亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Primely Drazin Inverse in Rings

        2020-08-07 12:57:26LIJiechenCHENHuanyin

        LI Jiechen, CHEN Huanyin

        (School of Science, Hangzhou Normal University, Hangzhou 311121, China)

        Abstract: An element a∈R has primely Drazin inverse in case there is an element b∈R satisfying bab=b, b∈comm2(a) and a-a2b∈P(R), where P(R) is the prime radical of R.The elementary properties of such Drazin inverse in rings are studied. And Jacobson’s lemma and Cline’s formula are proved to be applicable for primely Drazin inverse.

        Key words: Drazin inverse; Jacobson’s lemma; Cline’s formula; Prime polarity

        1 Introduction

        b=bab,ab=ba,a-a2b∈N(R).

        The elementbabove is unique if it exists and is denoted byaD, and the nilpotency index ofa-a2bis called the Drazin index ofa, denoted byind(a). Moreover,aD∈comm2(a)(see [2]). Cline showed that ifabis Drazin invertible, then so isbaand in this case (ba)D=b((ab)D)2a. The concept of the generalized Drazin inverse in a Banach algebra was introduced in 1996 by Koliha(see [1]). Later, this notion was extended to elements in a ring by Koliha and Patricio(see [2]). An elementa∈Ris generalized Drazin invertible in case there is an elementb∈Rsatisfying

        bab=b,b∈comm2(a),a-a2b∈Rqnil.

        Suchb, if it exists, is unique, it is called the generalized Drazin inverse ofa, and will be denoted byad.

        In this paper, we are concerned with a new kind of Drazin inverse. LetP(R) be the prime radical of a ringR. As is well known the prime radical is exactly the set of all strongly nilpotent elements inR. An elementa∈Rhas primely Drazin inverse in case there is an elementb∈Rsatisfyingbab=b,b∈comm2(a),a-a2b∈P(R). Elementary properties of such Drazin inverses in a ring are investigated. Jacobson’s Lemma and Cline’s formula for primely Draizn inverses are thereby obtained(see [3-5]).

        2 Primely Drazin Inverses

        We begin with a new concept:

        Definition 1An elementa∈Rhas primely Drazin inverse if there existsb∈Rsuch that

        bab=b,b∈comm2(a),a-a2b∈P(R).

        Lemma 1LetRbe a ring, and leta∈R. Then the following are equivalent:

        (1)a∈Rhas primely Drazin inverse.

        (2) There exists an idempotente∈comm2(a) such thata+e∈U(R) andae∈P(R).

        (3) There existsbsuch thatbab=b,b∈comm(a) anda-a2b∈P(R).

        Proof(1)?(2) Choosee=1-ab.

        Step 1e2=(1-ab)2=1-ab-ab+a2b2=a-2ab+ab=1-ab=e. Letx∈comm(a). Then (1-ab)x=x(1-ab) sincexa=ax,e∈comm2(a).

        Step 2ae=a(1-ab)=a=a2b∈P(R). Thenae∈U(R).

        Step 3be=b(1-ab)=b-b2a=b-ab2=eb=0 sinceb∈comm2(a). (a+e)(b+e)=ab+ae+eb+e=1-e+ae+e=1+ae∈U(R). Analogously, (b+e)(a+e)=1+ea∈U(R). Thusa+e∈U(R). Therefore,Ris primely polar.

        (2)?(1) For anya∈R, there existse2=e∈comm2(a) such thatu=a+e∈U(R) andae∈P(R). Chooseb=(a+e)-1(1-e).

        Step 1 Letx∈comm(a), thenax=xa,ex=xe. We getx(a+e)-1=(a+e)-1xsince (a+e)x=x(a+e). Hencexb=bx,b∈comm2(a).

        Step 2 Since (a+e)(1-e)=(1-e)a, we getb=(a+e)-1(1-e)=b(1-e). Thenb=b2a.

        Step 3a-a2b=a-a2(a+e)-1(1-e)=a-a(a+e)(a+e)-1(1-e)=a-a(1-e)=a-a+ae∈P(R).

        (1)?(3) This is obvious.

        (3)?(1) SinceP(R)?N(R),bis the Drazin inverse ofa, and sob∈comm2(a),as required.

