韋偉 , 孫聰 ,c, 王小三 , 金青哲 , Xubing Xu , Csimir C. Akoh , 王興國 ,b,*
Sn-2棕櫚酸甘油酯是結(jié)構(gòu)甘油三酯(TAG)中的一種,通常用作人乳替代脂。結(jié)構(gòu)TAG是一種非天然油脂,它是在天然TAG的基礎(chǔ)上通過人工改性獲得的一種油脂[1]。為了模擬人乳脂中的TAG結(jié)構(gòu),人們研發(fā)了sn-2棕櫚酸甘油酯。
人乳是嬰兒的最佳食物,脂肪是人乳中的一種重要成分。盡管人乳脂(HMF)在人乳中的含量僅為3%~5%,但可為全母乳喂養(yǎng)的嬰兒提供約50%的能量。HMF是最復(fù)雜的天然脂質(zhì)之一,它含有98%~99%的TAG、0.26%~0.80%的磷脂、0.25%~0.34%的固醇(主要是膽固醇),以及各種微量成分,如甘油單酯(MAG)、甘油二酯(DAG)、游離脂肪酸(FFA)等[2]。目前,已經(jīng)鑒定出的HMF中的TAG結(jié)構(gòu)多達(dá)400余種[3]。
目前學(xué)者們一致認(rèn)為油脂的功能和營養(yǎng)特性與其所含的TAG種類密切相關(guān)。如圖1所示,TAG分子由一個(gè)經(jīng)過三個(gè)脂肪酸酯化的甘油碳骨架組成。TAG的種類不僅取決于其脂肪酸組成,還取決于脂肪酸在甘油碳骨架上的位置分布。
圖1. TAG分子的結(jié)構(gòu)。R′、R′′和R′′′分別為酯化在甘油碳骨架sn-1、sn-2和sn-3位的脂肪酸。
甘油碳骨架上的位置采用立體特異性編號(stereospecific numbering,sn)系統(tǒng)進(jìn)行命名,其中R′、R′′和R′′′分別是酯化在sn-1、sn-2和sn-3位的脂肪酸。HMF是具有獨(dú)特TAG組成的天然脂類,其特征在于脂肪酸在甘油碳骨架上的分布規(guī)律。HMF的三種主要脂肪酸是油酸(OA,18:1,n–9,約占33%)、棕櫚酸(PA,16:0,約占24%)和亞油酸(LA,18:2,n–6,約占15%)[4]。在人乳中,約70%的PA分布在甘油碳骨架的sn-2位[5]。Sn-1和sn-3位主要為不飽和脂肪酸(UFA),如OA和LA [6,7]。長鏈多不飽和脂肪酸(LCPUFA)也多數(shù)酯化在sn-2位,如二十碳五烯酸(EPA,20:5,n–3)和二十二碳六烯酸(DHA,22:6,n–3)[8]。HMF中含量最高的TAG是1,3-二油酸-2-棕櫚酸甘油酯(OPO,約占16%~29%)和1-油酸-2-棕櫚酸-3-亞油酸甘油酯(OPL,約占13%~20%)[3,6,9,10]。
與HMF相比,嬰兒配方奶粉中通常使用的植物油具有不同的脂肪酸分布。在植物油中,PA主要(>80%)被酯化在sn-1和sn-3位。因此,經(jīng)過食用油加工工藝(如油脂分提和油脂調(diào)配)和化學(xué)酯交換作用的天然植物油無法達(dá)到與HMF相同的TAG組成。
HMF中獨(dú)特的TAG結(jié)構(gòu)在嬰兒生長中具有重要的作用。TAG的消化主要發(fā)生在嬰兒的胃和小腸中,該消化過程主要通過脂肪酶水解反應(yīng)進(jìn)行。由于胃和胰脂肪酶具有sn-1,3位選擇性,因此TAG水解后生成了sn-2 MAG和FFA [11]。HMF中的長鏈飽和脂肪酸(主要是PA)通常以sn-2 MAG的形式被吸收。在嬰兒的胃腸道微環(huán)境中,游離的PA與鈣和鎂結(jié)合后形成了不溶性鈣皂,然后經(jīng)糞便排出[12–14]。因此,目前的研究重點(diǎn)之一是對嬰兒配方奶粉脂肪中的TAG進(jìn)行改性(通過添加sn-2棕櫚酸甘油酯),以提高脂肪酸的吸收率,并減輕由棕櫚酸鈣引起的癥狀[4,15,16]。
由于PA在甘油碳骨架上的不同位置導(dǎo)致了脂質(zhì)吸收的差異性,因此人們對sn-2棕櫚酸甘油酯來源的開發(fā)和商業(yè)化產(chǎn)生了極大的興趣。油脂改性方法,即改變脂肪酸在甘油碳骨架上的位置,可以改善油脂的營養(yǎng)品質(zhì)[17]。而基于sn-1,3位選擇性脂肪酶的酶法技術(shù)使這種脂質(zhì)改性成為可能。Sn-1,3位選擇性脂肪酶催化的TAG和?;w的酯交換反應(yīng)可以實(shí)現(xiàn)對甘油碳骨架上sn-1和sn-3位脂肪酸的改性,從而產(chǎn)生具有特定結(jié)構(gòu)的TAG。除sn-2棕櫚酸甘油酯外,研究人員利用該技術(shù)還開發(fā)了多種結(jié)構(gòu)TAG,如類可可脂(CBE)、中/長鏈甘油三酯(MLCT)等。
在過去的20年,大量關(guān)于酶法合成sn-2棕櫚酸甘油酯的文章和專利已經(jīng)被發(fā)表。有幾種sn-2棕櫚酸甘油酯產(chǎn)品已經(jīng)被作為營養(yǎng)補(bǔ)充劑加入到了嬰幼兒配方食品中。目前已經(jīng)有一些關(guān)于位置選擇性脂肪酶及其在sn-2棕櫚酸甘油酯中應(yīng)用的文章[1,4,18–20]。但是,這些文章中很少提及有關(guān)TAG結(jié)構(gòu)分析的詳細(xì)信息,而這些信息對TAG的功能評估至關(guān)重要。因此,本文綜述了在過去20年中酶法合成sn-2棕櫚酸甘油酯所取得的進(jìn)展,并著重分析了TAG異構(gòu)體。另外,我們在實(shí)驗(yàn)室和工業(yè)規(guī)模上對sn-2棕櫚酸甘油酯的未來發(fā)展趨勢進(jìn)行了展望。
脂肪酶(EC 3.1.1.3,TAG水解酶)是脂質(zhì)改性中最常用的生物催化劑之一[21]。油脂是脂肪酶的天然底物。酶促反應(yīng)具有幾個(gè)公認(rèn)的優(yōu)勢,即溫和的反應(yīng)條件、較少的環(huán)境污染,以及可用于生產(chǎn)更天然的產(chǎn)品。然而,酶法改性TAG有一個(gè)更特殊的特點(diǎn),即脂肪酶能夠?qū)AG特定位置的脂肪酸進(jìn)行改性[1]。使用不同的脂肪酶可以合成具有不同分子結(jié)構(gòu)的TAG,這是化學(xué)酯交換方法所無法達(dá)到的,而且這種方法可以被用于大規(guī)模的食品加工[1,22]。
1990年,研究人員開始研究脂肪酶的三維結(jié)構(gòu)和催化機(jī)理,隨后,他們發(fā)現(xiàn)脂肪酶是一種絲氨酸蛋白酶。脂肪酶的絲氨酸羥基對底物的羰基碳產(chǎn)生親核攻擊,從而導(dǎo)致作為中間體的?;傅男纬蒣17]。作為親核試劑,?;冈谒芤褐斜凰鈁1,23]。
