉孟凱等[1, 16-17]對不同冰情階段的渠系水力響應(yīng)進行了分析,并提出了減小水力響應(yīng)幅度的方法;韓延成等[18]提出正常水深的簡易顯示迭代算法,為冰蓋下輸水渠道正常水深計算提供便捷的計算方法;溫世億等[19]開展了冰情原型觀測,掌握了小流量、暖冬氣候條件下中線干渠冬季冰情生消演變的基本規(guī)律;段文剛等[20]結(jié)合原型觀測數(shù)據(jù),分析了冰情時空分布特征、冰情演變條件及特點;李芬等[21]采用模糊評價方法對南水北調(diào)中線京石段冰害風險空間分布進行定量研究,提高了渠系冰期輸水時應(yīng)對風險的能力;吳艷等[22]提出基于水溫實測資料的冰期水內(nèi)冰演變計算方法,可實時動態(tài)分析渠道冰水二相流水內(nèi)冰的產(chǎn)生、演變及輸移,計算精度較高;趙新等[23]通過物理模型試驗研究得到了輸水渠道融冰期加厚冰蓋形成初期糙率約為0.029。
在閘門群優(yōu)化調(diào)度方面,因調(diào)水工程閘門群調(diào)度問題與水庫群優(yōu)化調(diào)度問題類似,可以考慮采用動態(tài)規(guī)劃模型等研究方法,以優(yōu)化渠系冰期輸水階段閘門調(diào)度過程。周茜[24]根據(jù)水庫多階段決策過程的特性,在傳統(tǒng)優(yōu)化算法的基礎(chǔ)上,提出并行多核動態(tài)規(guī)劃方法,應(yīng)用于并聯(lián)水庫群中長期發(fā)電運行控制問題,尋得優(yōu)化調(diào)度方案;張宇航等[25]采用引入收斂因子的粒子群算法求解梯級水電站長期優(yōu)化調(diào)度問題,取得了滿意的結(jié)果。遺傳算法也常被用于求解動態(tài)規(guī)劃模型,單寶英等[26]建立一種基于遺傳算法與方案優(yōu)選的多目標優(yōu)化問題求解方法,得到了較為滿意的方案;陳立華等[27]根據(jù)梯級水電站優(yōu)化調(diào)度特點,建立遺傳算法求解多階段最優(yōu)化問題的數(shù)學模型,驗證了該算法在解決水庫群優(yōu)化問題方面的優(yōu)越性和有效性。因此,運用遺傳算法進行調(diào)水工程閘門群優(yōu)化調(diào)度,可為渠道冰期運行調(diào)度問題的研究提供一種新的思路。
劉孟凱[16]建立了南水北調(diào)中線冰期輸水自動化控制模型,并對冰情模擬參數(shù)進行了驗證。經(jīng)分析,該模型模擬得到的水力響應(yīng)結(jié)果在封凍期較大,不利于工程封凍期運行安全,且水力響應(yīng)尚有通過閘門群聯(lián)合調(diào)度優(yōu)化的空間。因此,本文基于前期研究基礎(chǔ),考慮封凍期渠系水力響應(yīng)特性,在PI控制器基礎(chǔ)上引入尋優(yōu)反饋(Optimization Feedback,OF),并采用遺傳算法,建立封凍期渠系閘門群優(yōu)化調(diào)度模擬模型,最后通過在南水北調(diào)中線古運河節(jié)制閘至北拒馬河節(jié)制閘之間的渠系上進行仿真試驗,對OF控制器進行全面的分析與論證,促進OF控制器的應(yīng)用。
本研究以南水北調(diào)中線工程總干渠為研究背景。該工程安陽以北渠段每年有不同程度的冰情發(fā)生,尤其是石家莊古運河節(jié)制閘至北拒馬河節(jié)制閘之間渠段的冰情最為嚴重,冰蓋厚度較厚,且有冰塞發(fā)生(黃國兵等[28]通過原型觀測發(fā)現(xiàn)石家莊古運河節(jié)制閘至北拒馬河節(jié)制閘間一隧洞進口處發(fā)生嚴重冰塞,冰塞體厚度1.5 m以上,最大厚度達到2.3 m)。因此,研究選用石家莊古運河節(jié)制閘至北拒馬河節(jié)制閘之間渠段為研究對象,該渠段長227.4 km,由14個閘門分隔成的13個渠池組成[16],如圖1所示。
注:1~13為渠池編號。 Note: 1-13 are the pool No..
