亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Primely Drazin Inverse in Rings

        2020-08-07 12:57:26LIJiechenCHENHuanyin

        LI Jiechen, CHEN Huanyin

        (School of Science, Hangzhou Normal University, Hangzhou 311121, China)

        Abstract: An element a∈R has primely Drazin inverse in case there is an element b∈R satisfying bab=b, b∈comm2(a) and a-a2b∈P(R), where P(R) is the prime radical of R.The elementary properties of such Drazin inverse in rings are studied. And Jacobson’s lemma and Cline’s formula are proved to be applicable for primely Drazin inverse.

        Key words: Drazin inverse; Jacobson’s lemma; Cline’s formula; Prime polarity

        1 Introduction

        b=bab,ab=ba,a-a2b∈N(R).

        The elementbabove is unique if it exists and is denoted byaD, and the nilpotency index ofa-a2bis called the Drazin index ofa, denoted byind(a). Moreover,aD∈comm2(a)(see [2]). Cline showed that ifabis Drazin invertible, then so isbaand in this case (ba)D=b((ab)D)2a. The concept of the generalized Drazin inverse in a Banach algebra was introduced in 1996 by Koliha(see [1]). Later, this notion was extended to elements in a ring by Koliha and Patricio(see [2]). An elementa∈Ris generalized Drazin invertible in case there is an elementb∈Rsatisfying

        bab=b,b∈comm2(a),a-a2b∈Rqnil.

        Suchb, if it exists, is unique, it is called the generalized Drazin inverse ofa, and will be denoted byad.

        In this paper, we are concerned with a new kind of Drazin inverse. LetP(R) be the prime radical of a ringR. As is well known the prime radical is exactly the set of all strongly nilpotent elements inR. An elementa∈Rhas primely Drazin inverse in case there is an elementb∈Rsatisfyingbab=b,b∈comm2(a),a-a2b∈P(R). Elementary properties of such Drazin inverses in a ring are investigated. Jacobson’s Lemma and Cline’s formula for primely Draizn inverses are thereby obtained(see [3-5]).

        2 Primely Drazin Inverses

        We begin with a new concept:

        Definition 1An elementa∈Rhas primely Drazin inverse if there existsb∈Rsuch that

        bab=b,b∈comm2(a),a-a2b∈P(R).

        Lemma 1LetRbe a ring, and leta∈R. Then the following are equivalent:

        (1)a∈Rhas primely Drazin inverse.

        (2) There exists an idempotente∈comm2(a) such thata+e∈U(R) andae∈P(R).

        (3) There existsbsuch thatbab=b,b∈comm(a) anda-a2b∈P(R).

        Proof(1)?(2) Choosee=1-ab.

        Step 1e2=(1-ab)2=1-ab-ab+a2b2=a-2ab+ab=1-ab=e. Letx∈comm(a). Then (1-ab)x=x(1-ab) sincexa=ax,e∈comm2(a).

        Step 2ae=a(1-ab)=a=a2b∈P(R). Thenae∈U(R).

        Step 3be=b(1-ab)=b-b2a=b-ab2=eb=0 sinceb∈comm2(a). (a+e)(b+e)=ab+ae+eb+e=1-e+ae+e=1+ae∈U(R). Analogously, (b+e)(a+e)=1+ea∈U(R). Thusa+e∈U(R). Therefore,Ris primely polar.

        (2)?(1) For anya∈R, there existse2=e∈comm2(a) such thatu=a+e∈U(R) andae∈P(R). Chooseb=(a+e)-1(1-e).

        Step 1 Letx∈comm(a), thenax=xa,ex=xe. We getx(a+e)-1=(a+e)-1xsince (a+e)x=x(a+e). Hencexb=bx,b∈comm2(a).

        Step 2 Since (a+e)(1-e)=(1-e)a, we getb=(a+e)-1(1-e)=b(1-e). Thenb=b2a.

        Step 3a-a2b=a-a2(a+e)-1(1-e)=a-a(a+e)(a+e)-1(1-e)=a-a(1-e)=a-a+ae∈P(R).

        (1)?(3) This is obvious.

        (3)?(1) SinceP(R)?N(R),bis the Drazin inverse ofa, and sob∈comm2(a),as required.

