楊潔 張歡
摘? 要: 為了識(shí)別低截獲概率(LPI)雷達(dá)信號(hào),給出一種基于Choi?Williams分布(CWD)和改進(jìn)型AlexNet網(wǎng)絡(luò)模型。首先,利用CWD時(shí)頻分析方法獲得LPI雷達(dá)信號(hào)的二維時(shí)頻圖像;然后,對(duì)獲取的原始圖像進(jìn)行預(yù)處理,建立改進(jìn)型AlexNet網(wǎng)絡(luò)模型對(duì)處理后的圖像進(jìn)行訓(xùn)練,獲得訓(xùn)練模型;最后,利用訓(xùn)練模型對(duì)常見(jiàn)LPI雷達(dá)信號(hào)(FMCW,Costas,F(xiàn)rank,P1,P2,P3,P4)進(jìn)行識(shí)別。仿真結(jié)果表明,與AlexNet網(wǎng)絡(luò)模型相比,改進(jìn)型AlexNet對(duì)LPI雷達(dá)信號(hào)識(shí)別率更高。
關(guān)鍵詞: LPI雷達(dá)信號(hào); Choi?Williams分布; 時(shí)頻圖像; 圖像處理; 深度學(xué)習(xí); AlexNet
中圖分類號(hào): TN957.52?34? ? ? ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼: A? ? ? ? ? ? ? ? ? ? ? ? 文章編號(hào): 1004?373X(2020)05?0057?04
LPI radar signal recognition based on improved AlexNet
YANG Jie, ZHANG Huan
(School of Communication and Information Engineering, Xian University of Posts and Telecommunications, Xian 710121, China)
Abstract: A Choi?Williams distribution (CWD) and an improved AlexNet network model are presented to identify the low probability of intercept (LPI) radar signals. Firstly, the two?dimensional time?frequency image of LPI radar signals is obtained by CWD time?frequency analysis method, and then the obtained original image is preprocessed. The improved AlexNet network model is created to train the processed image for the training model. Finally, the training model is used to identify common LPI radar signals (FMCW, Costas, Frank, P1, P2, P3, P4). The simulation results show that the improved AlexNet has a higher recognition rate for LPI radar signals than that of the AlexNet network model.
Keywords: LPI radar signal; Choi?Williams distribution (CWD); time?frequency image; image processing; deep learning; AlexNet
0? 引? 言
雷達(dá)信號(hào)識(shí)別是電子情報(bào)偵察和電子支援措施必須解決的問(wèn)題[1]。低截獲概率(Low Probability of Intercept,LPI)雷達(dá)具有低功率、高分辨、大帶寬、抗干擾和低截獲等屬性,使得非合作截獲接收機(jī)難以截獲和檢測(cè)到其發(fā)射的信號(hào)[2?3]。傳統(tǒng)基于脈沖描述字(Pulse Description Word,PDW)的五大特征難以滿足識(shí)別要求[4]。因此,如何正確識(shí)別LPI雷達(dá)信號(hào)成為非合作雷達(dá)信號(hào)處理研究的重點(diǎn)。
用于LPI雷達(dá)信號(hào)識(shí)別問(wèn)題的方法有K鄰近算法[5]、密度聚類算法[6],這兩種算法雖然操作簡(jiǎn)單,耗費(fèi)的成本較少,但往往識(shí)別效果不太理想[7]。文獻(xiàn)[8]利用徑向基神經(jīng)網(wǎng)絡(luò)對(duì)LPI雷達(dá)信號(hào)進(jìn)行識(shí)別,但對(duì)降噪處理研究不深且在較低信噪比下識(shí)別的效果不太理想。文獻(xiàn)[9]采用基于時(shí)頻圖像二維的模式分解(Empirical Mode Decomposition,EMD)和重構(gòu)算法完成LPI雷達(dá)信號(hào)識(shí)別,雖然改進(jìn)了文獻(xiàn)[8]中的圖像降噪問(wèn)題,但對(duì)較低信噪比下的識(shí)別正確率改進(jìn)的不明顯。這些算法采用的時(shí)頻分析方法產(chǎn)生的圖像存在交叉項(xiàng),又需要將彩色圖像轉(zhuǎn)化為灰度圖像,使得圖像的前期處理任務(wù)復(fù)雜而繁瑣,且在圖像裁剪時(shí)會(huì)出現(xiàn)一定量的數(shù)據(jù)丟失現(xiàn)象,從而對(duì)分類正確率有一定的影響。