將工程概化成連接水庫、下游末端及沿程用水戶的渠系,一個渠系是閘門群分隔而成的串聯(lián)渠池系統(tǒng),通過閘門群的聯(lián)合調(diào)度實現(xiàn)渠系適時適量供水,如圖2所示,其中,Q和Q均為已知的取水流量。對于恒定流狀態(tài)的渠系,相關(guān)變量存在如式(1)和(2)的關(guān)系[29]。
Q()=Q()+Q()(1)
Q()=Q(+1)(2)
注:Qdown為渠系下游末端需水流量,m3·s-1;Qd(i)、Qu(i)、Qout(i)分別為渠池i的下游閘過閘流量、上游閘過閘流量和區(qū)間分水流量,m3·s-1;i=1,2,3,…n為渠池和閘門編號,渠池編號與其上游端閘門編號一致。
渠系自動化控制模型框架流程如圖3所示,渠系因冰情變化而引發(fā)水位和流量波動,造成水位和流量偏離控制目標,需要在控制器作用下引導閘門群開度調(diào)整,最后促使渠系回到控制目標下的穩(wěn)定運行狀態(tài)。
圖3 閘門群優(yōu)化模型框架
其中,模型采用明渠非恒定流方程模擬渠系在形成浮動冰蓋和明渠流狀態(tài)下的水力響應(yīng),控制方程如下[30]:
連續(xù)方程:
動量方程:
式中為水位,m;為水深,m;為流量,m3/s;為水面寬,m;為過水斷面面積,m2;為謝才系數(shù);為時間變量,s;為空間變量,m;q為區(qū)間入流量,m3/s;v為側(cè)向入流在水流方向的平均流速,m/s,常忽略不計;為水流沿軸線方向的流速,m/s;為渠道底坡坡降;為水力半徑,m;為重力加速度,m/s2。
當渠道內(nèi)形成浮動冰蓋,有冰蓋部分的渠道濕周和糙率均包含冰蓋的影響,求解時以每個渠池上游閘和下游閘過閘流量為雙邊界條件,采用pressman四點隱式差分求解[16]。
基于常用的PI控制器,引入OF控制器優(yōu)化閘門群調(diào)度過程,實現(xiàn)有效抑制封凍期水力響應(yīng)過大的目標。
本研究建立的渠系自動化控制模型在應(yīng)對渠系封凍時,若渠系水位偏離控制目標較小,則采用增量式PI控制器,由控制斷面處的實時水位波動,通過反饋環(huán)節(jié)產(chǎn)生該渠池上游端節(jié)制閘的閘門流量調(diào)節(jié)時段增量[31],促使控制目標的實現(xiàn)與穩(wěn)定:
式中Δ為渠池上游端節(jié)制閘閘門流量調(diào)節(jié)時段增量,m3/s;Y為實時水位,m;Y為目標水位,m;K為比例系數(shù);K為積分系數(shù)。
根據(jù)閘門過流公式反算求出閘門開度,該渠池上游端節(jié)制閘的閘門開度調(diào)節(jié)時段增量為
式中Δ為渠池上游端節(jié)制閘閘門開度調(diào)節(jié)時段增量,m;Δ為閘門前后水頭差,m;為閘門當前開度,m。
本研究建立的渠系自動化控制模型在應(yīng)對渠系封凍時,若渠系任一渠池的水位偏離控制目標較大,則全部閘門同步調(diào)整控制器為OF控制器,通過聯(lián)合調(diào)度減小水位偏差。
2.2.1 數(shù)學模型
以渠池下游末端水位波動的最大值最小為目標,建立數(shù)學模型,目標函數(shù)如式(7)所示。
式中為渠系各渠池下游末端水位波動的最大值,m;為渠池編號;L為渠池下游末端時刻實時模擬水位,m;0it為渠池下游末端目標水位,m。
模型主要考慮流量約束、閘門開度約束和閘門調(diào)節(jié)速率約束。其中流量約束如下:
式中i為最下游未封凍渠池編號,為渠池個數(shù),Q為第個渠池上游端處在第時段的流量,m3/s;Q1為第1個渠池上游端處在第時段的流量,m3/s;0i為第個渠池上游端處在第時段的設(shè)計流量,m3/s。
閘門開度約束為
G≤maxi(9)
