亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一個(gè)三維系統(tǒng)的音叉分岔

        2020-09-23 00:53:22楊檸瑋
        關(guān)鍵詞:音叉四川大學(xué)成都

        楊檸瑋

        (四川大學(xué)數(shù)學(xué)學(xué)院,成都 610064)

        1 Introduction

        Three-dimensional differential systems are investigated widely because of their plentiful dynamical phenomenon. In 1963 Lorenz[1]found the first chaotic attractor in a three dimensional system. From then on,various three-dimensional systems,such as R?ssler system,Chen system,Lü system,Liu system,Bao system,Pehlivan system,Jafari system and Sampath system[2-9]etc,have been proposed.

        In Ref.[10],Qietal. considered a three-dimensional nonlinear system,in which each equation contains a single quadratic cross-product term,which is described as

        (1)

        In this paper,we continue to study the pitchfork bifurcations in System (1) and consider thatcchanges near 1 and no mattera>1 ora≤1. Our main method is to use the parameter partition determined by the number of equilibria,which is essentially different from the center manifold method used in Ref.[11].

        2 The pitchfork bifurcations

        Let

        Lemma 2.1(i) System (1) has five equilibriaE0,E1,E2,E3,E4if and only if (a,b,c)∈Λ1;

        (ii) System (1) has three equilibriaE0,E1,E2,if and only if (a,b,c)∈Λ2∪Λ4;

        (iii) System (1) has a unique equilibriumE0if and only if (a,b,c)∈Λ3∪Λ5∪Λ6,

        hereE0,E1,...,E4lie at (0,0,0),(x1,y1,z1),(-x1,-y1,z1),(x2,y2,z2),(-x2,-y2,z2) respectively,and

        (2)

        ProofBy solving

        we get that

        y=bcx/(x2+b),z=cx2/(x2+b)

        (3)

        andxsatisfies

        ax5+(2ab-abc-bc2)x3+(ab2-ab2c)x=0

        (4)

        Obviously,x=0 is one root of (4) and all nonzero roots satisfy

        ax4+(2ab-abc-bc2)x2+ab2-ab2c=0

        (5)

        In the following,all possible cases are considered.

        (i) Ife>0,d-e>0,i.e.,(a,b,c)∈Λ1,then (5) has four distinct nonzero real rootsx1,x2,-x1,-x2,given in (2). Correspondingly,we gety1,y2,-y1,-y2,z1,z2by (3). Therefore,there are five equilibriaE0,E1,E2,E3,E4.

        (ii) Ife>0,d-e≤0,d+e>0,i.e.,(a,b,c)∈Λ2,then (5) has two distinct nonzero real rootsx1,-x1given in (2). Correspondingly,we gety1,-y1,z1by (3). Therefore,there are three equilibriaE0,E1,E2.

        (iii) Ife>0,d-e≤0,d+e≤0,i.e.,(a,b,c)∈Λ3,then (5) has no nonzero real roots. Thus,there is a unique equilibriumE0.

        (iv) Ife=0,c>a,i.e.,(a,b,c)∈Λ4,then (5) has two distinct nonzero real rootsx1,-x1,given in (2). Correspondingly,we gety1,-y1,z1by (3). Therefore,there are three equilibriaE0,E1,E2.

        (v) Ife=0,c≤a,i.e.,(a,b,c)∈Λ5,then (5) has no nonzero real roots. Thus,there is a unique equilibriumE0.

        (vi) Ifeis not real,i.e.,(a,b,c)∈Λ6,then (5) has no nonzero real roots. Thus,there is a unique equilibriumE0.

        Now we study the bifurcations of equilibria when parametercchanges near 1.

        Theorem 2.2Let 0<ε?1.(i) Assume thata≥1. The pitchfork bifurcation happens whencchanges from 1 to 1+ε,and the number of equilibria of System (1) changes from 1 to 3.

        (ii) Assume thata<1. The pitchfork bifurcation happens whencchanges from 1 to 1-ε,and the number of equilibria of System (1) changes from 3 to 5.

        ProofWhena>1 andc=1 in (2) we haved+e=0,d-e<0,i.e.,(a,b,c)∈Λ3. Whena=1 andc=1 in (2) we havee=0,a=c,i.e.,(a,b,c)∈Λ5. Thus whena≥1 andc=1,System (1) has a unique equilibriumE0by Lemma 2.1. Whena≥1 andc=1+ε,from (2) we gete>0 and

        Thus (a,b,c)∈Λ2,i.e.,System (1) has three equilibriaE0,E1,E2fallows from Lemma 2.1.(i) is proved.

        Whena<1 andc=1,we haved+e>0,d-e=0. Thus (a,b,c)∈Λ2,i.e.,System (1) has three equilibriaE0,E1,E2follows from Lemma 2.1. Whena<1 andc=1-ε,we gete>0 and

        d-e=2a2bε/(1-a)+O(ε2)>0.

