亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Primely Drazin Inverse in Rings

        2020-08-07 12:57:26LIJiechenCHENHuanyin

        LI Jiechen, CHEN Huanyin

        (School of Science, Hangzhou Normal University, Hangzhou 311121, China)

        Abstract: An element a∈R has primely Drazin inverse in case there is an element b∈R satisfying bab=b, b∈comm2(a) and a-a2b∈P(R), where P(R) is the prime radical of R.The elementary properties of such Drazin inverse in rings are studied. And Jacobson’s lemma and Cline’s formula are proved to be applicable for primely Drazin inverse.

        Key words: Drazin inverse; Jacobson’s lemma; Cline’s formula; Prime polarity

        1 Introduction

        b=bab,ab=ba,a-a2b∈N(R).

        The elementbabove is unique if it exists and is denoted byaD, and the nilpotency index ofa-a2bis called the Drazin index ofa, denoted byind(a). Moreover,aD∈comm2(a)(see [2]). Cline showed that ifabis Drazin invertible, then so isbaand in this case (ba)D=b((ab)D)2a. The concept of the generalized Drazin inverse in a Banach algebra was introduced in 1996 by Koliha(see [1]). Later, this notion was extended to elements in a ring by Koliha and Patricio(see [2]). An elementa∈Ris generalized Drazin invertible in case there is an elementb∈Rsatisfying

        bab=b,b∈comm2(a),a-a2b∈Rqnil.

        Suchb, if it exists, is unique, it is called the generalized Drazin inverse ofa, and will be denoted byad.

        In this paper, we are concerned with a new kind of Drazin inverse. LetP(R) be the prime radical of a ringR. As is well known the prime radical is exactly the set of all strongly nilpotent elements inR. An elementa∈Rhas primely Drazin inverse in case there is an elementb∈Rsatisfyingbab=b,b∈comm2(a),a-a2b∈P(R). Elementary properties of such Drazin inverses in a ring are investigated. Jacobson’s Lemma and Cline’s formula for primely Draizn inverses are thereby obtained(see [3-5]).

        2 Primely Drazin Inverses

        We begin with a new concept:

        Definition 1An elementa∈Rhas primely Drazin inverse if there existsb∈Rsuch that

        bab=b,b∈comm2(a),a-a2b∈P(R).

        Lemma 1LetRbe a ring, and leta∈R. Then the following are equivalent:

        (1)a∈Rhas primely Drazin inverse.

        (2) There exists an idempotente∈comm2(a) such thata+e∈U(R) andae∈P(R).

        (3) There existsbsuch thatbab=b,b∈comm(a) anda-a2b∈P(R).

        Proof(1)?(2) Choosee=1-ab.

        Step 1e2=(1-ab)2=1-ab-ab+a2b2=a-2ab+ab=1-ab=e. Letx∈comm(a). Then (1-ab)x=x(1-ab) sincexa=ax,e∈comm2(a).

        Step 2ae=a(1-ab)=a=a2b∈P(R). Thenae∈U(R).

        Step 3be=b(1-ab)=b-b2a=b-ab2=eb=0 sinceb∈comm2(a). (a+e)(b+e)=ab+ae+eb+e=1-e+ae+e=1+ae∈U(R). Analogously, (b+e)(a+e)=1+ea∈U(R). Thusa+e∈U(R). Therefore,Ris primely polar.

        (2)?(1) For anya∈R, there existse2=e∈comm2(a) such thatu=a+e∈U(R) andae∈P(R). Chooseb=(a+e)-1(1-e).

        Step 1 Letx∈comm(a), thenax=xa,ex=xe. We getx(a+e)-1=(a+e)-1xsince (a+e)x=x(a+e). Hencexb=bx,b∈comm2(a).

        Step 2 Since (a+e)(1-e)=(1-e)a, we getb=(a+e)-1(1-e)=b(1-e). Thenb=b2a.

        Step 3a-a2b=a-a2(a+e)-1(1-e)=a-a(a+e)(a+e)-1(1-e)=a-a(1-e)=a-a+ae∈P(R).

        (1)?(3) This is obvious.

        (3)?(1) SinceP(R)?N(R),bis the Drazin inverse ofa, and sob∈comm2(a),as required.