式中G和maxi分別為第渠池上游閘的實時閘門開度和設(shè)計最大閘門開度,m。假設(shè)閘門操作死區(qū)為0。
閘門調(diào)節(jié)速率約束為
v<maxi(10)
式中v和maxi分別為第渠池上游閘的實時閘門調(diào)節(jié)速率和速率上限,m/s。
2.2.2 模型求解
OF控制器采用遺傳算法求解,求解步驟涉及基因編碼、初始化種群、目標函數(shù)計算、子代種群生成等內(nèi)容的循環(huán),采用允許誤差作為群體進化終止條件,最終得到符合約束條件的求解域內(nèi)目標函數(shù)最優(yōu)值,作為下一時刻閘門群開度調(diào)度目標,具體如圖4所示。
子代種群生成時涉及基因交叉、基因變異和子代約束3項內(nèi)容。
模型設(shè)定基因交叉作為子代形成的基本形式。采用雙點交叉[32]方式,在隨機交叉概率下(0≤≤1),得到一對新子代個體。
基因變異是針對基因交叉后不滿足約束條件的個體進行的子代篩選操作。針對子代個體中不符合約束條件的基因Q2(),作以Q2(1)為基點的小幅度的隨機擾動,設(shè)定對于封凍渠池采用負向擾動,對于未封凍渠池采用正向擾動。
在生成子代過程中,需要對新生成子代進行滿足約束判斷與限制,約束包括模型約束和流量變幅約束。流量變幅約束是針對遺傳算法求解特性,避免產(chǎn)生閘門調(diào)度大幅突變而設(shè)置的約束。流量變幅約束又分為2個階段,分別為基因交叉階段約束和基因變異階段約束,通過流量變幅幅度限制百分數(shù)實現(xiàn)流量約束,其中基因交叉階段約束變量為1,基因變異階段封凍渠池和非封凍渠池的約束變量分別為2和3。只有通過所有約束檢驗的子代方為合格子代。
圖4 遺傳算法求解流程示意圖
假設(shè)渠系在封凍前處于穩(wěn)定輸水狀態(tài),為了接近工程近年實際冬季輸水流量[21],取Q=20 m3/s,Q(9)= 10 m3/s,Q(4)=20 m3/s,各渠池均采用下游常水位運行方式,控制目標為閘前設(shè)計水位,且為了滿足所有用水戶用水需求,維護用戶利益,假設(shè)在封凍期,各分水口分水流量始終保持初始分水流量。
同時,為了突出OF控制器作用效果和適應(yīng)極端工況的能力,模擬工況設(shè)定為渠池11、12、13在模擬開始2 h后短時間內(nèi)形成覆蓋整個渠池水面,厚20 cm的冰蓋,且新生冰蓋糙率在模擬時段始終為0.015,與渠道糙率相同。
模型中參數(shù)取值為:PI控制器參數(shù)K=0,K=0.4;OF控制器參數(shù)=10,=0.5,隨機擾動流量=[0,0.01]1=7%2=4%3=10%,E=0.14 m,=500;閘門調(diào)控時間步長為5 min,非恒定流模擬時間步長為1 min。
分別采用PI控制器與PI+OF控制器進行封凍期閘門群調(diào)度模擬,得到應(yīng)用不同控制器條件下的渠系典型渠池水力響應(yīng)偏差過程,如圖5所示,其中水位偏差是指模擬實時水位偏離初始穩(wěn)定水位。
注:PI為比例積分控制器;OF為尋優(yōu)反饋控制器。水位偏差為正值表示水位上升,為負值表示水位降低。下同。
由于渠池11~13短時間內(nèi)形成封凍,過流能力減少,在下游常水位運行方式下,為了維持原有的目標輸水流量,必然造成渠池上游閘后水位大幅抬升,必須執(zhí)行開閘指令,增大渠池蓄量,使水力坡度增大到能在當前糙率和過水斷面下通過目標輸水流量的水位狀態(tài),然后再通過回調(diào)閘門使整個渠系穩(wěn)定,下游控制斷面處的水位回到控制目標位置。其余未封凍渠池的目標狀態(tài)蓄量不增加,為了更快滿足下游渠池對蓄量的要求,這些渠池消耗自身的蓄量滿足下游水量需求,水位處于下降狀態(tài)。所以出現(xiàn)部分渠池閘后水位抬升,而部分渠池閘后水位下降的現(xiàn)象。