AlexNet網(wǎng)絡(luò)模型結(jié)構(gòu)簡(jiǎn)潔,采用了一些新方法以實(shí)現(xiàn)高效的訓(xùn)練和穩(wěn)定的收斂速度。已經(jīng)在圖像分類識(shí)別[10]、通信信號(hào)識(shí)別[11]、遙感圖像[12]以及個(gè)體動(dòng)態(tài)識(shí)別[13]上都取得了非常優(yōu)秀的效果。本文提出基于時(shí)頻圖像和改進(jìn)型AlexNet的LPI雷達(dá)信號(hào)識(shí)別方法,先利用Choi?Williams方法生成時(shí)頻圖像,然后對(duì)時(shí)頻圖像預(yù)處理,最后將改進(jìn)型AlexNet網(wǎng)絡(luò)模型應(yīng)用到LPI雷達(dá)信號(hào)識(shí)別中。通過(guò)仿真實(shí)驗(yàn)驗(yàn)證了改進(jìn)型AlexNet網(wǎng)絡(luò)模型對(duì)LPI雷達(dá)信號(hào)識(shí)別的有效性。
1? 時(shí)頻分析與AlexNet網(wǎng)絡(luò)模型
1.1? LPI雷達(dá)信號(hào)與時(shí)頻分析
改進(jìn)型AlexNet模型對(duì)LPI雷達(dá)信號(hào)進(jìn)行訓(xùn)練的迭代過(guò)程準(zhǔn)確率和損失率曲線如圖4所示。信噪比為0 dB時(shí)7種雷達(dá)信號(hào)的混合識(shí)別結(jié)果如表1所示,此時(shí)信號(hào)的整體平均識(shí)別率為97%。
由圖4可見(jiàn),訓(xùn)練開(kāi)始時(shí)由于沒(méi)有進(jìn)行迭代使得訓(xùn)練正確率低、損失率高,隨著迭代次數(shù)不斷增加,獲得的圖像特征更加精細(xì),從而正確率不斷增加,同時(shí)損失率曲線逐步降低,在迭代2 000次時(shí)曲線已經(jīng)趨于平穩(wěn)。
在不同信噪比下,利用實(shí)驗(yàn)中訓(xùn)練好的改進(jìn)型AlexNet網(wǎng)絡(luò)模型測(cè)試對(duì)7種雷達(dá)信號(hào)的正確識(shí)別率,實(shí)驗(yàn)結(jié)果如圖5所示。由其可見(jiàn),在信噪比小于-2 dB時(shí),P3碼信號(hào)和P4碼信號(hào)的識(shí)別正確率低,這是因?yàn)樗鼈兊男盘?hào)編碼是直接趨近LFM信號(hào),這種相似性從圖1所給出的時(shí)頻圖像中可以明顯看出。但在越低的信噪比條件下,它們的瞬時(shí)頻率差距就變得越模糊。在信噪比為2 dB的情況下,7種信號(hào)的正確識(shí)別率幾乎達(dá)到100%。
在實(shí)驗(yàn)過(guò)程中,使用相同的時(shí)頻分析和圖像處理方法比較AlexNet和改進(jìn)型AlexNet訓(xùn)練模型分別對(duì)7種雷達(dá)信號(hào)識(shí)別的準(zhǔn)確率,對(duì)比結(jié)果如圖6所示。
從圖6可以看出:改進(jìn)型AlexNet網(wǎng)絡(luò)模型的識(shí)別率和傳統(tǒng)的AlexNet模型識(shí)別率都隨著信噪比的增大不斷提高,當(dāng)信噪比為2 dB時(shí),改進(jìn)型算法對(duì)信號(hào)整體識(shí)別率接近100%,而AlexNet在信噪比為6 dB時(shí)識(shí)別率才趨于穩(wěn)定狀態(tài);改進(jìn)型AlexNet模型在訓(xùn)練時(shí)獲得更細(xì)致的圖像特征,并減少了連接層節(jié)點(diǎn)數(shù)量,防止過(guò)擬合,與傳統(tǒng)AlexNet模型的識(shí)別率相比,其識(shí)別正確率始終高于傳統(tǒng)模型的正確識(shí)別率。
4? 結(jié)? 語(yǔ)
針對(duì)LPI雷達(dá)信號(hào)的識(shí)別問(wèn)題,本文提出了一種改進(jìn)型AlexNet網(wǎng)絡(luò)模型的LPI雷達(dá)信號(hào)識(shí)別。采用CWD時(shí)頻分析對(duì)LPI雷達(dá)信號(hào)進(jìn)行處理,獲取二維時(shí)頻圖像,然后利用雙線性三次插值法對(duì)時(shí)頻圖像進(jìn)行預(yù)處理操作,以滿足改進(jìn)型AlexNet網(wǎng)絡(luò)模型的輸入大小。分別利用AlexNet和改進(jìn)型AlexNet對(duì)LPI雷達(dá)信號(hào)進(jìn)行識(shí)別,仿真結(jié)果表明,利用這兩種網(wǎng)絡(luò)模型用來(lái)識(shí)別LPI雷達(dá)信號(hào)是有效的,且改進(jìn)型算法識(shí)別正確率更高。
參考文獻(xiàn)
[1] 符穎,王星,周東青,等.基于模糊函數(shù)SVD和改進(jìn)S3VM的雷達(dá)信號(hào)識(shí)別[J].計(jì)算機(jī)工程與應(yīng)用,2017,53(6):264?270.
