亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        關(guān)于第二類 Stirling 數(shù)的p-adic 賦值的一些新結(jié)果

        2020-09-23 00:56:16偉,邱
        關(guān)鍵詞:理學(xué)院西華賦值

        趙 偉,邱 敏

        (1.保密通信重點(diǎn)實(shí)驗(yàn)室,成都 610041; 2.西華大學(xué)理學(xué)院,成都 610039)

        1 Introduction

        Letnandkbe nonnegative integers. The Stirling number of the first kind,denoted bys(n,k),counts the number of permutations ofnelements withkdisjoint cycles. One can also characterizes(n,k) by

        where(x)nis the falling factorial which is defined by

        (1)

        Note that the exact value of Stirling number of the second kindS(n,k) equals the sum of all products ofn-knot necessarily distinct integers from {1,2,…,k},i.e.,the following explicit formula holds:

        whereNstands for the set of all the nonnegative integers. One can also characterize the Stirling number of the second kind by

        and there holds the recurrence relation

        S(0,0)=1,S(n,0)=0

        and

        S(n,k)=kS(n-1,k)+

        S(n-1,k-1) ,n≥k≥1.

        Furthermore,we have the following two generating functions of Stirling numbers of the second kind:

        The Stirling numbers of the first and second kind can be considered to be inverse of one another:

        Divisibility properties of Stirling numbers have been studied from a number of different perspectives. Amdeberhan,Manna and Moll[1]studied the 2-adic valuations of Stirling numbers of the second kind,they also conjectured thatv2(S(4n,5))≠v2(S(4n+3,5)) if and only ifn∈{32j+7:j∈N}. Hongetal. proved this conjecture in Ref.[7]. Lengyel[9]conjectured,proved by Wannemacker[12],a special case of the 2-adic valuation ofS(n,k):v2(S(2n,k))=s2(k)-1,independently ofn,wheres2(k) means the base 2 digital sum ofk. By using Wannemacker’s result,Hongetal.[7]proved that

        v2(S(2n+1,k+1))=s2(k)-1

        holds for allkwith 1≤k≤2n,which confirmed another conjecture of Amdeberhan,Manna and Moll[1]. We also note that the 2-adic valuation of the Stirling number of the second kind was studied by Zhao,Hong and Zhao in Refs.[13-14].

        vp(m1m2)=vp(m1)+vp(m2).

        Furthermore,for any rational numberxandywe have

        vp(x+y)≥min{vp(x),vp(y)},

        and ifvp(x)≠vp(y) then one has

        vp(x+y)=min{vp(x),vp(y)}.

        The above property is also known as the isosceles triangle principle[16].

        For every odd primep,we have 2p-1≡1(modp). An odd primepsuch that 2p-1?1(modp2) is called a Wieferich prime,see Ref.[17]. For example,3,5 and 7 are Wieferich primes. We have the following result,which gives a new method of determining Wieferich prime.

        Theorem1.1For any odd primep,we have

        vp(S(p,2))≥1,

        where the equality holds if and only ifpis a Wieferich prime.

        (2)

        wheresp(k) andsp(n) stand for the basepdigital sum ofkandn,respectively. Now for the case thatnis a power ofp,we arrive at the following two results,which improve Adelberg’s result in this case,and are the main results of this paper.

        Theorem1.2Letnbe an integer withn≥2. For any odd primep,we have

        vp(S(pn,2p))≥n.

        Theorem1.3Letnbe an integer withn≥2. For any primep≥5,we have

        vp(S(pn,4p))≥n-2.

        Evidently,forn≥4,the lower bounds ofvp(S(pn,2p)) andvp(S(pn,4p)) in Theorems 1.2 and 1.3 are better than Adelberg’s result (2).

        We organize this paper as follows. Firstly,in Section 2 we show some preliminary lemmas which are needed in the proofs of Theorems 1.1 to 1.3. Then in Section 3,we give the proofs of Theorems 1.1 to 1.3.

        2 Preliminaries

        In this section,we present several auxiliary lemmas that are needed.

        Letnandkbe positive integers. By convention,we setS(0,0)=1 andS(n,0)=S(0,k)=0. It is also clear to see thatS(n,k)=0 ifn

        S(n,1)=1

        and

        S(n,2)=2n-1-1,n≥2

        (3)

        Letmbe a positive integer. The Euler phi functionφ(m) counts the number of integers in the set {1,...,m} that are relatively prime tom. For example,we haveφ(1)=1 andφ(6)=2. Ifpis a prime number,then (a,p)=1 holds for anyawitha∈{1,...,p-1},and soφ(p)=p-1. Letr≥2 be an integer. Ifpris a prime power,thenφ(pr)=pr-pr-1.

        Lemma2.1(Euler) Letmbe a positive integer and letabe an integer relatively prime tom. Then

        aφ(m)≡1 (modm).

        The following result plays a crucial role in the proofs of Theorem 1.2 and Theorem 1.3.

        Lemma2.2Letpbe an odd prime. Letn,k,ibe positive integers such that 1≤k≤p-1,1≤i≤kp-1 and (i,p)=1. We have

        vp((kp-i)pn+ipn)=n+1.