圖5顯示,PI控制器調(diào)控下,渠池11水位波動最大,上游最大水位偏差約為0.36 m,下游水位最大偏差約為?0.22 m,越靠近上游的渠池,其水力響應(yīng)所受影響越小;PI+OF控制器調(diào)控下,渠池11最大水位偏差約為0.28 m,與僅用PI控制器調(diào)節(jié)相比,降低約21%,下游水位最大偏差約?0.14 m,偏差減小約36%,其他渠池的最大水位偏差也均有不同幅度的減小,統(tǒng)計如表1所示。結(jié)果顯示,PI+OF控制器作用下的渠系水力響應(yīng),非封凍渠池上下游水位偏差與僅PI控制器調(diào)節(jié)時相比分別至少減小了11%和14%,對于封凍渠池的上下游水位偏差也分別減小了3.5%和7%;同時,對于渠系水位恢復穩(wěn)定耗時,除渠池10上游水位恢復耗時增加外,其余渠池均表現(xiàn)為提前,模擬工況下的耗時縮減量約在0.3~2.9 h。綜合表明,PI+OF控制器具有抑制水位波動過大和盡早穩(wěn)定水位的效果。
表1 PI+OF控制器調(diào)控效果
圖6為2種控制器作用下的各渠池進出口流量差對比圖,結(jié)果顯示,2種控制器造成的渠池進出流量差變化趨勢類似,但幅度和時間不同。具體表現(xiàn)為,封凍的渠池11~13表現(xiàn)為進口流量大;而未封凍渠池的進出口流量差表現(xiàn)為先負后正的趨勢,且隨著距離封凍渠池距離的增大,其正負2個方向的波動幅度也逐漸減小。對比圖6a、6b可知,OF控制器可通過優(yōu)化各渠池進出口流量調(diào)整過程,減小進出口流量差調(diào)整幅度與時間,達到快速逼近目標蓄量目的,進而減小水位波動幅度,但OF控制器加大了渠池9進出口流量差調(diào)整的波動性,這與工程布置、封凍與未封凍渠池流量差調(diào)整需求相反等因素有關(guān)。
圖6 不同控制器作用下各渠池進出口流量差
圖7為2種控制器作用下的渠系典型閘門開度調(diào)度過程,結(jié)果表明,與PI控制器相比,OF控制器減小了各閘門的最大開度,其中渠池11閘門最大開度減小近20%,且在0~10 h范圍內(nèi),OF控制器容易造成閘門群操作較為頻繁,且單次操作幅度較大,但下游渠池閘門最大開度較PI控制器明顯減小,在維持渠池蓄量平衡、減小水位波動和縮短穩(wěn)定耗時等方面發(fā)揮積極作用。說明了OF控制器在模型方面設(shè)定閘門相關(guān)約束,在求解方面設(shè)定流量調(diào)節(jié)幅度限制的必要性和可行性。
圖7 不同控制器作用下閘門群開度
在基因交叉階段,在PI+OF控制器作用下,不同參數(shù)流量變幅約束參數(shù)1條件下,渠池13上、下游最大水位偏差及啟動OF控制器時間與迭代次數(shù)如表2所示。隨著參數(shù)取值增大,上、下游最大水位偏差絕對值都在增大,但其增幅越來越小,到27%與57%工況下的最大偏差和迭代次數(shù)均一樣,上游最大偏差說明此時參數(shù)變化對結(jié)果影響非常小,對結(jié)果的整體影響幅度也較小,同時所需的迭代次數(shù)基本一致;該參數(shù)不影響OF控制器啟動時間。綜合而言,本模擬工況參數(shù)1取7%。
表2 參數(shù)d1對模擬結(jié)果的影響
注:1為基因交叉階段流量變幅約束幅度,是對基因交叉之后的子代檢驗。
Note:1is the constraint range of flow variation in gene crossover stage, which is used to offspring test after gene crossing.