[2] 郭立民,寇韻涵,陳濤,等.基于棧式稀疏自編碼器的低信噪比下低截獲概率雷達(dá)信號(hào)調(diào)制類型識(shí)別[J].電子與信息學(xué)報(bào),2018,40(4):876?881.
[3] 符穎,王星,周一鵬,等.基于改進(jìn)半監(jiān)督樸素貝葉斯的LPI雷達(dá)信號(hào)識(shí)別[J].系統(tǒng)工程與電子技術(shù),2017,39(11):2463?2469.
[4] ZHANG Ming, LIU Lutao, DIAO Ming, et al. LPI radar waveform recognition based on time?frequency distribution [J]. Sensors, 2016, 16(10): 1682?1706.
[5] 沈家煌,黃建沖,朱永成.特征參數(shù)匹配法在雷達(dá)信號(hào)識(shí)別中的應(yīng)用[J].航天電子對(duì)抗,2017,33(2):9?13.
[6] YANG Tsunhua, FENG Lei, CHANG Lungyao. Improving radar estimates of rainfall using an input subset of artificial neural networks [J]. Journal of applied remote sensing, 2016, 10(2): 026013
[7] TBARKI Khaoula, SAID Salma Ben, KSANTINI Riadh, et al. RBF kernel based SVM classification for landmine detection and discrimination [C]// 2016 International Image Processing, Applications and Systems (IPAS). Hammamet, Tunisia: IEEE, 2016: 1?6.
[8] 熊坤來(lái),羅景青,吳世龍.基于時(shí)頻圖像和神經(jīng)網(wǎng)絡(luò)的LPI雷達(dá)信號(hào)調(diào)制識(shí)別[J].彈箭與制導(dǎo)學(xué)報(bào),2011,31(5):230?233.
[9] 張帆,刁鳴,楊承志.時(shí)頻圖像二維EMD分解在LPI信號(hào)識(shí)別中的應(yīng)用[J].現(xiàn)代防御技術(shù),2015,43(5):172?177.
[10] XIAO L, YAN Q, DENG S. Scene classification with improved AlexNet model [C]// 2017 12th International Confe?rence on Intelligent Systems and Knowledge Engineering (ISKE). Nanjing, China: IEEE, 2017: 1?6.
[11] LI Jiachen, QI Lin, LIN Yun. Research on modulation identification of digital signals based on deep learning [C]// 2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT). Harbin, China: IEEE, 2016: 402?405.
[12] HINTON Geoffrey, SALAKHUTDINOV Ruslan. Discovering binary codes for documents by learning deep generative models [J]. Topics in cognitive science, 2011, 3(1): 74?91.
[13] 張邯,羅曉曙,袁榮尚.基于優(yōu)化的卷積神經(jīng)網(wǎng)絡(luò)在交通標(biāo)志識(shí)別中的應(yīng)用[J].現(xiàn)代電子技術(shù),2018,41(21):132?136.
[14] LIU Yongjian, XIAO Peng, WU Hongchao, et al. LPI radar signal detection based on radial integration of Choi?Williams time?frequency image [J]. Journal of systems engineering and electronics, 2015, 26(5): 973?981.
[15] MATUSZEWSKI Jan, SIKORSKA??UKASIEWICZ Katarzyna. Neural network application for emitter identification [C]// 2017 18th International Radar Symposium (IRS). Prague, Czech Republic: IEEE, 2017: 1?8.