        ProofLetibe an integer with 1≤i≤kp-1 and (i,p)=1. Sincepis odd,we can deduce that

        (4)

        For any integerjwith 1≤j≤pn,it follows from (i,p)=1 that

        vp(ipn-j)=(pn-j)vp(i)=0

        (5)

        Since 1≤k≤p-1,one then derives that

        vp(kpn+1·ipn-1)=

        vp(k)+vp(pn+1)+vp(ipn-1)=n+1

        (6)

        In what follows,let 2≤j≤pn. Note that

        andvp(j′)

        (7)

        Then it follows from (5) together with 1≤k≤p-1 and (7) that

        vp(ipn-j)=n+j-vp(j)

        (8)

        It is easy to check thatj-vp(j)≥2. In fact,for the case thatvp(j)=0,we havej-vp(j)≥2 sincej≥2,and ifvp(j)≥1,then byp≥3 one deduces thatj≥pvp(j)≥vp(j)+2. Hence by (8) and (6) we derive that

        n+j-vp(j)≥n+2>n+1=

        vp(kpn+1·ipn-1)

        (9)

        Using the isosceles triangle principle together with (4),(6) and (9),one then arrives at

        vp((kp-i)pn+ipn)=vp(kpn+1·ipn-1+

        vp(kpn+1·ipn-1)=n+1.

        This finishes the proof of Lemma 2.2.

        3 The proof of the main results

        In this section,we give the proofs of Theorems 1.1 to 1.3. We begin with the proof of Theorem 1.1.

        ProofofTheorem1.1For any given odd primep,we have

        S(p,2)=2p-1-1.

        By Lemma 2.1,one knows that

        S(p,2)=2p-1-1≡0 (modp).

        It infers thatvp(S(p,2))≥1 with the equality holding if and only if

        2p-1-1?0 (modp2),

        i.e.,

        2p-1?1 (modp2),

        which is equivalent topbeing a Wieferich prime. So Theorem 1.1 is proved.

        Then we present the proof of Theorem 1.2.

        ProofofTheorem1.2Letpbe an odd prime. Replacingnbypnandkby 2pin (1),one gets that

        (10)

        (11)

        Then it follows from (10) and (11) that

        (12)

        Letibe an integer with 1≤i≤p-1. By settingk=2 in Lemma 2.2 we deduce that

        vp((2p-i)pn+ipn)=n+1

        (13)

        ((2p-i)pn+ipn))}}-2=

        min{pn,n+2}-2=n.

        This completes the proof of Theorem 1.2.

        Finally,we give the proof of Theorem 1.3.

        ProofofTheorem1.3Letp≥5 be an odd prime. Replacingnbypnandkby 4pin equation (1),one obtains that

        (14)

        where

        and

        (15)

        and

        (16)

        Then it follows from (15) and (16) that

        (17)

        and

        (18)

        For any integerisuch that 1≤i≤p-1 orp+1≤i≤2p-1,by using Lemma 2.2 one derives that

        vp((4p-i)pn+ipn)=n+1

        (19)

        Now from (19) together with (17) and (18) we obtain that

        n+2

        (20)

        and

        n+2

        (21)

        (22)

        It then follows from (14) together withvp((4p)!)=4 and (20) to (22) that

        vp(S(pn,4p))=

        vp(Δ1+Δ2+Δ3)-vp((4p)!)≥

        min{vp(Δ1),vp(Δ2),vp(Δ3)}-4≥

        min{pn,n+2,n+2}-4=n-2.

        This complete the proof of Theorem 1.3.

        猜你喜歡
        理學(xué)院西華賦值
        西華大學(xué)成果展示
        包裝工程(2024年8期)2024-04-23 03:59:24
        昆明理工大學(xué)理學(xué)院學(xué)科簡(jiǎn)介
        昆明理工大學(xué)理學(xué)院簡(jiǎn)介
        關(guān)于1 1/2 … 1/n的一類初等對(duì)稱函數(shù)的2-adic賦值
        西華大學(xué)成果展示
        包裝工程(2023年4期)2023-03-07 01:13:24
        L-代數(shù)上的賦值
        子路、曾皙、冉有、公西華侍坐
        文苑(2020年5期)2020-06-16 03:18:36
        強(qiáng)賦值幺半群上的加權(quán)Mealy機(jī)與加權(quán)Moore機(jī)的關(guān)系*
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        西華師范大學(xué)學(xué)報(bào)(自然科學(xué)版)
        久久国内精品自在自线图片| 欧美性受xxxx黑人猛交| 成人自慰女黄网站免费大全| 色狠狠色狠狠综合天天| 亚洲av日韩精品久久久久久久 | 亚洲av永久无码精品一区二区| 最新亚洲人成无码网站| 精品亚洲国产探花在线播放| 99久久亚洲精品无码毛片 | 亚洲乱码一区二区三区成人小说 | 亚洲一二三四五区中文字幕| 亚洲精品国产av成人网| 东北老熟女被弄的嗷嗷叫高潮| 男人天堂网2017| 久久精品欧美日韩精品| 国产嫖妓一区二区三区无码| 国产精品久久久久尤物| 曰本亚洲欧洲色a在线| 超碰青青草手机在线免费观看| 一区二区三区四区草逼福利视频| 亚洲自偷精品视频自拍| 亚洲男人av天堂午夜在| 96精品在线| 亚洲一区二区三区中文视频| 精品国产一区二区三区性色 | 国产精品一区二区久久毛片| av天堂网手机在线观看| 久久免费看黄a级毛片| 国产精品对白刺激久久久| 日韩中文字幕欧美亚洲第一区| 久久亚洲国产成人精品v| 日本一区二区日韩在线| 97精品人妻一区二区三区在线| 日本又色又爽又黄又免费网站| 亚洲av无码专区电影在线观看| 久久精品免费一区二区喷潮| 亚洲一区二区三区在线观看播放| 国产精品成人有码在线观看| 偷拍视频网址一区二区| 久久天天躁狠狠躁夜夜不卡| 午夜精品久久久久久中宇|