單秀娟 胡芷君 邵長偉 唐 政
捕撈誘導魚類生物學特征進化研究進展*
單秀娟1,2①胡芷君1,3邵長偉1,2唐 政1,3
(1. 中國水產科學研究院黃海水產研究所 農業(yè)農村部海洋漁業(yè)可持續(xù)發(fā)展重點實驗室 山東省漁業(yè)資源與生態(tài)環(huán)境重點實驗室 青島 266071;2. 青島海洋科學與技術試點國家實驗室海洋漁業(yè)科學與食物產出過程功能實驗室 青島 266071;3. 上海海洋大學海洋科學學院 上海 201306)
隨著捕撈強度加大,漁業(yè)生物為了應對捕撈壓力、維持種族繁衍,逐漸產生適應性進化,這一過程稱為捕撈誘導進化(Fishing-induced evolution, FIE),通常表現(xiàn)為漁業(yè)生物個體變小、性成熟提前,個體對捕撈的敏感性增強,進一步導致漁業(yè)種群結構簡單、生態(tài)系統(tǒng)穩(wěn)定性下降和漁業(yè)經濟效益降低。認知捕撈誘導的漁業(yè)生物適應性進化,掌握捕撈對漁業(yè)種群的作用機制,有利于制定科學合理的漁業(yè)資源養(yǎng)護與管理策略。雖然FIE方面已進行了大量研究,但FIE在生理、生態(tài)及基因層面上對漁業(yè)生物的具體影響過程尚未明確,尤其是在氣候變化、多物種相互作用等的動態(tài)環(huán)境中,F(xiàn)IE的作用方式更為復雜。作者綜述了魚類FIE的主要研究方法,總結了捕撈對大個體的選擇性在魚類生長、性成熟和行為方面的影響,并分析了這種影響對漁業(yè)種群恢復與管理產生的效應,以及今后需要解決的關鍵科學問題,旨在為FIE的進一步深入研究和漁業(yè)資源的科學管理提供幫助。
魚類;捕撈誘導進化;漁業(yè)資源;生物學特征;進化影響評估
漁業(yè)資源是人類食物的重要來源之一。但是,隨著捕撈強度加大,全球已有超過30%的漁業(yè)資源遭受過度捕撈,約60%處于完全開發(fā)階段(FAO, 2016)。為了適應捕撈壓力、維持種群繁衍,漁業(yè)生物會在短時間內發(fā)生適應性進化,這個過程稱為捕撈誘導進化(Fishing-induced evolution, FIE) (J?rgensen, 2007)。Rutter (1902)首次提出捕撈可能使魚類退化,但由于不符合當時物種進化緩慢的觀念,且缺乏相關理論支撐,同一時期很多類似研究都未受到重視,如Cooper等(1953)、Handford等(1977)和Borisov (1978)。20世紀末,研究發(fā)現(xiàn)過度捕撈導致大西洋鱈()生物量嚴重下降、性成熟年齡提前和體長變小(Olsen, 2004; Hutchings, 2004),恢復過程也變得十分緩慢(Sinclair, 2002),人們開始認識到捕撈可能誘導海洋生物發(fā)生快速進化并阻礙種群恢復(Kuparinen, 2007)。21世紀初,F(xiàn)IE逐漸成為漁業(yè)資源研究的熱點問題之一。我國關注到FIE問題是在20世紀60年代,研究人員從“四大家魚”中觀察到“魚類小型化”現(xiàn)象(朱成德等, 1979)。此后,在海洋捕撈和人工繁殖過程中,漁業(yè)生物也被發(fā)現(xiàn)存在小型化和性早熟現(xiàn)象(詹秉義等, 1986; 陳景元, 1985)。截止目前,F(xiàn)IE已經是一個普遍的生態(tài)學現(xiàn)象,影響著漁業(yè)生物的生物學、生理、行為和遺傳結構等(付輝云等, 2015; Uusi-Heikkil?, 2008; Kokkonen, 2015),進而對漁獲物質量、產量以及整個生態(tài)系統(tǒng)產生重要影響(J?rgensen, 2013; Kuparinen, 2016)。