        Lemma 2Leta∈R. Thena∈RDif and only if there exists an idempotentpsuch thatp∈comm2(a),a+p∈U(R) andap∈N(R).

        ProofSee [1, Lemma 2.4].

        Theorem 1LetRbe a ring, and leta∈R. Then the following are equivalent:

        (1)a∈Rhas primely Drazin inverse.

        (2) There exists a unique idempotente∈comm2(a) such thata+e∈U(R) andae∈P(R).

        Proof(2)?(1) This is obviou by Lemma 1.

        (1)?(2) AsP(R)?N(R), we obtain the result by [2, Proposition 2.3].

        Any elemente∈Rsatisfying the preceding condition isp-spectral idempotent ofa, denote it byae. Any elementb∈Rsatisfying these conditions is called the primely Drazin inverse ofa, and denote the primely Drazin inverse byap. We useRpto stand for the set of all primely Drazin invertible elements ofR.

        3 Jaconson’s Lemma

        The following lemma is known as Jacobson’s Lemma for invertible elements in a ring:

        Lemma 3([6, Lemma 2.1]) Leta,b∈R. Ifα=1-ab∈U(R), thenβ=1-ba∈U(R) and (1-ba)-1=1+b(1-ab)-1a.

        We now extend Jacobson’s Lemma to primely Drazin inverses in a ring.

        Lemma 4Leta∈R. Ifahas primely Drazin inverse, thenahas Drazin inverse.

        ProofWe know that a strongly nilpotent element is nilpotent. ThenP(R)?N(R). Henceahas Drazin inverse if it has primely Drazin inverse.

        Theorem 2Letα=1-ab,β=1-ba. Thenα∈Rhas primely Drazin inverse if and only ifβ∈Rhas primely Drazin inverse. In this case,

        βp=1+b(1-αeα)-1(αp-αe)a=1+b[αp-αe(1-αeα)-1]a,

        and

        βe=bαe(1-αeα)-1a.

        ProofDenotep=αe. By Lemma 1,p2=p∈comm(α),αp∈P(R),α+p∈U(R). Hence, 1-αp∈U(R). Letq=bp(1-pα)-1a. Note thatβb=bαandαβ=αa. Thenβq=bαp(1-pα)-1a=bp(1-pα)-1αa=qβ. In what follows, by Lemma 1, we shall prove the following conditions hold: (a)β+q∈U(R); (b)βq∈P(R); (c)q2=q∈comm2(β).

        (a) Writec=[p(1-pα)-1-1]a. Then we obtain 1+cb∈U(R). By Lemma 3, 1+bcis also invertible. Hence

        β+q=1-ba+bp(1-pα)-1a=1+bc∈U(R).

        (b) By hypothesis,αp∈P(R). Since the prime radicalP(R) is a two-sidedd ideal ofR, we have

        βq=(1-ba)bp(1-pα)-1a=(b-bab)p(1-pα)-1a=

        b(1-ab)p(1-pα)-1a=b(pα)(1-pα)-1a∈P(R).

        (c) Note thatpab=p(1-pα). Then

        q2=b(1-pα)-1pab(1-pα)-1pa=b(1-pα)-1pa=q.

        As done in generalized Drazin inverse, we easily proveq∈comm2(β).

        Therefore,qsatisfies (a),(b) and (c).

        As we easily see that ifαhas primely Drazin inverse, then it has Drazin inverse, andαp=αD, we easily obtain the formula by [6, Theorem 2.3].

        ? This is symmetric.

        Corollary 1LetA∈Mm×n(R),B∈Mn×m(R). ThenIm+AB∈Mm×m(R) has primely Drazin inverse if and only ifIn+BA∈Mn×n(R) has primely Drazin inverse.

        4 Cline’s Formula

        Recall that for anya,b∈R,abhas Drazin inverse if and only ifbahas Drazin inverse. This is known as Cline’s formula for Drazin inverse. We have

        Theorem 3Letα=ab,β=ba. Ifαhas primely Drazin inverse, then -β2has primely Drazin inverse, and

        (-(ba)2)p=-(b((ab)p)2a)2.