盡管越來越多的微生物脂肪酶已經(jīng)被成功地用作實(shí)驗(yàn)室中的生物催化劑,但只有少量的脂肪酶被用作商業(yè)性開發(fā)。表1列出了生產(chǎn)結(jié)構(gòu)TAG的常用的商業(yè)化脂肪酶。迄今為止,在合成sn-2棕櫚酸甘油酯中使用最廣泛的脂肪酶是Lipozyme TL IM和Lipozyme RM IM。表 1提供了合成sn-2棕櫚酸甘油酯所使用的脂肪酶的詳細(xì)信息。
脂肪酶的位置選擇性在酶法合成特定結(jié)構(gòu)的TAG過程中非常重要。然而,目前,關(guān)于脂肪酶位置選擇性的一般機(jī)制仍不太明確。由于大多數(shù)脂肪酶對甘油碳骨架的sn-1和sn-3位具有選擇性,因此其被稱為sn-1,3位選擇性脂肪酶。具有sn-1,3位選擇性的脂肪酶包括胰脂肪酶、胃脂肪酶和微生物脂肪酶,如Penicillium camembertii、
表1 常用的商業(yè)化sn-1,3位選擇性脂肪酶
Rhizopus arrhizus、Penicillium roquefortii、Rhizomucor miehei脂肪酶(RML)等。脂肪酶對甘油碳骨架的位置選擇性取決于底物和脂肪酶的種類[24,25]。RML的sn-1,3位選擇性可通過底物與脂肪酶結(jié)合位點(diǎn)的對接進(jìn)行解釋[26]。有研究結(jié)果表明,只有幾種脂肪酶顯示出sn-3位選擇性(如兔胃脂肪酶)和sn-2位選擇性(如南極假絲酵母脂肪酶A)[27]。但是,脂肪酶的位置選擇性可能會因反應(yīng)條件而改變[28]。Xu [1]、Bornscheuer[29]、Adlercreutz [23]及其他研究人員對一些常用脂肪酶的位置選擇性進(jìn)行過大量研究,因此,本文將不詳細(xì)介紹這些脂肪酶。
脂肪酶的穩(wěn)定性是另一個(gè)重要特性,脂肪酶的長期保存過程穩(wěn)定性、可重復(fù)使用性、有機(jī)溶劑的耐受性等特性顯著影響著工業(yè)應(yīng)用的成本。脂肪酶的穩(wěn)定性,尤其是熱穩(wěn)定性,對于它的存儲和運(yùn)輸非常重要。固定化是提高脂肪酶穩(wěn)定性的一種有效且常用的方法,該方法可使脂肪酶在高溫反應(yīng)下比游離酶更穩(wěn)定,而且可被重復(fù)利用[30]。大多數(shù)有關(guān)酶法合成結(jié)構(gòu)TAG的研究都采用了固定化脂肪酶,即商業(yè)化產(chǎn)品或在實(shí)驗(yàn)室中被固定的脂肪酶。蛋白質(zhì)工程的定向進(jìn)化是提高酶穩(wěn)定性的有效方法[31,32]。其他加工方法,如高靜水壓法[33]和氧陰離子殘基的疏水性改性法[34]也可以增加某些脂肪酶的穩(wěn)定性和活性。
天然油脂中TAG的組成通常以脂肪酸表示,包括脂肪酸含量和脂肪酸組成[2]。由于TAG的結(jié)構(gòu)對脂肪消化[11]、脂肪代謝[35]和整體健康的改善有顯著影響,因此人們對TAG的組成(如脂肪酸在甘油碳骨架上的分布)的研究興趣日益增加。然而,TAG的分析是一項(xiàng)具有挑戰(zhàn)性的工作。TAG是一種極其復(fù)雜的混合物,它包含與三種相同或不同脂肪酸相連接的甘油分子[36]。近幾十年來,有關(guān)TAG分析的研究越來越多[36],這主要是由于先進(jìn)分析技術(shù)的改進(jìn),尤其是質(zhì)譜技術(shù)(mass spectrometry)的改進(jìn)。在研究sn-2棕櫚酸甘油酯時(shí),TAG的分析非常重要,因?yàn)楹铣僧a(chǎn)物的不同位置分布將直接影響其功能和營養(yǎng)特性。
甘油碳骨架上脂肪酸的位置分布差異首先可通過胰脂肪酶的水解作用得到驗(yàn)證,胰脂肪酶通過水解作用可以分離出sn-2位的脂肪酸。最終,我們可以得到sn-1,3位和sn-2位脂肪酸組成,但是這種方法無法得到TAG結(jié)構(gòu)的信息。由于該方法成本低且計(jì)算過程簡單,所以,該方法仍被用于研究sn-2棕櫚酸甘油酯的合成。該方法的使用通常會丟失TAG結(jié)構(gòu)的真實(shí)信息。
應(yīng)用最廣泛且功能最強(qiáng)大的方法是色譜法,如氣相色譜(gas chromatography, GC)法和液相色譜(liquid chromatography, LC)法,以及GC、LC與質(zhì)譜(MS)聯(lián)用[37]。許多優(yōu)秀的書籍和研究論文對色譜法在TAG分析中的作用進(jìn)行過描述,如Buchgraber等[38]有關(guān)色譜技術(shù)的綜述、Fuchs等[39]有關(guān)薄層色譜法(TLC)的綜述、Ruiz-Samblás等[40]有關(guān)高溫GC法的綜述、Indelicato等[36]的綜述以及Christie等[41]的書籍。本文總結(jié)了常用的TAG分析方法,尤其針對結(jié)構(gòu)TAG合成的研究,并著重分析了TAG位置異構(gòu)體。
結(jié)構(gòu)TAG的常用分析方法是高溫GC法、非水反相LC與蒸發(fā)光散射檢測器(NARP LC-ELSD)結(jié)合檢測法以及銀離子液相色譜法。高溫GC是指毛細(xì)管柱保持在高溫(>350 ℃)時(shí)的氣相色譜。TAG的分離是根據(jù)其不飽和程度進(jìn)行的。但是,常用的檢測器,即火焰離子檢測器無法提供TAG異構(gòu)體的信息。因此,TAG的鑒定是基于相比于標(biāo)準(zhǔn)樣品的保留時(shí)間進(jìn)行的。對于結(jié)構(gòu)TAG的分析,我們通常將此方法與sn-2位脂肪酸組成分析相結(jié)合。
LC是TAG分析中廣泛使用的一種方法,根據(jù)兩種色譜相的相對極性,該方法可被分為兩種,即正相LC(NP LC)法和非水反相LC(NARP LC)法。NARP LC使用了梯度洗脫和各種流動相系統(tǒng)[36]。洗脫順序取決于碳原子數(shù)(CN)和雙鍵數(shù)(DB),這取決于碳原子當(dāng)量(ECN),即CN?2 × DB。在優(yōu)化的色譜條件下,具有相同ECN的TAG可被分離出來[42–44]。該方法的樣品制備簡單,且設(shè)備相對便宜。因此,這種方法使用最為廣泛[42,43,45–95]。但是,這種方法不能分離TAG位置異構(gòu)體。