為了掌握捕撈對漁業(yè)生物進化的作用機制,制定合理的漁業(yè)資源管理策略,需要對FIE進行深入研究。近年來,F(xiàn)IE的研究有很多,主要以魚類作為研究對象,研究內容集中在捕撈對魚類生活史特征和遺傳結構的影響(Walraven, 2010; Diaz, 2015; Cuveliers, 2011)、探索多種研究方法在捕撈進化效應的應用(Pauli, 2014; 李莉等, 2016; Laugen, 2014)、FIE在種群和生態(tài)系統(tǒng)水平上的影響及其對漁業(yè)經濟和管理的意義(Enberg, 2009; Eikeset, 2013)等。然而,由于受到氣候變化、污染和圍填海等多種因素影響(樊偉等, 2001),研究FIE的具體過程與機制難度較大,多數(shù)研究結論只是理論或實驗預測,還缺少確切的野外觀測證據(jù)(Heino, 2015; Hard, 2008)。我國尚未進行FIE的系統(tǒng)研究,少量相關研究主要探究魚類生物學特征、種群結構變動及其管理對策(李忠義等, 2017; 朱曉光等, 2009),以及網具選擇性、捕撈和環(huán)境變化對魚類生物學特征和種群結構的影響(林群等, 2016; 孫鵬, 2013)等。本文綜述了國內外FIE的相關研究結果,總結了FIE的主要研究方法和主要的捕撈方式(底拖網)在魚類生長、性成熟和行為方面的影響,分析了其對種群恢復及漁業(yè)資源管理的意義,旨在為FIE的進一步研究和漁業(yè)資源管理提供參考資料。
研究FIE的難點之一在于如何厘清環(huán)境和捕撈壓力、區(qū)分表型可塑性和進化作用,至今還沒有一個十分有效的方法。20世紀末以前,主要利用簡單的回歸統(tǒng)計方法分析野外調查數(shù)據(jù),但不能有效排除環(huán)境作用(Bigler, 1996)。之后的研究方法可大致分為4種,分別應用于不同方面的FIE研究,并各有其優(yōu)缺點(Conover, 2009a) (表1)。
一是野外生態(tài)學的方法,利用野外調查數(shù)據(jù)構建統(tǒng)計模型,用于排除環(huán)境影響。其中,使用最多的是概率成熟反應范式(Probabilistic maturation reaction norms, PMRN),該模型假設環(huán)境變化通過生長作用于性成熟,即未成熟魚類在發(fā)育到性成熟的生長過程中已包含了影響性成熟的所有因素,其性成熟概率變化反映的是魚類自身的變化——遺傳進化。因此,PMRN方法可以在缺少遺傳數(shù)據(jù)的情況下揭示魚類的進化可能性,而且所需的年齡、體長和性成熟數(shù)據(jù)較容易獲取、使用方法簡單(Dieckmann, 2007)。但是,由于魚類性成熟所受的部分外界影響因素可能并不影響其生長,因此,并未包含在此性成熟概率中,概率變化未能完全證實適應性進化的存在(Kraak, 2007)。
表1 捕撈誘導進化(FIE)的研究方法及其優(yōu)缺點
Tab.1 Research methods of fishing-induced evolution (FIE) and their advantages and shortages
二是實驗生態(tài)學方法,已廣泛且有效地應用于各個研究領域。在FIE研究上也不例外,其應用范圍包括探究捕撈對魚類行為的影響(Sutter, 2012)、量化生物學特征的演化速率(Audzijonyte, 2013)、觀測特征之間的共同演變(Cooke, 2007)和結合分子技術探究捕撈選擇的遺傳機制(Wijk, 2013; Uusi-Heikkil?, 2017)等。在人為控制的不同捕撈壓力條件下,Conover等(2002)首次為海洋魚類的FIE提供了實驗證據(jù)。
三是數(shù)值模擬,得益于數(shù)據(jù)分析技術的發(fā)展,使用計算機模擬魚類生活史動態(tài)有利于從中得出FIE的作用規(guī)律。如今,數(shù)值模擬方法多用于探究網具選擇性的影響程度(J?rgensen, 2009)、過度開發(fā)時魚類的恢復情況(Dunlop, 2009; Kuparine, 2012)以及量化FIE對漁業(yè)經濟效益的影響(Zimmermann, 2015)等,但模擬結果與野外情況的一致性還需進一步驗證。