        Lemma 2Leta∈R. Thena∈RDif and only if there exists an idempotentpsuch thatp∈comm2(a),a+p∈U(R) andap∈N(R).

        ProofSee [1, Lemma 2.4].

        Theorem 1LetRbe a ring, and leta∈R. Then the following are equivalent:

        (1)a∈Rhas primely Drazin inverse.

        (2) There exists a unique idempotente∈comm2(a) such thata+e∈U(R) andae∈P(R).

        Proof(2)?(1) This is obviou by Lemma 1.

        (1)?(2) AsP(R)?N(R), we obtain the result by [2, Proposition 2.3].

        Any elemente∈Rsatisfying the preceding condition isp-spectral idempotent ofa, denote it byae. Any elementb∈Rsatisfying these conditions is called the primely Drazin inverse ofa, and denote the primely Drazin inverse byap. We useRpto stand for the set of all primely Drazin invertible elements ofR.

        3 Jaconson’s Lemma

        The following lemma is known as Jacobson’s Lemma for invertible elements in a ring:

        Lemma 3([6, Lemma 2.1]) Leta,b∈R. Ifα=1-ab∈U(R), thenβ=1-ba∈U(R) and (1-ba)-1=1+b(1-ab)-1a.

        We now extend Jacobson’s Lemma to primely Drazin inverses in a ring.

        Lemma 4Leta∈R. Ifahas primely Drazin inverse, thenahas Drazin inverse.

        ProofWe know that a strongly nilpotent element is nilpotent. ThenP(R)?N(R). Henceahas Drazin inverse if it has primely Drazin inverse.

        Theorem 2Letα=1-ab,β=1-ba. Thenα∈Rhas primely Drazin inverse if and only ifβ∈Rhas primely Drazin inverse. In this case,

        βp=1+b(1-αeα)-1(αp-αe)a=1+b[αp-αe(1-αeα)-1]a,

        and

        βe=bαe(1-αeα)-1a.

        ProofDenotep=αe. By Lemma 1,p2=p∈comm(α),αp∈P(R),α+p∈U(R). Hence, 1-αp∈U(R). Letq=bp(1-pα)-1a. Note thatβb=bαandαβ=αa. Thenβq=bαp(1-pα)-1a=bp(1-pα)-1αa=qβ. In what follows, by Lemma 1, we shall prove the following conditions hold: (a)β+q∈U(R); (b)βq∈P(R); (c)q2=q∈comm2(β).

        (a) Writec=[p(1-pα)-1-1]a. Then we obtain 1+cb∈U(R). By Lemma 3, 1+bcis also invertible. Hence

        β+q=1-ba+bp(1-pα)-1a=1+bc∈U(R).

        (b) By hypothesis,αp∈P(R). Since the prime radicalP(R) is a two-sidedd ideal ofR, we have

        βq=(1-ba)bp(1-pα)-1a=(b-bab)p(1-pα)-1a=

        b(1-ab)p(1-pα)-1a=b(pα)(1-pα)-1a∈P(R).

        (c) Note thatpab=p(1-pα). Then

        q2=b(1-pα)-1pab(1-pα)-1pa=b(1-pα)-1pa=q.

        As done in generalized Drazin inverse, we easily proveq∈comm2(β).

        Therefore,qsatisfies (a),(b) and (c).

        As we easily see that ifαhas primely Drazin inverse, then it has Drazin inverse, andαp=αD, we easily obtain the formula by [6, Theorem 2.3].

        ? This is symmetric.

        Corollary 1LetA∈Mm×n(R),B∈Mn×m(R). ThenIm+AB∈Mm×m(R) has primely Drazin inverse if and only ifIn+BA∈Mn×n(R) has primely Drazin inverse.

        4 Cline’s Formula

        Recall that for anya,b∈R,abhas Drazin inverse if and only ifbahas Drazin inverse. This is known as Cline’s formula for Drazin inverse. We have

        Theorem 3Letα=ab,β=ba. Ifαhas primely Drazin inverse, then -β2has primely Drazin inverse, and

        (-(ba)2)p=-(b((ab)p)2a)2.

        ProofLetα=ab,β=ba. Setp=1-αpαandq=1-bαpa. Thenp∈comm2(α),α+p∈U(R) andαp∈P(R). In what follows, we prove that

        (i)-β2+q∈U(R); (ii)-β2q∈P(R); (iii)q2=q∈comm(-β2).