對于基因變異階段流量變幅約束參數(shù)2、3,在第3節(jié)采用參數(shù)2=4%3=10%基礎(chǔ)上,進行單因子敏感性測試,發(fā)現(xiàn),當參數(shù)2、3分別增大時,渠池與上一時間段過閘流量改變幅度范圍增大,導致尋優(yōu)難度增加,尋優(yōu)很難朝著更接近目標的方向進行,模擬均出現(xiàn)在某一時刻停滯不前,最終無法完成求解過程。因此推薦本模型設(shè)定的參數(shù)2、3取值。
對模型參數(shù)隨機擾動流量進行單因子敏感性分析,模擬結(jié)果如圖8所示。結(jié)果顯示,隨著范圍增大,渠池2上下游水位波動明顯增加,∈[0,1]時的上游最大水位偏差值增加,且到達穩(wěn)定狀態(tài)耗時增大,對渠系的安全運行以及快速恢復穩(wěn)定不利;參數(shù)的改變對下游渠池的影響較小,渠池13在3種條件下的圖像曲線幾乎完全重合。對水位影響,具有從上游渠池至下游渠池依次減小的規(guī)律;3種情況下遺傳算法尋優(yōu)過程相似,對迭代次數(shù)無明顯影響。若的范圍小于[0,0.01],經(jīng)模擬發(fā)現(xiàn)所有渠池水位偏差圖像均與取[0,0.01]時重合,迭代次數(shù)也幾乎無影響。而范圍過小,則會限制變異過程中的基因多樣性,導致搜索空間不足。因此,在保證搜索空間的情況下,從降低最大水位偏差和快速恢復穩(wěn)定兩方面綜合考慮,建議的取值范圍在[0,0.01]。
注:q為變異運算中的隨機擾動流量。
本文基于改善渠系封凍期水力響應(yīng)過程,減小冰塞風險角度,在常規(guī)PI控制器基礎(chǔ)上,引入OF控制器,并基于遺傳算法,建立了封凍期渠系閘門群優(yōu)化調(diào)度模擬模型,并以南水北調(diào)中線古運河節(jié)制閘至北拒馬河節(jié)制閘之間的渠系為例,經(jīng)對比常規(guī)PI控制器與PI+OF控制器,表明PI+OF控制器能顯著降低渠系各渠池的最大水位偏差,其中下游最大水位偏差減小近36%,且系統(tǒng)恢復穩(wěn)定時刻提前近2.9 h,有利于促進封凍期減小冰塞風險;該方法降低水位偏差的原因是通過各渠池進出口流量控制,更好的協(xié)調(diào)了各渠池間的蓄量調(diào)整需求問題;該模型減小了各閘門的最大開度,但對于部分渠池增大了單次閘門開度調(diào)整幅度,因閘門開度與速率約束,閘門開度調(diào)整均具有可操作性;在遺傳算法求解過程中,隨機擾動流量對尋優(yōu)方向有影響作用,不宜設(shè)置過大,而流量變幅約束參數(shù),對水位波動幅度和尋優(yōu)迭代次數(shù)影響均較為有限。
[1]劉孟凱,關(guān)惠,黃明海. 封凍期渠系運行方式研究[J]. 南水北調(diào)與水利科技,2020,18(4):195-201.
Liu Mengkai, Guan Hui, Huang Minhai. Study on operation mode of canal system under formation of ice cover[J]. South-to-North Water Transfers and Water Science & Technology,2020,18(4):195-201.(in Chinese with English abstract)
[2]張大偉. 南水北調(diào)中線干線水質(zhì)水量聯(lián)合調(diào)控關(guān)鍵技術(shù)研究[D]. 上海:東華大學,2014.
Zhang Dawei. Research on the Key Technology of the Regulation of Water Quality and Quantity of the Middle Route of South-to-North Water Diversion[D]. Shanghai: Donghua University, 2014. (in Chinese with English abstract)
[3]崔巍,陳文學,姚雄,等. 大型輸水明渠運行控制模式研究[J]. 南水北調(diào)與水利科技,2009,7(5):6-10,19.
Cui Wei, Chen Wenxue, Yao Xiong, et al. Research on canal control of large scale water transfer project[J]. South-to-North Water Transfers and Water Science & Technology, 2009, 7(5): 6-10, 19. (in Chinese with English abstract)
[4]劉孟凱,王長德,馮曉波. 長距離控制渠系結(jié)冰期的水力響應(yīng)分析[J]. 農(nóng)業(yè)工程學報,2011,27(2):20-27.
Liu Mengkai, Wang Changde, Feng Xiaobo. Analysis on the hydraulic response of long distance canal control system during ice period[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(2): 20-27.(in Chinese with English abstract)
[5]劉孟凱,馮曉波,王長德,等. 2步法改善長距離渠系結(jié)冰蓋期的水力響應(yīng)[J]. 華中科技大學學報:自然科學版,2011,39(7):99-103.
Liu Mengkai, Feng Xiaobo, Wang Changde, et al. Improvement of hydraulic behaviors of long distance canal system during ice cover formation by two steps method[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2011, 39(7): 99-103. (in Chinese with English abstract)
[6] 管光華,廖文俊,毛中豪,等. 渠系前饋蓄量補償控制時滯參數(shù)算法比較與改進[J]. 農(nóng)業(yè)工程學報,2018,34(24):72-80.
Guan Guanghua, Liao Wenjun, Mao Zhonghao, et al. Comparison and improvement of time delay parameter algorithm for feedforward volume compensation control in canal system[J].Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(24): 72-80. (in Chinese with English abstract)
[7]Hashemy S M, Monem M J, Maestre J M, et al. Application of an in-line storage strategy to improve the operational performance of main irrigation canals using model predictive control[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(8): 635-644.