        Lemma 2Leta∈R. Thena∈RDif and only if there exists an idempotentpsuch thatp∈comm2(a),a+p∈U(R) andap∈N(R).

        ProofSee [1, Lemma 2.4].

        Theorem 1LetRbe a ring, and leta∈R. Then the following are equivalent:

        (1)a∈Rhas primely Drazin inverse.

        (2) There exists a unique idempotente∈comm2(a) such thata+e∈U(R) andae∈P(R).

        Proof(2)?(1) This is obviou by Lemma 1.

        (1)?(2) AsP(R)?N(R), we obtain the result by [2, Proposition 2.3].

        Any elemente∈Rsatisfying the preceding condition isp-spectral idempotent ofa, denote it byae. Any elementb∈Rsatisfying these conditions is called the primely Drazin inverse ofa, and denote the primely Drazin inverse byap. We useRpto stand for the set of all primely Drazin invertible elements ofR.

        3 Jaconson’s Lemma

        The following lemma is known as Jacobson’s Lemma for invertible elements in a ring:

        Lemma 3([6, Lemma 2.1]) Leta,b∈R. Ifα=1-ab∈U(R), thenβ=1-ba∈U(R) and (1-ba)-1=1+b(1-ab)-1a.

        We now extend Jacobson’s Lemma to primely Drazin inverses in a ring.

        Lemma 4Leta∈R. Ifahas primely Drazin inverse, thenahas Drazin inverse.

        ProofWe know that a strongly nilpotent element is nilpotent. ThenP(R)?N(R). Henceahas Drazin inverse if it has primely Drazin inverse.

        Theorem 2Letα=1-ab,β=1-ba. Thenα∈Rhas primely Drazin inverse if and only ifβ∈Rhas primely Drazin inverse. In this case,

        βp=1+b(1-αeα)-1(αp-αe)a=1+b[αp-αe(1-αeα)-1]a,

        and

        βe=bαe(1-αeα)-1a.

        ProofDenotep=αe. By Lemma 1,p2=p∈comm(α),αp∈P(R),α+p∈U(R). Hence, 1-αp∈U(R). Letq=bp(1-pα)-1a. Note thatβb=bαandαβ=αa. Thenβq=bαp(1-pα)-1a=bp(1-pα)-1αa=qβ. In what follows, by Lemma 1, we shall prove the following conditions hold: (a)β+q∈U(R); (b)βq∈P(R); (c)q2=q∈comm2(β).

        (a) Writec=[p(1-pα)-1-1]a. Then we obtain 1+cb∈U(R). By Lemma 3, 1+bcis also invertible. Hence

        β+q=1-ba+bp(1-pα)-1a=1+bc∈U(R).

        (b) By hypothesis,αp∈P(R). Since the prime radicalP(R) is a two-sidedd ideal ofR, we have

        βq=(1-ba)bp(1-pα)-1a=(b-bab)p(1-pα)-1a=

        b(1-ab)p(1-pα)-1a=b(pα)(1-pα)-1a∈P(R).

        (c) Note thatpab=p(1-pα). Then

        q2=b(1-pα)-1pab(1-pα)-1pa=b(1-pα)-1pa=q.

        As done in generalized Drazin inverse, we easily proveq∈comm2(β).

        Therefore,qsatisfies (a),(b) and (c).

        As we easily see that ifαhas primely Drazin inverse, then it has Drazin inverse, andαp=αD, we easily obtain the formula by [6, Theorem 2.3].

        ? This is symmetric.

        Corollary 1LetA∈Mm×n(R),B∈Mn×m(R). ThenIm+AB∈Mm×m(R) has primely Drazin inverse if and only ifIn+BA∈Mn×n(R) has primely Drazin inverse.

        4 Cline’s Formula

        Recall that for anya,b∈R,abhas Drazin inverse if and only ifbahas Drazin inverse. This is known as Cline’s formula for Drazin inverse. We have

        Theorem 3Letα=ab,β=ba. Ifαhas primely Drazin inverse, then -β2has primely Drazin inverse, and

        (-(ba)2)p=-(b((ab)p)2a)2.

        ProofLetα=ab,β=ba. Setp=1-αpαandq=1-bαpa. Thenp∈comm2(α),α+p∈U(R) andαp∈P(R). In what follows, we prove that

        (i)-β2+q∈U(R); (ii)-β2q∈P(R); (iii)q2=q∈comm(-β2).