四是遺傳學方法,由于野外遺傳數(shù)據(jù)缺乏,該方法一般結合實驗生態(tài)學方法進行。根據(jù)已有的物種遺傳信息,使用微衛(wèi)星(Simple Sequence Repeats, SSR)和單核苷酸多態(tài)(Single nucleotide polymorphism, SNP)等基因標記,進行種內不同個體的比較,從而探究捕撈對魚類遺傳組成產生的影響(李莉等, 2016)。隨著第二代測序技術的發(fā)展,采用基因組學的方法可以實現(xiàn)群體間大量位點的序列分析,識別出與選擇作用相關的位點,并通過分析位點在個體內的功能,推測適應性進化機制,這將成為日后FIE研究的最有力的手段(Elmer, 2016; 柳瑩等, 2016)。
使用具有選擇性的捕撈網具以及在漁場、漁汛期定點定時作業(yè)都可能對漁業(yè)生物產生選擇性,使生物種群向著適應選擇壓力的方向演變(Hsieh, 2010; Heino, 2015)。這里所說的選擇性與漁業(yè)管理上的有所不同,后者以漁獲的種類數(shù)區(qū)分,漁獲種類多則選擇性小,而這里所說是以生物的某一特征(體型、行為等)進行分類,如刺網較多選擇體高且在一定體長范圍內的個體,因此,刺網捕撈都具有高選擇性,而且由于選擇對象不同,其誘導進化方向和速率也有差異。捕撈誘導進化,一方面是因為捕撈大量移出體型較大的個體,同時也對基因型進行了定向選擇(Liang,2014);另一方面捕撈使物種組成、棲息環(huán)境和種群密度等發(fā)生變化,從而通過改變營養(yǎng)關系、生活環(huán)境和生活習性間接影響魚類生活史特征(Ricker, 1981),其特征進化主要表現(xiàn)在生長、性成熟和行為等方面(圖1) (Heino, 2015)。
大多數(shù)捕撈網具是對魚類個體大小的直接選擇,往往導致魚類向個體變小的方向演變(Rutter, 1902)。多數(shù)水域都出現(xiàn)了魚類小型化現(xiàn)象,如小個體漁獲物的比例不斷增加等(劉其根等, 2005)。有關捕撈影響魚類生長的研究已有許多報道,但是,由于個體生長是魚體內部生理條件和能量分配的體現(xiàn),也受溫度、餌料、棲息環(huán)境和捕食者等多種外部因素影響,研究難度較大,研究結果的差異也較大(Enberg, 2012)。
Ricker (1981)通過分析1951~1979年的漁業(yè)捕撈數(shù)據(jù),發(fā)現(xiàn)5種太平洋鮭(spp.)在不同時期都存在不同程度的平均體長、體重下降現(xiàn)象,與溫度、鹽度之間沒有顯著的相關關系,指出捕撈是導致魚類生長變化的最主要原因,這與之后的大部分研究結論一致(Enberg, 2012)。Conover等(2002)利用實驗生態(tài)學的方法,發(fā)現(xiàn)捕撈90%大個體使銀漢魚()在4個世代內體重下降了0.8 g,生長率下降了0.1 mm/d。Conover等(2002)認為,魚類為了適應捕撈壓力,把更多能量投入到性成熟和繁殖,使其用于生長的能量減少,導致生長變慢。同時,捕撈總是選擇生長快、體長大的個體,可能導致生長快的基因型減少,生長慢的基因更多地遺傳給后代。但也有大量研究表明,大規(guī)模捕撈使魚類生長率增加,如伊利湖鱸魚() (Spangler, 1977)、北海鰈() (Walraven, 2010)、小黃魚() (單秀娟等, 2011)等。根據(jù)已有研究,造成結果差異的可能原因:一是研究對象的生活史策略不同,魚類用于繁殖和生長的能量分配有所差異,生長快、壽命短的魚類更傾向于增加自身繁殖力來維持種群繁衍(Silva, 2013; Morbey, 2018);二是研究方法不同,實驗生態(tài)學方法模擬的捕撈強度往往過大,且未考慮物種相互作用、密度效應、生境變化等影響因素(Andersen, 2009),而在自然環(huán)境中捕撈使種群密度降低、相對餌料豐度增加可能掩蓋魚類生長減慢的現(xiàn)象(Edeline, 2007);三是捕撈的選擇性使魚類生物學特征發(fā)生共同演變(Walsh, 2006),如某些魚類攝食率下降、覓食行為減少等(Walsh, 2006)。由于影響魚類生長的因素很多,且過程復雜,不能單從表型特征分析中得出結論,需從生理和分子層面上進一步研究。