TAG分析中最常用的NP-LC是銀離子正相液相色譜法。由于固定相的銀離子與雙鍵的π電子之間形成了弱絡(luò)合物,所以銀離子LC法可被用于分離TAG異構(gòu)體[96]。分離后的TAG根據(jù)DB數(shù)的不同可被分成不同的組。銀離子正相液相色譜法可被用于測量每個(gè)TAG異構(gòu)體的含量[44,45]。
高分辨率13C核磁共振(NMR)法也可以提供附著在TAG上以及在TAG特定sn-2位的脂肪酸信息,該信息可被用于分析TAG上脂肪酸的位置選擇性[44]。最近報(bào)道的LC法,包括配備四極桿飛行時(shí)間MS的超高效液相色譜[3]法、二維GC[97]法和銀離子大氣壓化學(xué)電離(APCI)MS [98],可被用于有效分離天然油脂中的TAG,以及對TAG進(jìn)行立體定向分析,將來,該方法還可被用于結(jié)構(gòu)TAG的分析。
本文概述了1997—2018年間發(fā)表的關(guān)于酶法合成sn-2棕櫚酸甘油酯的研究,如表2所示??傮w上,酶法合成sn-2棕櫚酸甘油酯存在三種反應(yīng)方式,即酸解反應(yīng)、酯交換反應(yīng)和醇解反應(yīng)。其中酸解反應(yīng)是最常見的方法,其次是酯交換反應(yīng)。
Sn-1,3位選擇性脂肪酶催化酸解反應(yīng)的典型方案如圖2所示。酸解反應(yīng)通常是通過sn-2位富含PA的TAG與FFA或FFA混合物在sn-1,3位選擇性脂肪酶作用下進(jìn)行的。三棕櫚酸甘油酯(PPP)通常在實(shí)驗(yàn)室中被用作底物,因?yàn)槠渚哂休^高的純度。但是,由于PPP價(jià)格昂貴,所以便宜的天然油脂(如棕櫚硬脂、棕櫚油、黃油和豬油等)常被用作PPP的替代品。FFA的來源一般是OA、LA、γ-亞麻酸(GLA)、FFA植物混合油(如大豆油、菜籽油、向日葵油、棕櫚仁油、椰子油和榛子油等)、魚油或富含LCPUFA的單細(xì)胞油。
如表2所示,在過去的20年中,大多數(shù)研究采用的都是酸解反應(yīng),合成產(chǎn)物中sn-2位的PA含量通常超過60%。Esteban [72]等使用了幾種sn-1,3位選擇性脂肪酶(包括脂肪酶DF、Lipozyme RM IM、Palatse 20000L、Lipozyme TL IM和脂肪酶QLC)來催化OA與富含PA的TAG的酸解反應(yīng)。結(jié)果表明,脂肪酶DF可以在較短的反應(yīng)時(shí)間(1 h)內(nèi)實(shí)現(xiàn)較高的OA轉(zhuǎn)化率(50.4%),從而在sn-2位上保持較高的PA含量(68.6%)。在對各種因素進(jìn)行優(yōu)化之后,最終得到的結(jié)構(gòu)TAG在sn-1,3和sn-2位分別含有67.2%的OA和67.8%的PA。
圖2. Sn-1,3位選擇性脂肪酶催化酸解反應(yīng)方案。
表2 有關(guān)酶法合成sn-2棕櫚酸甘油酯的25年間的文獻(xiàn)研究
(續(xù)表)
(續(xù)表)
(續(xù)表)
最近我們團(tuán)隊(duì)也進(jìn)行了sn-2棕櫚酸甘油酯的合成研究。Wei等[59]在正己烷(n-hexane)體系和無溶劑系統(tǒng)中,利用高純度的PPP和由山茶籽油制備的油酸,通過兩種sn-1,3位選擇性脂肪酶(Lipozyme RM IM和Lipozyme TL IM)催化合成了高純度sn-OPO。研究發(fā)現(xiàn),Lipozyme RM IM適用于n-hexane體系,而Lipozyme TL IM適用于無溶劑系統(tǒng)。Sn-2位的PA相對含量分別達(dá)到了92.92%和86.62%,而sn-OPO的含量分別為32.34%和40.23%。Zou等[48]通過由Lipozyme RM IM催化的酸解反應(yīng)從巴沙鯰魚油和芝麻油脂肪酸中制備出sn-2棕櫚酸甘油酯。在最佳條件下,酶促產(chǎn)物中sn-2 PA含量占總PA的67.7%。這種方法的特點(diǎn)是步驟簡單、副產(chǎn)物少。酸解反應(yīng)的主要副產(chǎn)物是FFA,該副產(chǎn)物可通過分子蒸餾法有效去除。然而,由于?;D(zhuǎn)移的存在,sn-2位脂肪酸遷移到了sn-1,3位,從而影響了目標(biāo)物結(jié)構(gòu)TAG的產(chǎn)量。因此,通過酸解反應(yīng)獲得的高純度結(jié)構(gòu)TAG的產(chǎn)率相對低于通過醇解反應(yīng)獲得的TAG產(chǎn)率。
酯交換反應(yīng)是采用sn-1,3位選擇性脂肪酶催化sn-2位富含PA的TAG與FFA酯或油脂的反應(yīng)。圖3顯示了sn-1,3位選擇性脂肪酶催化的酯交換反應(yīng)方案。FFA酯主要包括乙酯和甲酯,而富含OA/PUFA的天然油脂通常用作酰基供體。此反應(yīng)過程中所用到的材料通常價(jià)格便宜且分布廣泛,這使得酯交換反應(yīng)在結(jié)構(gòu)TAG的工業(yè)生產(chǎn)中非常受歡迎。然而,反應(yīng)的最終產(chǎn)物是具有相似物理性質(zhì)的不同的TAG混合物,這使得我們很難通過純化得到純度較高的結(jié)構(gòu)TAG。因此,選擇種類和比例合適的的油脂至關(guān)重要。
一些研究人員選擇豬油作為底物[47,70]。Zou等[99]在填充床反應(yīng)器中通過采用Lipozyme RM IM催化豬油與植物油混合物的酯交換反應(yīng)制備了sn-2棕櫚酸甘油酯。植物油是高油酸油(如葵花籽油和低芥酸菜籽油)、微生物類油(如藻油和微生物油)、棕櫚仁油和棕櫚油的混合物。最終產(chǎn)物在sn-2位的PA含量為39.2%,并且其脂肪酸分布與HMF高度相似。Srivastava等[85]使用LIP1或Lipozyme RM IM作為生物催化劑,通過PPP與OA或OA甲酯的酯交換反應(yīng)合成了結(jié)構(gòu)TAG。結(jié)果表明,在兩種脂肪酶中,酯交換反應(yīng)中OA甲酯的OA酯化比例均高于酸解反應(yīng)中OA的酯化比例,且Lipozyme RM IM比LIP1更適合用于制備sn-2棕櫚酸甘油酯。
