亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        非自治離散型浮游生物系統(tǒng)的多個(gè)正周期解

        2020-07-15 14:52:18呂小俊趙凱宏
        關(guān)鍵詞:解性種群定理

        呂小俊,趙凱宏,李 睿

        (1.云南大學(xué) 旅游文化學(xué)院 信息學(xué)院, 云南 麗江 674199;2.昆明理工大學(xué) 理學(xué)院, 云南 昆明 650093)

        近幾十年來(lái),微分方程模型被廣泛地應(yīng)用于生態(tài)系統(tǒng)中,用于描述生態(tài)系統(tǒng)內(nèi)部的變化規(guī)律。由于生物系統(tǒng)受到食物供給、氣候變化和季節(jié)更替等因素的影響,運(yùn)用周期系統(tǒng)去描述生物競(jìng)爭(zhēng)系統(tǒng)是非常有必要的,故對(duì)生物競(jìng)爭(zhēng)系統(tǒng)周期現(xiàn)象的研究已成為一個(gè)新的熱點(diǎn)[1-3]。當(dāng)種群間沒有代級(jí)重疊時(shí),差分方程比微分方程更適合于描述種群生態(tài)系統(tǒng)。由于離散的差分系統(tǒng)可以提供有效的數(shù)值模擬,因此,研究離散生態(tài)競(jìng)爭(zhēng)系統(tǒng)的動(dòng)力學(xué)特征是有意義的。ZHANG等[4]運(yùn)用疊合度理論研究了帶有功能函數(shù)的離散食餌-捕食者系統(tǒng)的周期解。同時(shí),LIU等[5]運(yùn)用Mawhin連續(xù)定理研究了以下離散型時(shí)滯浮游生態(tài)系統(tǒng)的周期解問題:

        式中:Ni(k)表示第i個(gè)種群第k代的種群密度;ri(k)表示第i個(gè)種群第k代的內(nèi)部增長(zhǎng)率;ail(k)表示第i個(gè)種群在第k-l代的內(nèi)部影響率;bil(k)表示第i個(gè)種群在第k-l代的種間影響率;cil(k)表示第k-l代第j個(gè)種群對(duì)第i個(gè)種群的抑制率;i,j=1,2,i≠j。

        為了促使生態(tài)系統(tǒng)的可持續(xù)發(fā)展,定期種群收獲被廣泛地應(yīng)用于漁業(yè)、林業(yè)和野生動(dòng)物管理中。因此,有必要在生態(tài)競(jìng)爭(zhēng)系統(tǒng)中增加收獲項(xiàng),從而更加客觀、準(zhǔn)確地描述生物競(jìng)爭(zhēng)系統(tǒng)的內(nèi)部特征。然而,收獲項(xiàng)的增加會(huì)影響生態(tài)競(jìng)爭(zhēng)系統(tǒng)的多個(gè)周期或概周期規(guī)則[1,6]。

        受以上分析和文獻(xiàn)啟示,很少有作者研究帶有收獲項(xiàng)的離散生物種群系統(tǒng)的多解性。因此,在本文中,我們采取Mawhin連續(xù)定理去研究以下帶有收獲項(xiàng)的離散浮游生物系統(tǒng)的多解性問題:

        (1)

        且Ni(-l)≥0,l=0,1,…,m,Ni(0)>0,i=1,2。式中:hi(k)(i=1,2)表示第i個(gè)種群第k代的收獲量;ri,ail,bil,cil,hi:Z→R+的ω周期函數(shù),i=1,2,l=1,2,…,m。Z表示整數(shù)集,R+表示非負(fù)實(shí)數(shù)集。

        1 預(yù)備知識(shí)

        為了描述簡(jiǎn)單和證明方便,我們需定義以下2個(gè)概念:

        為了運(yùn)用引理2證明系統(tǒng)(1)至少存在4個(gè)不同的正周期解,需作如下假設(shè):

        這里:

        引理1的證明過(guò)程和文獻(xiàn)[4]中引理2的證明類似,故在此不再重復(fù)。

        (a) 對(duì)于任意λ∈(0,1),x是Lx=λNx的任意解,滿足x??Ω∩DomL;

        (b) 對(duì)于任意x∈?Ω∩KerL,滿足QNx≠0;

        (c) deg{JQN,Ω∩KerL,0}≠0。

        進(jìn)一步,作如下定義:

        容易驗(yàn)證,lω是一個(gè)有限維數(shù)的Banach空間。

        2 4個(gè)正周期解的存在性

        定理1如果條件(H1)和(H2)成立,則系統(tǒng)(1)至少存在4個(gè)ω-正周期解。

        證明利用指數(shù)變換:N1(k)=exp(x1(k)),N2(k)=exp(x2(k)),將系統(tǒng)(1)重新改寫為系統(tǒng)(2)。

        (2)

        令X=Y=lω,(Lx)(k)=x(k+1)-x(k),x∈X,k∈Z。

        (3)

        接下來(lái),為了找到滿足引理2中所有條件的有界開集Ωi?X,i=1,2,3,4。本文考慮方程:Lx=λN(x,λ),λ∈(0,1),即:

        (4)

        將式(4)中每個(gè)等式左右兩邊關(guān)于k從0到ω-1累加,可得:

        (5)

        (6)

        由式(4)~(6),可得:

        (7)

        (8)