        ProofLetα=ab,β=ba. Setp=1-αpαandq=1-bαpa. Thenp∈comm2(α),α+p∈U(R) andαp∈P(R). In what follows, we prove that

        (i)-β2+q∈U(R); (ii)-β2q∈P(R); (iii)q2=q∈comm(-β2).

        First, we have 1+(a-αpa)b=α+(1-αpα)=α+p∈U(R). By Lemma 2,

        β+q=β+(1-bαpa)=1+b(a-αpa)∈U(R).

        To show (iii), we check that

        q2=(1-bαpa)(1-bαpa)=1-2bαpa+bαpααpa=1-bαpa=q.

        Note that

        βq=ba(1-bαpa)=ba-babαpa=ba-bαpaba=(1-bαpa)β=qβ.

        (1)

        Lety∈Rbe such thatyβ=βy, i.e.,

        y(ba)=(ba)y.

        (2)

        As done in Cline’s formula combining this with Eq.(1) and (2), one has

        (1-βq)yq(1-βq)=(1-βq)qy(1-βq).

        We now check that

        -β2q=-β2(1-bαpa)=-ba(1-bαpa)ba=-b(ab-abαpab)a=-b(pα)a∈P(R).

        Thus, -β2q2=-(βq)2∈P(R); hence,βq∈Ris nilpotent. So 1-βq∈U(R). Hence,yq=qy,q∈comm2(β). This shows thatq∈comm(-β).

        Sinceβq∈Ris nilpotent, we see that

        (β-q)2=(β+q)2-4βq∈U(R).

        It follows thatβ-q∈U(R). By the preceding proof,β+q,β-q∈U(R), we see thatβ2-q=(β+q)(β-q)∈U(R). So -β2+q∈U(R) andq∈comm(-β2). Then (i) and (iii)follow. Therefore, -β2has primely Drazin inverse.

        Moreover,

        (-β2)p=(-(ba)2)p=(-(ba)2)D=-((ba)D)2=-(b((ab)D)2a)2=-(b((ab)p)2a)2.

        This completes the proof.

        Theorem 4LetRbe a ring, and leta,b∈Randab=0. Ifa,bhave primely Drazin inverses, then -(a+b)2has primely Drazin inverses.

        We see that

        Furthermore, we can derive the following:

        Theorem 5LetRbe a ring, and leta,b∈Randa2b=0,bab=0. Ifa,bhave primely Drazin inverses, then -(a+b)8has primely Drazin inverses.

        where

        As the primely Drazin inverse is Drazin inverse andP(R) is an ideal, we check thata2,b2have primely Drazin inverses. In view of Lemma 5, we see thatP,Qhave primely Drazin inverses. Sincea2b= 0 andbab= 0, we verify that

        By virtue of Theorem 4, -M2has primely Drazin inverse. One easily checks that

        91羞射短视频在线观看 | 亚洲色图视频在线播放| 在线视频一区二区国产| 久久精品中文字幕| 东方aⅴ免费观看久久av| 狠狠色狠狠色综合网老熟女| 久久精品国产亚洲av网在| 国产精品国产三级国产aⅴ下载 | 84pao强力打造免费视频34| 亚洲精品天堂在线观看| 精品极品一区二区三区| 在线看片免费人成视频电影| 亚洲国产精品一区二区第四页| 亚洲国产av剧一区二区三区| 日本系列有码字幕中文字幕| 三年片免费观看大全有| 欧美喷潮系列在线观看| 久久久婷婷综合亚洲av| 国产一区二区av免费在线观看| 亚洲av无码国产精品色软件下戴| 性导航app精品视频| 国产精品亚洲av无人区一区蜜桃| 国产一区二区三区毛片| 怡红院免费的全部视频| 欧美色资源| 91快射视频在线观看| 亚洲国产日韩欧美综合a| 精品久久久久久国产| 中文字幕在线人妻视频| 日本女优在线一区二区三区| 欧美极品色午夜在线视频| 亚洲AV无码精品色午夜超碰| 女同在线网站免费观看| 国产三级av在线播放| 欧美日韩在线免费看| 一区二区三区精品婷婷| 一边摸一边抽搐一进一出视频| 国产成人综合在线视频| 岛国视频在线无码| 国产精品国产av一区二区三区| 激情航班h版在线观看|