為了克服上述反應(yīng)方案的缺點(diǎn)以及獲得更多的結(jié)構(gòu)TAG,我們研究利用醇解反應(yīng)來合成sn-2棕櫚酸甘油酯。Sn-1,3位選擇性脂肪酶催化的醇解反應(yīng)方案如圖4所示。該方法是一個(gè)兩步反應(yīng),每步都需要sn-1,3位選擇性脂肪酶。首先,我們選擇天然油脂與醇進(jìn)行反應(yīng),從而形成了富含PA的2-MAG;然后,將純化的2-MAG用FFA酯化以獲得更高產(chǎn)率的目標(biāo)物結(jié)構(gòu)TAG。Schmid等[94]通過PPP的醇解反應(yīng)制備了sn-OPO;在第一步反應(yīng)中,研究人員研究了不同脂肪酶(Lipozyme RM IM、Rhizopus delemar和Rhizopus javanicus)對富含棕櫚酸的2-MAG產(chǎn)量和純度的影響。結(jié)果表明,固定在硅藻土上的Rhizopus delemar可使富含棕櫚酸的2-MAG產(chǎn)量達(dá)到最高,進(jìn)而使結(jié)晶后的2-MAG在甲基叔丁基醚中的純度達(dá)到95%。
在第二步反應(yīng)中,將純化后的2-TAG與OA在n-hexane中采用固定在硅藻土上的Lipozyme RM IM或Rhizopus delemar進(jìn)行酯化。最終產(chǎn)物在sn-2位的PA含量為92%~94%的、在sn-1,3位的OA含量為83%~89%的,而sn-OPO的產(chǎn)量達(dá)到了70%~72%。如表2所示,醇解反應(yīng)僅被用于少數(shù)研究,其中sn-OPO含量都超過了70%,并且sn-2位的PA含量通常大于90%。該反應(yīng)過程避免了?;D(zhuǎn)移問題并獲得了較純的結(jié)構(gòu)TAG。然而,反應(yīng)過程的復(fù)雜性導(dǎo)致了成本增加。因此,這種方法在工業(yè)生產(chǎn)中不是常用的方法。
結(jié)構(gòu)TAG是一種具有一定營養(yǎng)、口感質(zhì)地或者物理化學(xué)性質(zhì)的脂類物質(zhì),可被廣泛應(yīng)用于食品加工和特殊醫(yī)學(xué)領(lǐng)域。許多研究專注于結(jié)構(gòu)TAG的商業(yè)化。如今,我們已經(jīng)生產(chǎn)出商業(yè)化的sn-2棕櫚酸甘油酯產(chǎn)品,該產(chǎn)品的組成與分布通常與HMF的相同。這些產(chǎn)品已作為營養(yǎng)強(qiáng)化劑被添加到嬰兒配方奶粉中。
Loders Croklaan公司建立了sn-2棕櫚酸甘油酯的首條生產(chǎn)線[100]。1995年,該公司申請注冊Betapol?作為其商標(biāo),獲批后,公司開始將sn-2棕櫚酸甘油酯產(chǎn)品作為嬰兒配方奶粉配料在歐洲進(jìn)行生產(chǎn)。Betapol?是通過由固定化的sn-1,3位選擇性脂肪酶(Rhizomucor miehei)對從高油酸葵花籽油獲得的富含油酸的FFA與富含PPP脂肪的棕櫚硬脂進(jìn)行的酸解反應(yīng)合成的。生產(chǎn)過程是在裝有酶的填充床反應(yīng)器中進(jìn)行,該生產(chǎn)過程采用了兩步法反應(yīng)以提高脂肪酸的轉(zhuǎn)化率[101]。Betapol?的TAG分子量分布組成如下:ECN:DB為52:2(33.4 mol%)和?;紨?shù)(CAN):DB為52:3(10.5 mol%),其中主要的TAG位置異構(gòu)體分別是sn-OPO(82.2 mol%)和sn-OPL/LPO(82.0 mol%)[102]。
圖3. Sn-1,3位選擇性脂肪酶催化酯交換反應(yīng)方案。
圖4. Sn-1,3位選擇性脂肪酶催化酸解反應(yīng)方案。
目前,市場上有幾種商業(yè)化的sn-2棕櫚酸甘油酯產(chǎn)品,如由瑞典卡爾斯港市的Advanced Lipids公司生產(chǎn)的INFAT?。INFAT?在甘油碳骨架sn-2位的PA含量為70%~75%。在中國市場,sn-2棕櫚酸甘油酯產(chǎn)品由新加坡豐益國際集團(tuán)(Wilmar International)和浙江貝家生物科技有限公司生產(chǎn)。其他商業(yè)化的sn-2棕櫚酸甘油酯產(chǎn)品包括惠氏公司(Bonamil)、雀巢集團(tuán)(Alsty)和紐迪希亞公司(Cow & Gate Premium)。如獲取更多信息,請讀者參閱Ferreira等[101]和Happe等[103]的書籍。
在過去的20年,研究人員利用脂肪酶催化技術(shù)開發(fā)了幾種結(jié)構(gòu)TAG,如CBE、sn-2棕櫚酸甘油酯和sn-1,3-山崳酸-2-油酸TAG等[1]。其中,sn-2棕櫚酸甘油酯是一種成功的結(jié)構(gòu)TAG,許多制造商已將其添加到嬰兒配方奶粉中作為營養(yǎng)補(bǔ)充劑。
除PA外,我們還應(yīng)重視對嬰兒配方奶粉中微量脂肪酸的研究,以使其達(dá)到與HMF相似的TAG組成。據(jù)報(bào)道,某些LCPUFA,如花生四烯酸(AA)和EPA主要附著在甘油碳骨架的sn-1,3位,而一些微量脂肪酸,如支鏈脂肪酸在sn-2位的含量較高(達(dá)60%)[104]。因此,深入研究HMF的TAG結(jié)構(gòu)和組成將為研究新型結(jié)構(gòu)TAG提供更詳細(xì)的信息。
脂肪酶在結(jié)構(gòu)TAG合成中有著廣闊的應(yīng)用前景。盡管脂肪酶與化學(xué)催化劑相比有明顯的優(yōu)勢,但是其工業(yè)應(yīng)用相對較慢,這主要是由于脂肪酶的成本較高。篩選更加便宜的具有sn-1,3位選擇性的脂肪酶,并研究提高其穩(wěn)定性的方法,將是我們未來的研究重點(diǎn)。
致謝
本文受到國家自然科學(xué)基金(31701558)、中國科學(xué)技術(shù)協(xié)會青年人才托舉工程項(xiàng)目(2017QNRC001)、高等學(xué)校學(xué)科創(chuàng)新引智計(jì)劃“111計(jì)劃”(B90719028)和食品科學(xué)與工程一流學(xué)科建設(shè)項(xiàng)目(JUFSTR20180202)的資助。
Conflict of interest statement
Wei Wei, Cong Sun, Xiaosan Wang, Qingzhe Jin, Xuebing Xu, Casimir C. Akoh, and Xingguo Wang declare that they have no conflict of interest or financial conflicts to disclose.
References
[1] Xu X. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Technol 2000;102(4):287–303.