        接下來(lái),我們分析式(5),可得

        從而,

        (9)

        進(jìn)一步,利用不等式技巧分析式(5),可知

        因此,

        (10)

        同理,由式(6)可得

        (11)

        再次,利用不等式技巧分析式(6)可知

        因此,

        (12)

        接下來(lái),由式(5)和式(11)可得

        進(jìn)一步,可得

        (13)

        由式(13)和條件(H1),可得:

        結(jié)合條件(H1)和以上分析,不難驗(yàn)證

        同理,分析式(6)和式(9)可知

        由以上分析可得

        (14)

        結(jié)合條件(H2)和式(14),可得:

        結(jié)合條件(H2)和以上分析,不難驗(yàn)證

        現(xiàn)構(gòu)造4個(gè)不同的集合Ωi(i=1,2,3,4):

        顯然,Ωi(i=1,2,3,4)是空間X上的有界開集,且Ωi∩Ωj=φ(i,j=1,2,3,4,i≠j)。因此,Ωi(i=1,2,3,4)滿足引理2的條件(a)。

        接下來(lái),我們?nèi)ヲ?yàn)證引理2的條件(b)也是成立的。利用反證法,我們假設(shè)當(dāng)x∈?Ωi∩KerL=?Ωi∩R2(i=1,2,3,4)時(shí),QN(x,0)=(0,0)T成立。即,對(duì)于常向量x=(x1,x2)T∈?Ωi,i=1,2,3,4,滿足以下的代數(shù)方程:

        (15)

        由于KerL=ImQ,令J=I。由Leray-Schauder度的定義直接計(jì)算,可得

        因此,引理2的條件(c)成立。

        綜上所述,Ωi(i=1,2,3,4)滿足引理2的所有條件,由引理2可知,系統(tǒng)(2)至少存在4個(gè)不同的ω-正周期解。所以,系統(tǒng)(1)至少存在4個(gè)不同的ω-正周期解。證畢。

        3 舉例

        例1考慮以下非自治浮游生物競(jìng)爭(zhēng)系統(tǒng)存在多個(gè)正周期解。

        (16)

        這里:

        利用MATLAB軟件計(jì)算,可得:

        通過(guò)以上分析可知,定理1中的條件(H1)和(H2)成立。因此,由定理1可知,生物系統(tǒng)(16)至少存在4個(gè)不同的正周期解,周期為2。

        4 總結(jié)

        我們通過(guò)使用微分不等式技巧和Mawhin連續(xù)定理,獲得離散型非自治浮游生物系統(tǒng)(1)至少存在4個(gè)不同正周期解的充分條件。由定理1的證明過(guò)程可知,如果系統(tǒng)(1)中h1(k)=h2(k)≡0,我們只能獲得系統(tǒng)(1)存在1個(gè)正周期解,由于我們無(wú)法得到4個(gè)不同的Ωi(i=1,2,3,4),且滿足Ωi∩Ωj=φ(i≠j,i,j=1,2,3,4)。因此,在離散生態(tài)系統(tǒng)中,增加收獲項(xiàng)h(k)會(huì)影響其多個(gè)周期變化規(guī)則和局部穩(wěn)定的周期現(xiàn)象。

        猜你喜歡
        解性種群定理
        邢氏水蕨成功繁衍并建立種群 等
        山西省發(fā)現(xiàn)刺五加種群分布
        J. Liouville定理
        k-Hessian方程徑向解的存在性與多解性
        R2上對(duì)偶Minkowski問題的可解性
        A Study on English listening status of students in vocational school
        “三共定理”及其應(yīng)用(上)
        方程的可解性
        Individual Ergodic Theorems for Noncommutative Orlicz Space?
        ∑*-嵌入子群對(duì)有限群的可解性的影響
        国产精品无码v在线观看| 国产剧情一区二区三区在线| 美女与黑人巨大进入免费观看| 国产精品亚洲一区二区三区16| 午夜国产视频一区二区三区| 亚洲图片日本视频免费| 免费人成再在线观看视频| 久久99精品国产麻豆| 人妻无码人妻有码中文字幕| 国产精品搭讪系列在线观看| 精品无码一区在线观看| 国产精品va在线播放我和闺蜜| 福利一区在线观看| 国产乱子伦精品免费女| 国产不卡视频一区二区在线观看| 精品女同一区二区三区在线播放器 | 穿着白丝啪啪的av网站| 999zyz玖玖资源站永久| 狠狠精品久久久无码中文字幕 | 免费AV一区二区三区无码| 窄裙美女教师在线观看视频| av网站影片在线观看| 国产丝袜长腿在线看片网站| av色一区二区三区精品 | 免费人成视频xvideos入口| 国产乱妇乱子在线视频| 另类欧美亚洲| 一区二区视频资源在线观看| 亚洲国产精品综合福利专区 | 一本色综合亚洲精品蜜桃冫| 把女人弄爽特黄a大片| 久久亚洲道色综合久久| 狠狠综合久久av一区二区蜜桃 | 亚洲一区二区三区香蕉| 亚洲一区二区三区在线网站| 免费无码又爽又刺激又高潮的视频 | 久天啪天天久久99久孕妇| 精品人妻av区二区三区| 日本中文字幕婷婷在线| 无码吃奶揉捏奶头高潮视频| 国产成人午夜精品免费视频|