[8]Shahdany S M H, Firoozfar A R, et al. Providing a reliable water level control in main canals under significant inflow fluctuations at drought periods within canal automation[J]. Water Resources Management, 2017, 31(11): 3343-3354.
[9]Kong Lingzhong, Lei Xiaohui, Wang Mingna, et al. A regulation algorithm for automatic control of canal systems under emergency conditions[J]. Irrigation and Drainage, 2019, 68(4): 646-656.
[10]葉雯雯,管光華,李一鳴,等. 串聯(lián)輸水明渠PID多指標自適應(yīng)算法及仿真研究[J]. 中國農(nóng)村水利水電,2019(1):120-126.
Ye Wenwen, Guan Guanghua, Li Yiming, et al. The simulation of PID multi-index adaptive algorithm on tandem water transfer open channel[J]. China Rural Water and Hydropower, 2019(1): 120-126. (in Chinese with English abstract)
[11]黃凱,管光華,劉大志,等. 串聯(lián)渠系PID改進積分與微分環(huán)節(jié)仿真研究[J]. 灌溉排水學報,2017,36(2):1-11.
Huang Kai, Guan Guanghua, Liu Dazhi, et al. Simulation for PID controller of modified integral and differential on tandem canal system[J]. Journal of Irrigation and Drainage, 2017, 36(2): 1-11. (in Chinese with English abstract)
[12]李晨. 南水北調(diào)中線渠池水力控制研究[D]. 邯鄲:河北工程大學,2014.
Li Chen. The Middle Route of South-To-North Water Transfer Canal Water Force Control Research[D]. Handan: Hebei University of Engineering, 2014. (in Chinese with English abstract)
[13]Rokaya P, Lindenschmidt K L. Correlation among parameters and boundary conditions in river ice models[J]. Modeling Earth Systems and Environment, 2020, 6(5): 499-512.
[14]Yang W L, Wang J, Sui J Y, et al. A modified muskingum flow routing model for flood wave propagation during river ice thawing-breakup period[J]. Water Resources Management: An International Journal-Published for the European Water Resources Association (EWRA), 2019, 33(2): 4865-4878.
[15]穆祥鵬,陳云飛,吳艷,等. 冰水二相流渠道流冰輸移演變規(guī)律及其安全運行措施研究[J]. 南水北調(diào)與水利科技,2018,16(5):144-151.
Mu Xiangpeng, Chen Yunfei, Wu Yan, et al. Research on ice transport evolution rules and safe operation measures of ice-water two-phase flow canal[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(5): 144-151. (in Chinese with English abstract)
[16]劉孟凱. 南水北調(diào)中線工程總干渠冰期輸水調(diào)控仿真研究[J]. 農(nóng)業(yè)工程學報,2019,35(16):95-104.
Liu Mengkai. Operation simulation model for middle route of south-to-north water transfer project during ice period[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 95-104. (in Chinese with English abstract)
[17]Liu M K, Feng X B, Wang C D, et al. Regulating a long-distance canal system with floating ice cover in the winter[J]. Journal of Cold Regions Engineering, 2015, 29(1): 4014009.
[18]韓延成,初萍萍,梁夢媛,等. 冰蓋下梯形及拋物線形輸水明渠正常水深顯式迭代算法[J]. 農(nóng)業(yè)工程學報,2018,34(14):101-106.
Han Yancheng, Chu Pingping, Liang Mengyuan, et al. Explicit iterative algorithm of normal water depth for trapezoid and parabolic open channels under ice cover[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 101-106. (in Chinese with English abstract)
[19]溫世億,楊金波,段文剛,等. 南水北調(diào)中線2014-2015年度冬季冰情原型觀測[J]. 人民長江,2015,46(22):99-102.
Wen Shiyi, Yang Jinbo, Duan Wengang, et al. Ice prototype monitoring of Middle Route Project of South- to-North Water Diversion in winter of 2014 to 2015[J]. Yangtze River, 2015, 46(22): 99-102. (in Chinese with English abstract)
[20]段文剛,黃國兵,楊金波,等. 長距離調(diào)水明渠冬季輸水冰情分析與安全調(diào)度[J]. 南水北調(diào)與水利科技,2016,14(6):96-104.
Duan Wengang, Huang Guobing, Yang Jinbo, et al. Ice regime analysis and safe dispatch research on long distance water diversion project in winter[J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(6): 96-104. (in Chinese with English abstract)
[21]李芬,李昱,李敏,等. 基于模糊評價模型的南水北調(diào)中線冰害風險空間分布[J]. 南水北調(diào)與水利科技,2017,15(1):132-137.