        Thus (a,b,c)∈Λ1,i.e.,System (1) has five equilibriaE0,E1,E2,E3,E4follows from Lemma 2.1. From thex-coordinates ofE3,E4,we find thatE3,E4appear by the pitchfork bifurcation ofE0. (ii) is proved.

        3 The stability of equilibria

        In Theorem 2.2,the pitchfork bifurcation ofE0happens whencchanges near 1. In this section,we study the stability of those equilibria bifurcated fromE0.

        Theorem 3.1EquilibriaE1andE2,appearing by the pitchfork bifurcation ofE0whena≥1 andcchanges from 1 to 1+ε,are locally asymptotically stable.

        ProofSince System (1) is symmetric about thez-axis andE1is the corresponding symmetric equilibrium ofE2,we only need to considerE1.

        Whena>1 andc=1+ε,we get

        and

        by (2).The Jacobian matrix atE1is given by

        Thus the characteristic equation atE1is

        whose coefficients satisfy

        Then,all eigenvalues have negative real parts follows from the Routh-Hurwitz Theorem[15]. ThusE1is locally asymptotically stable,so doesE2.

        Whena=1 andc=1+ε,we get

        and

        by (2).The Jacobian matrix atE1is

        Thus the characteristic equation atE1is

        λ3+(b+2)λ2+(2b+O(ε))λ+4bε+

        whose coefficients satisfy

        Then,all eigenvalues have negative real parts follows from the Routh-Hurwitz Theorem[15]. ThusE1is locally asymptotically stable,so doesE2.

        Theorem 3.2EquilibriaE3andE4,appearing by the pitchfork bifurcation ofE0whena<1 andcchanges from 1 to 1-ε,are unstable.

        ProofSince System (1) is symmetric about thez-axis andE3is the corresponding symmetric equilibrium ofE4,we only need to considerE3.

        Whena<1 andc=1-ε,we get

        and

        by (2). The characteristic equation atE3is

        (6)

        whose coefficients satisfy

        Then,some eigenvalues have positive or zero real parts follows from the Routh-Hurwitz theorem[15]. Obviously,there is no zero root by the expression of (6). If (6) has a pair of pure imaginary roots ±iω(ω≠0),substitutingλ=iωinto (6) we get

        i.e.,

        (7)

        Clearly,(7) has no solution forω. Thus (6) has eigenvalues with positive real parts. Therefore,E3is unstable,neither doesE4.

        猜你喜歡
        音叉四川大學(xué)成都
        音叉共鳴現(xiàn)象的教學(xué)探析
        四川大學(xué)西航港實(shí)驗(yàn)小學(xué)
        一次有趣的科學(xué)實(shí)驗(yàn)
        穿過成都去看你
        青年歌聲(2019年2期)2019-02-21 01:17:20
        數(shù)看成都
        先鋒(2018年2期)2018-05-14 01:16:16
        百年精誠(chéng) 譽(yù)從信來(lái)——走進(jìn)四川大學(xué)華西眼視光之一
        成都
        汽車與安全(2016年5期)2016-12-01 05:21:56
        四川大學(xué)華西醫(yī)院
        自制音叉的對(duì)稱性與非對(duì)稱性破壞性實(shí)驗(yàn)研究
        四川大學(xué)信息顯示研究所
        液晶與顯示(2014年2期)2014-02-28 21:12:58
        亚洲专区一区二区在线观看| 男人边做边吃奶头视频 | 97伦伦午夜电影理伦片| 久久99精品久久久久久齐齐百度| 一本大道综合久久丝袜精品| 精品人妻久久一区二区三区| 成人欧美一区二区三区| 99精品久久这里只有精品| 亚洲一区二区三区在线观看蜜桃 | 亚洲熟女综合一区二区三区| 在线视频中文字幕乱人伦| 国产精品丝袜美女久久| 久久天堂av综合合色| 色老头在线一区二区三区| 99久久精品国产自在首页| 一区二区三区在线观看人妖| 久久精品亚洲精品国产色婷| 八戒网站免费观看视频| 波多野无码AV中文专区 | 亚洲成人av在线第一页| 性色av无码中文av有码vr| 亚洲AV无码资源在线观看| 日韩熟女精品一区二区三区视频| 欧美性色欧美a在线播放| 久久精品人人做人人爽| 人妻无码人妻有码不卡| 国产亚洲综合另类色专区| 亚洲欧美色一区二区三区| 国产福利午夜波多野结衣| 国产日产免费在线视频| 成人自慰女黄网站免费大全| 国产亚洲精品aaaaaaa片 | 制服丝袜一区二区三区| 国产内射999视频一区| 在线偷窥制服另类| 男女搞事在线观看视频| 岳好紧好湿夹太紧了好爽矜持| 久久久久久久98亚洲精品| 免费av在线 国产精品| 精品国际久久久久999波多野| 暖暖免费 高清 日本社区在线观看|