        First, we have 1+(a-αpa)b=α+(1-αpα)=α+p∈U(R). By Lemma 2,

        β+q=β+(1-bαpa)=1+b(a-αpa)∈U(R).

        To show (iii), we check that

        q2=(1-bαpa)(1-bαpa)=1-2bαpa+bαpααpa=1-bαpa=q.

        Note that

        βq=ba(1-bαpa)=ba-babαpa=ba-bαpaba=(1-bαpa)β=qβ.

        (1)

        Lety∈Rbe such thatyβ=βy, i.e.,

        y(ba)=(ba)y.

        (2)

        As done in Cline’s formula combining this with Eq.(1) and (2), one has

        (1-βq)yq(1-βq)=(1-βq)qy(1-βq).

        We now check that

        -β2q=-β2(1-bαpa)=-ba(1-bαpa)ba=-b(ab-abαpab)a=-b(pα)a∈P(R).

        Thus, -β2q2=-(βq)2∈P(R); hence,βq∈Ris nilpotent. So 1-βq∈U(R). Hence,yq=qy,q∈comm2(β). This shows thatq∈comm(-β).

        Sinceβq∈Ris nilpotent, we see that

        (β-q)2=(β+q)2-4βq∈U(R).

        It follows thatβ-q∈U(R). By the preceding proof,β+q,β-q∈U(R), we see thatβ2-q=(β+q)(β-q)∈U(R). So -β2+q∈U(R) andq∈comm(-β2). Then (i) and (iii)follow. Therefore, -β2has primely Drazin inverse.

        Moreover,

        (-β2)p=(-(ba)2)p=(-(ba)2)D=-((ba)D)2=-(b((ab)D)2a)2=-(b((ab)p)2a)2.

        This completes the proof.

        Theorem 4LetRbe a ring, and leta,b∈Randab=0. Ifa,bhave primely Drazin inverses, then -(a+b)2has primely Drazin inverses.

        We see that

        Furthermore, we can derive the following:

        Theorem 5LetRbe a ring, and leta,b∈Randa2b=0,bab=0. Ifa,bhave primely Drazin inverses, then -(a+b)8has primely Drazin inverses.

        where

        As the primely Drazin inverse is Drazin inverse andP(R) is an ideal, we check thata2,b2have primely Drazin inverses. In view of Lemma 5, we see thatP,Qhave primely Drazin inverses. Sincea2b= 0 andbab= 0, we verify that

        By virtue of Theorem 4, -M2has primely Drazin inverse. One easily checks that

        亚洲Av午夜精品a区| 最好看的亚洲中文字幕| 中国国产不卡视频在线观看| 一本一道av无码中文字幕麻豆| 亚洲精品92内射| 国产农村三片免费网站| 国产伦理自拍视频在线观看| av在线不卡免费中文网| 97久久婷婷五月综合色d啪蜜芽 | 日本免费一区二区三区在线看| av网址不卡免费在线观看| 日韩av一区二区三区高清| 国产精品一区二区av麻豆| 久久午夜夜伦鲁鲁片免费无码| 国产精品视频久久久久| 久久久亚洲精品一区二区| 亚洲丰满熟女乱一区二区三区 | 婷婷丁香五月激情综合| 亚洲av无码av日韩av网站| 国产精品一卡二卡三卡| 国产av精品一区二区三区不卡| 色综合久久中文综合网亚洲| 国产边摸边吃奶叫床视频| 亚洲av永久无码精品秋霞电影影院| a√无码在线观看| 在线观看一区二区蜜桃| 免费大片黄国产在线观看| 伊人狠狠色丁香婷婷综合| 精品少妇一区一区三区| 91久久国产精品综合| 又硬又粗进去好爽免费| 午夜成人鲁丝片午夜精品| 精品亚洲欧美高清不卡高清| 亚洲免费av第一区第二区| 在线日本看片免费人成视久网| 丰满少妇被粗大的猛烈进出视频| 黑人巨大videos极度另类| 中文字幕a区一区三区| 亚洲天堂av中文字幕在线观看| 强奷乱码中文字幕| 狠狠久久亚洲欧美专区|