Li Fen, Li Yu, Li Min, et al. Spatial distribution of ice hazards in middle route of South-to-North Water Transfer Project based on fuzzy evaluation model[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(1): 132-137. (in Chinese with English abstract)
[22]吳艷,周富強,穆祥鵬,等. 基于水溫實測資料的冰期水內(nèi)冰演變的計算方法[J]. 水力發(fā)電學報,2017,36(11):94-101.
Wu Yan, Zhou Fuqiang, Mu Xiangpeng, et al. Calculation methods of frazil evolution in canals during icing period based on measured water temperature[J]. Journal of Hydroelectric Engineering, 2017, 36(11): 94-101. (in Chinese with English abstract)
[23]趙新,張雅卓,王旭. 融冰期加厚冰蓋糙率物理模型試驗研究[J]. 南水北調(diào)與水利科技,2012,10(3):4-6,26.
Zhao Xin, Zhang Yazhuo, Wang Xu. Research on the roughness of thickened ice cover during the ice-melting period based on physical model experiments[J]. South-to-North Water Transfers and Water Science & Technology, 2012, 10(3): 4-6, 26. (in Chinese with English abstract)
[24]周茜. 并行動態(tài)規(guī)劃算法及其在水庫(群)優(yōu)化調(diào)度中的應(yīng)用[D]. 北京:華北電力大學,2014.
Zhou Xi. Parallel Dynamic Programming Algorithm and Its Application in Reservoir Group Optimal Operation[D]. Beijing: North China Electric Power University, 2014. (in Chinese with English abstract)
[25]張宇航,唐超,姚李孝. 基于改進粒子群算法的梯級水電站長期優(yōu)化調(diào)度研究[J]. 陜西電力,2016,44(6):59-63.
Zhang Yuhang, Tang Chao, Yao Lixiao. Long term optimal scheduling of cascade hydropower stations based on improved particle swarm optimization algorithm[J]. Shaanxi Electric Power, 2016, 44(6): 59-63. (in Chinese with English abstract)
[26]單寶英,郭萍,張帆,等. 基于遺傳算法與方案優(yōu)選的多目標優(yōu)化模型求解方法[J]. 中國農(nóng)業(yè)大學學報,2019,24(6):157-165.
Shan Baoying, Guo Ping, Zhang Fan, et al. A multi-objective optimization model solving method based on genetic algorithm and scheme evaluation[J]. Journal of China Agricultural University, 2019, 24(6): 157-165. (in Chinese with English abstract)
[27]陳立華,梅亞東,董雅潔,等. 改進遺傳算法及其在水庫群優(yōu)化調(diào)度中的應(yīng)用[J]. 水利學報,2008,39(5):550-556.
Chen Lihua, Mei Yadong, Dong Yajie, et al. Improved genetic algorithm and its application in optimal dispatch of cascade reservoirs[J]. Journal of Hydraulic Engineering, 2008,39(5): 550-556. (in Chinese with English abstract)
[28]黃國兵,楊金波,段文剛. 典型長距離調(diào)水工程冬季冰凌危害調(diào)查及分析[J]. 南水北調(diào)與水利科技,2019,17(1):144-149.
Huang Guobing, Yang Jinbo, Duan Wengang. Investigation and analysis of ice hazard in operation of typical long distance water transfer project in winter[J]. South-to-North Water Transfers and Water Science & Technology, 2019, 17(1): 144-149. (in Chinese with English abstract)
[29]劉孟凱,莫庸,楊佳,等. 暴雨條件下的長距離渠系水力響應(yīng)特性研究[J]. 南水北調(diào)與水利科技,2018,16(1):151-157.
Liu Mengkai, Mo Yong, Yang Jia,et al. Hydraulic response of long-distance canal system under the effect of rainstorm[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(1): 151-157. (in Chinese with English abstract)
[30]劉孟凱,馮曉波,王長德,等. 基于平封冰蓋生消模擬的長距離渠系冰期自動化控制模型[J]. 水力發(fā)電學報, 2013,32(3):93-100.
Liu Mengkai, Feng Xiaobo, Wang Changde, et al. Mathematical model for automatic operation of long distance canal system with juxtaposition ice cover formation and decaying[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 93-100. (in Chinese with English abstract)
[31]劉孟凱,邢領(lǐng)航,黃明海,等. 長距離渠系融冰期自動化控制模式研究[J]. 水利學報,2013,44(9):1080-1086.
Liu Mengkai, Xing Linghang, Huang Minghai, et al. An automatic operation mode for the long distance canal system in ice melting period[J]. Journal of Hydraulic Engineering, 2013, 44(9): 1080-1086. (in Chinese with English abstract)
[32]耿治平. 基于遺傳算法的南水北調(diào)工程(山東段)水資源優(yōu)化配置和實時調(diào)度研究[D]. 合肥:合肥工業(yè)大學,2006.