[2] Jensen RG. The lipids in human milk. Prog Lipid Res 1996;35(1):53–92.
[3] Kallio H, Nylund M, Bostr?m P, Yang B. Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chem 2017;233:351–60.
[4] Zou L, Pande G, Akoh CC. Infant formula fat analogs and human milk fat:new focus on infant developmental needs. Annu Rev Food Sci Technol 2016;7:139–65.
[5] Akoh CC. Handbook of functional lipids. Boca Raton: CRC Press; 2005.
[6] Zou X, Huang J, Jin Q, Guo Z, Liu Y, Cheong L, et al. Lipid composition analysis of milk fats from different mammalian species: potential for use as human milk fat substitutes. J Agric Food Chem 2013;61(29):7070–80.
[7] Yao Y, Zhao G, Xiang J, Zou X, Jin Q, Wang X. Lipid composition and structural characteristics of bovine, caprine and human milk fat globules. Int Dairy J 2016;56:64–73.
[8] Jensen RG. Lipids in human milk. Lipids 1999;34(12):1243–71.
[9] Haddad I, Mozzon M, Strabbioli R, Frega NG. A comparative study of the composition of triacylglycerol molecular species in equine and human milks. Dairy Sci Technol 2012;92(1):37–56.
[10] Zhang X, Qi C, Zhang Y, Wei W, Jin Q, Xu Z, et al. Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chem 2019;275:712–20.
[11] Mu H, H?y CE. The digestion of dietary triacylglycerols. Prog Lipid Res 2004;43(2):105–33.
[12] Innis SM, Dyer R, Quinlan P, Diersen-Schade D. Palmitic acid is absorbed assn-2 monopalmitin from milk and formula with rearranged triacylglycerols and results in increased plasma triglyceridesn-2 and cholesteryl ester palmitate in piglets. J Nutr 1995;125(1):73–81.
[13] Lien EL. The role of fatty acid composition and positional distribution in fat absorption in infants. J Pediatr 1994;125(5 Pt 2):S62–8.
[14] Quinlan PT, Lockton S, Irwin J, Lucas AL. The relationship between stool hardness and stool composition in breast- and formula-fed infants. J Pediatr Gastroenterol Nutr 1995;20(1):81–90.
[15] Innis SM. Dietary triacylglycerol structure and its role in infant nutrition.Adv Nutr 2011;2(3):275–83.
[16] Bar-Yoseph F, Lifshitz Y, Cohen T. Review ofsn-2 palmitate oil implications for infant health. Prostaglandins Leukot Essent Fatty Acids 2013;89(4):139–43.
[17] Namal Senanayake SPJ, Shahidi F. Modification of fats and oils via chemical and enzymatic methods. In: Shahidi F editors .Bailey’s industrial oil and fat products. Hoboken: John Wiley & Sons; 2005.
[18] Soumanou MM, Pérignon M, Villeneuve P. Lipase-catalyze d interesterification reactions for human milk fat substitutes production: a review. Eur J Lipid Sci Technol 2013;115(3):270–85.
[19] Ferreira-Dias S, Tecel?o C. Human milk fat substitutes: advances and constraints of enzyme-catalyzed production. Lipid Technol 2014;26(8):183–6.
[20] Kim BH, Akoh CC. Recent research trends on the enzymatic synthesis of structured lipids. J Food Sci 2015;80(8):C1713–24.