        First, we have 1+(a-αpa)b=α+(1-αpα)=α+p∈U(R). By Lemma 2,

        β+q=β+(1-bαpa)=1+b(a-αpa)∈U(R).

        To show (iii), we check that

        q2=(1-bαpa)(1-bαpa)=1-2bαpa+bαpααpa=1-bαpa=q.

        Note that

        βq=ba(1-bαpa)=ba-babαpa=ba-bαpaba=(1-bαpa)β=qβ.

        (1)

        Lety∈Rbe such thatyβ=βy, i.e.,

        y(ba)=(ba)y.

        (2)

        As done in Cline’s formula combining this with Eq.(1) and (2), one has

        (1-βq)yq(1-βq)=(1-βq)qy(1-βq).

        We now check that

        -β2q=-β2(1-bαpa)=-ba(1-bαpa)ba=-b(ab-abαpab)a=-b(pα)a∈P(R).

        Thus, -β2q2=-(βq)2∈P(R); hence,βq∈Ris nilpotent. So 1-βq∈U(R). Hence,yq=qy,q∈comm2(β). This shows thatq∈comm(-β).

        Sinceβq∈Ris nilpotent, we see that

        (β-q)2=(β+q)2-4βq∈U(R).

        It follows thatβ-q∈U(R). By the preceding proof,β+q,β-q∈U(R), we see thatβ2-q=(β+q)(β-q)∈U(R). So -β2+q∈U(R) andq∈comm(-β2). Then (i) and (iii)follow. Therefore, -β2has primely Drazin inverse.

        Moreover,

        (-β2)p=(-(ba)2)p=(-(ba)2)D=-((ba)D)2=-(b((ab)D)2a)2=-(b((ab)p)2a)2.

        This completes the proof.

        Theorem 4LetRbe a ring, and leta,b∈Randab=0. Ifa,bhave primely Drazin inverses, then -(a+b)2has primely Drazin inverses.

        We see that

        Furthermore, we can derive the following:

        Theorem 5LetRbe a ring, and leta,b∈Randa2b=0,bab=0. Ifa,bhave primely Drazin inverses, then -(a+b)8has primely Drazin inverses.

        where

        As the primely Drazin inverse is Drazin inverse andP(R) is an ideal, we check thata2,b2have primely Drazin inverses. In view of Lemma 5, we see thatP,Qhave primely Drazin inverses. Sincea2b= 0 andbab= 0, we verify that

        By virtue of Theorem 4, -M2has primely Drazin inverse. One easily checks that

        精品一区二区三区四区国产| 国产精品不卡无码AV在线播放| 人妻免费黄色片手机版| 99国产精品久久一区二区三区| 国产美女做爰免费视频| 无码人妻丰满熟妇啪啪7774| 国产91在线精品福利| 一区二区三区在线乱码| 色窝窝无码一区二区三区| 中文人妻无码一区二区三区在线| 青春草国产视频| 亚洲精品国产第一区三区 | 日日碰狠狠添天天爽超碰97久久 | 欧美大屁股xxxx| 亚洲国产午夜精品乱码| 在线日韩中文字幕乱码视频| 日韩中文字幕有码午夜美女| 在线视频观看免费视频18| 无码AV高潮喷水无码专区线| 亚洲av乱码国产精品观看麻豆| 精品国产午夜肉伦伦影院| 东北寡妇特级毛片免费| 国产中文字幕乱码在线| 一区二区精品天堂亚洲av| 一色桃子中文字幕人妻熟女作品| 国产麻无矿码直接观看| 美女精品国产一区二区三区 | 美女扒开内裤露黑毛无遮挡| 蜜桃av噜噜一区二区三区9| 尤物网址在线观看| 午夜无码一区二区三区在线| 天堂影院久久精品国产午夜18禁 | 18国产精品白浆在线观看免费| 日韩精品人妻系列无码专区免费| 日韩久久无码免费看A| 亚洲日本人妻少妇中文字幕| 日本丰满熟妇videossex8k| 人妻在线中文字幕| 亚洲av综合色区久久精品| 无码h黄肉3d动漫在线观看| 国产精品成人av在线观看|