Geng Zhiping. Research on the Optimization of Water Resource Allocation and Real-time Dispatch of Water Resources of the East Route of the South-to-North Water Transfer Project (Segment of Shsn Dong) by Genetic Algorithms[D]. Hefei: Hefei University of Technology, 2006. (in Chinese with English abstract)
Improved design of opening controller of gate group during freezing period for the Middle Route of South-to-North Water Transfer Project
Liu Mengkai1, Guan Hui1, Guo Hui2, Bi Sheng2
(1.,,430081,;2,430010,)
Middle Route of the South-to-North Water Transfer Project was constructed into a large-scale series canal system in a centralized automatic control mode for an operation management. There are the striking characteristics of long water transmission lines, and large scale of water transfer. Specifically, the height difference is 100 m from Danjiangkou Reservoir to Beijing. The water distribution can be achieved by adjusting the control gate using artesian water delivery, without any online regulation reservoir along the canal line. Therefore, a highly accurate adjustment is necessary for the flow regulation and control of the gate group during the operation and scheduling process, in order to realize the safe timely water delivery in an appropriate way. Many difficulties have arisen on the hydraulic control and dispatch of the main canal, due to numerous buildings along the main canal, while, the variations in water demand of each water diversion gate. Furthermore, a large hysteresis of hydraulic response usually occurred, due to the limitation from the propagation speed of the water wave. Accordingly, the change in the flow of any water diversion or control gate along the canal line can cause water level fluctuations within a certain channel range, showing a strong coupling effect. As such, the risk of ice jam can increase significantly, because of large hydraulic fluctuations during the freezing period, particularly on large-scale series canal systems. How to reduce hydraulic fluctuations through joint dispatching of gate groups can efficiently restrain the occurrence of ice jams during the freezing period in this case. In this study, taking the minimum deviation of water level as the objective function, an adjustment system was designed, including two control links, a conventional PI controller, and an optimization controller, while, combining with a genetic algorithm, a simulation model for the optimal dispatching of the sluice gate group was established suitable for the frozen period of the canal, considering the flow restriction between the canal pools, gate opening, and adjusting rate constraint. An optimization controller was comprehensively demonstrated, according to the verified modeling effect and the parameter sensitivity, based on the simulation experiment of control gates in the canal system between the ancient and the north Juma River currently. The simulation results show that the maximum deviation of water level can be significantly reduced under the simulated operating conditions, when adding an optimization controller in the system, compared with the only PI controller. Specifically, the maximum deviation of downstream water level decreased by nearly 36%, whereas, the recovery time of system was nearly 2.9 h ahead of time, indicating that the proposed model has a positive effect on suppressing the excessive hydraulic response, and stabilizing the water level during the freezing period. This will be beneficial to reduce the risk of ice jam. The reason was that the decrease in the deviation of the water level can be implemented via the flow control at the inlet and outlet of each channel pool, while better coordinating the need for storage adjustment between channels. The maximum opening of each gate can be reduced, but the adjustment amplitude of a single gate opening increased for some channels. The adjustment of gate opening degree can be feasible, due to the constraint of gate opening and adjustment rate. In the solving process of genetic algorithm, the specific value of random disturbance flow was recommended relatively small, due possibly to a negative effect on the optimization direction. In the constraint parameter of flow range,, there was only a limited influence on the fluctuation range of water level, and the number of optimization iterations.
genetic algorithm; simulation; freezing period; gate group; controller; operational safety
劉孟凱,關(guān)惠,郭輝,等. 南水北調(diào)中線工程封凍期閘門群開度控制器改進設(shè)計[J]. 農(nóng)業(yè)工程學報,2020,36(17):90-97.doi:10.11975/j.issn.1002-6819.2020.17.011 http://www.tcsae.org
Liu Mengkai, Guan Hui, Guo Hui, et al. Improved design of opening controller of gate group during freezing period for the Middle Route of South-to-North Water Transfer Project[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(17): 90-97. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.17.011 http://www.tcsae.org
2020-04-29
2020-07-23
國家重點研發(fā)計劃課題(2016YFC0401810);國家自然科學基金資助項目(51779196;51309015)
劉孟凱,博士,副教授,主要從事工程管理研究。Email:mengkailiu@whu.edu.cn
10.11975/j.issn.1002-6819.2020.17.011
TV91
A
1002-6819(2020)-17-0090-08