[21] Bornscheuer UT. Enzymes in lipid modification: an overview. In:Bornscheuer UT editors. Lipid modification by enzymes and engineered microbes. Boulder: AOCS Press; 2018. p. 1–9.
[22] Macrae AR. Lipase-catalyzed interesterification of oils and fats. J Am Oil Chem Soc 1983;60(2 Pt 1):291–4.
[23] Adlercreutz P. Enzyme-catalysed lipid modification. Biotechnol Genet Eng Rev 1994;12(1):231–54.
[24] Kovac A, Stadler P, Haalck L, Spener F, Paltauf F. Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases. Biochim Biophys Acta 1996;1301(1–2):57–66.
[25] Stadler P, Kovac A, Haalck L, Spener F, Paltauf F. Stereoselectivity of microbial lipases. The substitution at positionsn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases. Eur J Biochem 1995;227(1–2):335–43.
[26] Pleiss J. Molecular basis of specificity and stereoselectivity of microbial lipases toward triacylglycerols. In: Bornscheuer UT editor. Enzymes in lipid modification. Berlin: Wiley‐VCH Verlag GmbH; 2000. p. 85–99.
[27] Villeneuve P, Pina M, Montet D, Graille J. Determination of lipase specificities through the use of chiral triglycerides and their racemics. Chem Phys Lipids 1995;76(1):109–13.
[28] Watanabe Y, Nagao T, Shimada Y. Control of the regiospecificity ofCandidaantarcticalipase by polarity. N Biotechnol 2009;26(1–2):23–8.
[29] Bornscheuer UT. Enzymes in lipid modification. Berlin: Wiley-VCH Verlag GmbH; 2000.
[30] Adlercreutz P. Immobilisation and application of lipases in organic media.Chem Soc Rev 2013;42(15):6406–36.
[31] Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K.Engineering the third wave of biocatalysis. Nature 2012;485(7397):185–94.
[32] Nagao T, Shimada Y, Sugihara A, Tominaga Y. Increase in stability ofFusarium heterosporumlipase. J Mol Catal B Enzym 2002;17(3–5):125–32.
[33] Eisenmenger MJ, Reyes-De-Corcuera JI. High hydrostatic pressure increased stability and activity of immobilized lipase in hexane. Enzyme Microb Technol 2009;45(2):118–25.
[34] Abdul Wahab R, Basri M, Raja Abdul Rahman RNZ, Salleh AB, Abdul Rahman MB, Leow TC. Development of a catalytically stable and efficient lipase through an increase in hydrophobicity of the oxyanion residue. J Mol Catal B Enzym 2015;122:282–8.
[35] Mu H, Porsgaard T. The metabolism of structured triacylglycerols. Prog Lipid Res 2005;44(6):430–48.
[36] Indelicato S, Bongiorno D, Pitonzo R, Di Stefano V, Calabrese V, Indelicato S, et al. Triacylglycerols in edible oils: determination, characterization,quantitation, chemometric approach and evaluation of adulterations. J Chromatogr A 2017;1515:1–16.
[37] Laakso P. Mass spectrometry of triacylglycerols. Eur J Lipid Sci Technol 2002;104(1):43–9.
[38] Buchgraber M, Ulberth F, Emons H, Anklam E. Triacylglycerol profiling by using chromatographic techniques. Eur J Lipid Sci Technol 2004;106(9):621–48.
[39] Fuchs B, Sü? R, Teuber K, Eibisch M, Schiller J. Lipid analysis by thinlayer chromatography—a review of the current state. J Chromatogr A 2011;1218(19):2754–74.
[40] Ruiz-Samblás C, González-Casado A, Cuadros-Rodríguez L. Triacylglycerols determination by high-temperature gas chromatography in the analysis of vegetable oils and foods: a review of the past 10 years. Crit Rev Food Sci Nutr 2015;55(11):1618–31.
[41] Christie WW, Han X. Chromatographic analysis of lipids: general principles.In: Christie WW, Han X editors. Lipid analysis. Cambridge: Woodhead Publishing Limited; 2012.
[42] Zhang X, Nie K, Zheng Y, Wang F, Deng L, Tan T. LipaseCandidasp.99–125coupled with β-cyclodextrin as additive synthesized the human milk fat substitutes. J Mol Catal B Enzym 2016;125:1–5.
[43] Zou X, Huang J, Jin Q, Guo Z, Cheong L, Xu X, et al. Preparation of human milk fat substitutes from lard by lipase-catalyzed interesterification based on triacylglycerol profiles. J Am Oil Chem Soc 2014;91(12):1987–98.
[44] Vyssotski M, Bloor SJ, Lagutin K, Wong H, Williams DBG. Efficient separation and analysis of triacylglycerols: quantitation of β-palmitate (OPO) in oils and infant formulas. J Agric Food Chem 2015;63(26):5985–92.
[45] Zheng M, Wang S, Xiang X, Shi J, Huang J, Deng Q, et al. Facile preparation of magnetic carbon nanotubes-immobilized lipase for highly efficient synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes. Food Chem 2017;228:476–83.
[46] He Y, Qiu C, Guo Z, Huang J, Wang M, Chen B. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils fromNannochloropsis oculataandIsochrysis galbana. Bioresour Technol 2017;238:129–38.
[47] Zou X, Jin Q, Guo Z, Xu X, Wang X. Preparation and characterization of human milk fat substitutes based on triacylglycerol profiles. J Am Oil Chem Soc 2016;93(6):781–92.
[48] Zou X, Jin Q, Guo Z, Xu X, Wang X. Preparation of human milk fat substitutes from basa catfish oil: combination of enzymatic acidolysis and modeled blending. Eur J Lipid Sci Technol 2016;118(11):1702–11.
[49] Liu C, Zhang Y, Zhang X, Nie K, Deng L, Wang F. The two-step synthesis of 1,3-oleoyl-2-palmitoylglycerol byCandidasp. 99–125 lipase. J Mol Catal B Enzym 2016;133(Supp 1):S1–5.
[50] Faustino AR, Osório NM, Tecel?o C, Canet A, Valero F, Ferreira-Dias S.Camelina oil as a source of polyunsaturated fatty acids for the production of human milk fat substitutes catalyzed by a heterologousRhizopus oryzaelipase. Eur J Lipid Sci Technol 2016;118(4):532–44.