如今,研究普遍認為,捕撈可能誘導魚類發(fā)生適應性進化,而不是以往所認為的表型可塑性變化(J?rgensen, 1990)。Hauser等(2002)對新西蘭笛鯛()群體的研究發(fā)現(xiàn),遭受捕撈后其SSRs的雜合度和等位基因頻率不斷下降,群體遺傳多樣性隨生物量的減少而下降。van Wijk等(2013)對孔雀魚()進行的捕撈生態(tài)學實驗發(fā)現(xiàn),持續(xù)3個世代捕撈75%大個體,雄性孔雀魚的進化速率是自然種群的2~5倍,平均體長下降了6.5%,位于Y染色體上的體長調控基因發(fā)生顯著變化。最近的研究發(fā)現(xiàn),斑馬魚()的多個基因對捕撈作出響應,與其胚胎代謝、晝夜節(jié)律、壓力響應、免疫系統(tǒng)等過程有關(Uusi-Heikkil?, 2015)。同時,捕撈還通過影響胰島素通路的能量代謝調控基因,影響魚類壽命(Roff, 2007)。Uusi-Heikkil?等(2017)認為,在捕撈過程中的魚類遺傳響應方面,基因表達變化比基因序列變化更有說服力。研究表明,選擇性捕撈大個體使魚類種群的差異表達基因增加了20%,其平均等位基因頻率變化普遍高于非差異表達基因,魚類可能在RNA加工和代謝、蛋白質代謝、核糖體合成和氮化合物代謝等方面響應捕撈。但基因差異表達的具體機制尚未明確,捕撈誘導魚類遺傳進化的對應關系還不清楚。除此之外,有研究表明,在某些情況下,氣候等環(huán)境變化對魚類生長的影響超過捕撈因素(Perez- Rodriguez, 2013),甚至改變魚類遺傳結構(Edeline, 2007)。氣候變化(Brander, 2007)、魚類種間競爭(Gobin, 2015)和生境變化(楊吝, 2005)等多方面因素可能加快或減弱FIE,需要進行綜合考慮。
魚類性成熟的主要影響因素包括體長、溫度和捕撈(陳新軍, 2004)。在捕撈誘導的特征演變中,魚類性成熟相關的研究最多,一方面是因為性成熟特征的改變對種群繁殖、恢復和漁業(yè)經濟效益有重要意義(詹秉義, 1995; Conover, 2002);另一方面,性成熟方面數(shù)據(jù)較多。眾多研究都表明,魚類為了適應捕撈壓力而提前性成熟(Heino, 2015)。這種變化可以用生活史進化理論來解釋,魚類性成熟年齡和體長大小與其生命活動中的權衡和適合度有關(聶海燕等, 2007)。魚類進化成性早熟個體能縮短生長時間,降低發(fā)育至性成熟的死亡風險,并且有更多的能量用于繁殖,增加繁殖力(Conover, 2002),從而提高適合度,但同時個體競爭力和后代存活率會相應降低(Swain, 2011)。對魚類而言,在高強度的捕撈壓力下增加繁殖投入獲得的收益遠大于增加生長獲得的收益,因此,捕撈可能促使魚類向初次性成熟年齡和體長變小的方向演變(Kokkonen, 2015; Heino, 2013)。但也有學者認為,捕撈引起的魚類性成熟進化程度不明顯或不存在進化,其研究對象大多為短生命周期種群,如沙丁魚() (Silva, 2013)、鯡() (Engelhard, 2004),可能是由于短生命周期魚類在自然環(huán)境中也經歷著較高的死亡率并且性成熟較早,捕撈作用對其影響較小,可在短時間內恢復(Feiner, 2015)。
捕撈誘導的魚類性成熟特征變化是否可遺傳的問題仍存在爭議,如何區(qū)分溫度、餌料、物種相互作用等引起的表型可塑性變化和捕撈誘導的適應性進化還沒有有效的方法(Perez-Rodriguez, 2013)。目前,使用PMRN方法進行了大量研究(Kuparinen, 2007),其中,大部分結果表明,魚類性成熟體長和年齡的變化存在進化可能性(Haugen, 2001)。如Pardoe等(2009)使用PMRN方法分析了1964~1999年大西洋鱈的性成熟變化,發(fā)現(xiàn)其成熟體長和年齡的降低不完全依賴于密度效應、生長可塑性變化和環(huán)境因子(溫度、餌料豐度等)。結合遺傳學方法,研究表明,捕撈過程中大西洋鱈在某些位點表現(xiàn)出高度分化,與PMRN中點的變化趨勢存在相關性,而且其等位基因頻率變化不能完全解釋為群體洄游過程中的雜交或基因流,更多的是捕撈作用(Therkildsen, 2013)。但也有部分研究表明,魚類遺傳結構變化與溫度存在一定相關性,魚類生物學特性進化可能同時受到捕撈和環(huán)境的影響,二者間的相對影響程度及相互作用還需要更多關注(Perez-Rodriguez, 2013)。