[51] Zhao XY, Wang XD, Liu X, Zhu WJ, Mei YY, Li WW, et al. Structured lipids enriched with unsaturated fatty acids produced by enzymatic acidolysis of silkworm pupae oil using oleic acid. Eur J Lipid Sci Technol 2015;117(6):879–89.
[52] álvarez C, Akoh C. Enzymatic synthesis of infant formula fat analog enriched with capric acid. J Am Oil Chem Soc 2015;92(7):1003–14.
[53] Cai H, Li Y, Zhao M, Fu G, Lai J, Feng F. Immobilization, regiospecificity characterization and application ofAspergillus oryzae lipase in the enzymatic synthesis of the structured lipid 1,3-dioleoyl-2-palmitoylglycerol.PLoS One 2015;10(7):e0133857.
[54] Kotani K, Yamamoto Y, Hara S. Enzymatic preparation of human milk fat substitutes and their oxidation stability. J Oleo Sci 2015;64(3):275–81.
[55] Lee NK, Oh SW, Kwon DY, Yoon SH. Production of 1,3-dioleoyl-2-palmitoyl glycerol as a human milk fat substitute using enzymatic interesterification of natural fats and oils. Food Sci Biotechnol 2015;24(2):433–7.
[56] Liu SL, Dong XY, Wei F, Wang X, Lv X, Zhong J, et al. Ultrasonic pretreatment in lipase-catalyzed synthesis of structured lipids with high 1,3-dioleoyl-2-palmitoylglycerol content. Ultrason Sonochem 2015;23:100–8.
[57] Wang X, Zou W, Sun X, Zhang Y, Wei L, Jin Q, et al. Chemoenzymatic synthesis of 1,3-dioleoyl-2-palmitoylglycerol. Biotechnol Lett 2015;37(3):691–6.
[58] Zou X, Jin Q, Guo Z, Huang J, Xu X, Wang X. Preparation of 1,3-dioleoyl-2-palmitoylglycerol-rich structured lipids from basa catfish oil: combination of fractionation and enzymatic acidolysis. Eur J Lipid Sci Technol 2016;118(5):708–15.
[59] Wei W, Feng Y, Zhang X, Cao X, Feng F. Synthesis of structured lipid 1,3-dioleoyl-2-palmitoylglycerol in both solvent and solvent-free system.Lebensm Wiss Technol 2015;60(2):1187–94.
[60] Qin XL, Zhong JF, Wang YH, Yang B, Lan DM, Wang FH. 1,3-dioleoyl-2-palmitoylglycerol-rich human milk fat substitutes: production, purification,characterization and modeling of the formulation. Eur J Lipid Sci Technol 2014;116(3):282–90.
[61] Li R, Pande G, Sabir JSM, Baeshen NA, Akoh CC. Enrichment of refined olive oil with palmitic and docosahexaenoic acids to produce a human milk fat analogue. J Am Oil Chem Soc 2014;91(8):1377–85.
[62] Zou XG, Hu JN, Zhao ML, Zhu XM, Li HY, Liu XR, et al. Lipozyme RM IM-catalyzed acidolysis ofCinnamomum camphoraseed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. J Agric Food Chem 2014;62(43):10594–603.
[63] Pande G, Sabir JM, Baeshen N, Akoh C. Synthesis of infant formula fat analogs enriched with DHA from extra virgin olive oil and tripalmitin. J Am Oil Chem Soc 2013;90(9):1311–8.
[64] Turan D, Ye?il?ubuk N?, Akoh CC. Enrichment ofsn-2 position of hazelnut oil with palmitic acid: optimization by response surface methodology. Lebensm Wiss Technol 2013;50(2):766–72.
[65] Pande G, Sabir JSM, Baeshen NA, Akoh CC. Enzymatic synthesis of extra virgin olive oil based infant formula fat analogues containing ARA and DHA:one-stage and two-stage syntheses. J Agric Food Chem 2013;61(44):10590–8.
[66] Turan D, Sahin Ye?il?ubuk N, Akoh CC. Production of human milk fat analogue containing docosahexaenoic and arachidonic acids. J Agric Food Chem 2012;60(17):4402–7.
[67] Tecel?o C, Rivera I, Sandoval G, Ferreira-Dias S.Carica papayalatex: a lowcost biocatalyst for human milk fat substitutes production. Eur J Lipid Sci Technol 2012;114(3):266–76.
[68] Yüksel A, ?ahin Ye?il?ubuk N. Enzymatic production of human milk fat analogues containing stearidonic acid and optimization of reactions by response surface methodology. Lebensm Wiss Technol 2012;46(1):210–6.
[69] Zou X, Huang J, Jin Q, Liu Y, Song Z, Wang X. Lipase-catalyzed synthesis of human milk fat substitutes from palm stearin in a continuous packed bed reactor. J Am Oil Chem Soc 2012;89(8):1463–72.
[70] Cheong LZ, Xu X. Lard-based fats healthier than lard: enzymatic synthesis,physicochemical properties and applications. Lipid Technol 2011;23(1):6–9.
[71] da Silva RC, Soares FASDM, Fernandes TG, Castells ALD, da Silva KCG,Gon?alves MIA, et al. Interesterification of lard and soybean oil blends catalyzed by immobilized lipase in a continuous packed bed reactor. J Am Oil Chem Soc 2011;88(12):1925–33.
[72] Esteban L, Jimenez MJ, Hita E, Gonzalez PA, Martin L, Robles A. Production of structured triacylglycerols rich in palmitic acid atsn-2 position and oleic acid atsn-1,3 positions as human milk fat substitutes by enzymatic acidolysis. Biochem Eng J 2011;54(1):62–9.
[73] Ilyasoglu H, Gultekin-Ozguven M, Ozcelik B. Production of human milk fat substitute with medium-chain fatty acids by lipase-catalyzed acidolysis:optimization by response surface methodology. Lebensm Wiss Technol 2011;44(4):999–1004.
[74] Qin XL, Wang YM, Wang YH, Huang HH, Yang B. Preparation and characterization of 1,3-dioleoyl-2-palmitoylglycerol. J Agric Food Chem 2011;59(10):5714–9.
[75] Zou XQ, Huang JH, Jin QZ, Liu YF, Song ZH, Wang XG. Lipase-catalyzed preparation of human milk fat substitutes from palm stearin in a solventfree system. J Agricult Food Chem 2011;59(11):6055–63.
[76] Jiménez MJ, Esteban L, Robles A, Hita E, González PA, Mu?ío MM, et al. Production of triacylglycerols rich in palmitic acid at position 2 as intermediates for the synthesis of human milk fat substitutes by enzymatic acidolysis. Process Biochem 2010;45(3):407–14.
[77] Lee JH, Son JM, Akoh CC, Kim MR, Lee KT. Optimized synthesis of 1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by a lipase fromThermomyces lanuginosus. N Biotechnol 2010;27(1):38–45.
[78] Tecel?o C, Silva J, Dubreucq E, Ribeiro MH, Ferreira-Dias S. Production of human milk fat substitutes enriched in omega-3 polyunsaturated fatty acids using immobilized commercial lipases andCandida parapsilosislipase/acyltransferase. J Mol Catal, B Enzym 2010;65(1–4):122–7.
[79] Wang YH, Qin XL, Zhu QS, Zhou R, Yang B, Li L. Lipase-catalyzed acidolysis of lard for the production of human milk fat substitute. Eur Food Res Technol 2010;230(5):769–77.
[80] Pina-Rodriguez AM, Akoh CC. Enrichment of amaranth oil with ethyl palmitate at thesn-2 position by chemical and enzymatic synthesis. J Agric Food Chem 2009;57(11):4657–62.
[81] Guncheva M, Zhiryakova D, Radchenkova N, Kambourova M. Acidolysis of tripalmitin with oleic acid catalyzed by a newly isolated thermostable lipase. J Am Oil Chem Soc 2008;85(2):129–32.
[82] Maduko CO, Akoh CC, Park YW. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology. J Dairy Sci 2007;90(5):2147–54.
[83] Nielsen NS, Yang T, Xu X, Jacobsen C. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chem 2006;94(1):53–60.
[84] Sahín N, Akoh CC, Karaalí A. Human milk fat substitutes containing omega-3 fatty acids. J Agric Food Chem 2006;54(10):3717–22.
[85] Srivastava A, Akoh CC, Chang SW, Lee GC, Shaw JF.Candida rugosalipase LIP1-catalyzed transesterification to produce human milk fat substitute. J Agric Food Chem 2006;54(14):5175–81.
[86] Sahin N, Akoh C, Karaali A. Enzymatic production of human milk fat substitutes containing γ-linolenic acid: optimization of reactions by response surface methodology. J Am Oil Chem Soc 2005;82(8):549–57.
[87] Sahin N, Akoh CC, Karaali A. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. J Agric Food Chem 2005;53(14):5779–83.
[88] Chen ML, Vali SR, Lin JY, Ju YH. Synthesis of the structured lipid 1,3-dioleoyl-2-palmitoylglycerol from palm oil. J Am Oil Chem Soc 2004;81(6):525–32.
[89] Yang T, Xu X, He C, Li L. Lipase-catalyzed modification of lard to produce human milk fat substitutes. Food Chem 2003;80(4):473–81.
[90] Nagao T, Shimada Y, Sugihara A, Murata A, Komemushi S, Tominaga Y. Use of thermostableFusarium heterosporumlipase for production of structured lipid containing oleic and palmitic acids in organic solvent-free system. J Am Oil Chem Soc 2001;78(2):167–72.
[91] Shimada Y, Nagao T, Hamasaki Y, Akimoto K, Sugihara A, Fujikawa S, et al.Enzymatic synthesis of structured lipid containing arachidonic and palmitic acids. J Am Oil Chem Soc 2000;77(1):89–93.
[92] Schmid U, Bornscheuer UT, Soumanou MM, McNeill GP, Schmid RD. Highly selective synthesis of 1,3-oleoyl-2-palmitoylglycerol by lipase catalysis.Biotechnol Bioeng 1999;64(6):678–84.
[93] Mukherjee KD, Kiewitt I. Structured triacylglycerols resembling human milk fat by transesterification catalyzed by papaya (Carica papaya) latex.Biotechnol Lett 1998;20(6):613–6.
[94] Schmid U, Bornscheuer U, Soumanou M, McNeill G, Schmid R. Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. J Am Oil Chem Soc 1998;75(11):1527–31.
[95] Balc?o VM, Malcata FX. Lipase-catalyzed modification of butterfat via acidolysis with oleic acid. J Mol Catal B Enzym 1997;3(1–4):161–9.
[96] Lísa M, Velínská H, Hol?apek M. Regioisomeric characterization of triacylglycerols using silver-ion HPLC/MS and randomization synthesis of standards. Anal Chem 2009;81(10):3903–10.
[97] Fraga CG, Prazen BJ, Synovec RE. Comprehensive two-dimensional gas chromatography and chemometrics for the high-speed quantitative analysis of aromatic isomers in a jet fuel using the standard addition method and an objective retention time alignment algorithm. Anal Chem 2000;72(17):4154–62.
[98] Hol?apek M, Dvo?áková H, Lísa M, Girón AJ, Sandra P, Cva?ka J. Regioisomeric analysis of triacylglycerols using silver-ion liquid chromatography–atmospheric pressure chemical ionization mass spectrometry: comparison of five different mass analyzers. J Chromatogr A 2010;1217(52):8186–94.
[99] Zou XQ, Huang JH, Jin QZ, Guo Z, Liu YF, Cheong LZ, et al. Model for human milk fat substitute evaluation based on triacylglycerol composition profile. J Agric Food Chem 2013;61(1):167–75.
[100] Smith KW. Structured triacylglycerols: properties and processing for use in food. In: Talbot G editors. Specialty oils and fats in food and nutrition.London: Woodhead Publishing; 2015. p. 207–18.
[101] Ferreira ML, Tonetto GM. Examples of successful industrial synthesis of structured diglycerides and triglycerides, enzymatic synthesis of structured triglycerides. In: Ferreira ML, Tonetto GM editors. Enzymatic Synthesis of Structured Triglycerides From laboratory to industry. Berlin: Springer International Publishing; 2017. p. 73–9.
[102] Kurvinen JP, Sj?vall O, Kallio H. Molecular weight distribution and regioisomeric structure of triacylglycerols in some common human milk substitutes. J Am Oil Chem Soc 2002;79(1):13–22.
[103] Happe RP, Gambelli L. Infant formula. In: Talbot G editors. Specialty oils and fats in food and nutrition. London: Woodhead Publishing; 2015. p. 285–315.
[104] Yan Y, Wang Z, Wang X, Wang Y, Xiang J, Kothapalli KSD, et al. Branched chain fatty acids positional distribution in human milk fat and common human food fats and uptake in human intestinal cells. J Funct Foods 2017;29:172–7.