魚類性成熟提前可能導致多種后果,如繁殖力變化(Walsh, 2006)、卵徑變小、孵化率降低、幼體存活率下降等(Conover, 2002)。其中,魚類的繁殖力變化主要表現(xiàn)為魚類相對性腺重變化、產卵前后體重差值變化和親體體重變化等。以能量密度作為繁殖輸出指標,有研究發(fā)現(xiàn),親體在繁殖期間體重顯著下降,蛋白質和脂肪比例存在雌雄差異,更多能量被用于繁殖(Walraven, 2010)。但還沒有足夠證據(jù)能說明繁殖力的變化是由捕撈造成的,相反這些變化更可能與溫度變化有關(O'Malley, 2013)。雖然捕撈引起魚類繁殖力的適應性進化還未得到證實,但由于魚類繁殖直接影響種群補充量,如果管理不當可能導致種群滅絕(詹秉義, 1995),因此,需要對漁業(yè)資源進行針對性管理。
捕撈的選擇性還體現(xiàn)在魚類行為上,包括攝食、求偶、育幼和洄游等(Cooke, 2007; Quinn, 2007),這些行為的改變在一定程度上影響魚類生長、繁殖和分布。目前,這方面還鮮有研究,主要原因是魚類行為的觀測難度較大、缺乏有效數(shù)據(jù)(Leclerc, 2017)。雖然已有較多技術用于追蹤魚類的洄游路線(Walsh, 2006; Handegard, 2005),如體外和體內標記、數(shù)據(jù)儲存式標記、聲吶和回聲探測儀追蹤等,但很少應用到FIE研究上。已有研究大多使用實驗生態(tài)學方法進行,研究比較深入的是大口黑鱸()實驗(Philipp, 2015)。由于捕撈往往選擇較活躍、大膽和受影響程度高的魚類個體(Diaz, 2015),經過多個世代的釣捕選擇,大口黑鱸留存?zhèn)€體對網具的敏感性增強,并將其遺傳給后代(Philipp, 2009)。此外,伴隨著生長變化、食物需求降低、代謝減慢、對捕食者的警惕性降低等多種生理和行為特征變化(Redpath, 2009; Cooke, 2007)。斑馬魚的生態(tài)學實驗表明,捕撈使控制血清素合成的調控基因發(fā)生變化,從而影響了褪黑色素合成量,最終影響魚類的攝食能力和攻擊性(Uusi- Heikkil?, 2015),這可能是捕撈影響魚類行為的內在機制。由于魚類的行為習慣與體長相關,并具有一定遺傳能力,因此,捕撈也可能通過直接影響魚類行為(如攝食、活躍度、棲息地選擇等)作用于其生長和性成熟(Biro, 2008)。
持續(xù)高強度的捕撈會使魚類生活史、生理、行為和遺傳等特征發(fā)生變化,進一步改變種群動態(tài)(Dunlop, 2015),降低種群穩(wěn)定性(Kuparinen, 2016),最終影響種群恢復。但是,早在20世紀末關于海洋魚類滅絕風險評估,研究人員沒有考慮魚類生物學特征和遺傳進化,導致當今漁業(yè)種群可能正面臨著潛在的滅絕風險(Musick, 1999)。據(jù)Hutchings (2000)統(tǒng)計,11科38種魚類中大多數(shù)種類在15年內生物量降低了45%~99%,而且在之后的15年內,其生物量幾乎沒有恢復。
FIE對種群恢復影響的研究較少,主要采用實驗生態(tài)學和數(shù)值模擬方法,大部分研究結果表明,F(xiàn)IE對魚類生物學特征的恢復起阻礙作用。Conover等(2009b)通過生態(tài)學實驗發(fā)現(xiàn),在相同的捕撈和恢復時間間隔內,銀漢魚幼魚生長幾乎完全恢復,成魚體長只恢復了50%。這是首次使用實驗生態(tài)學方法探究遭受捕撈后魚類的恢復能力,但實驗只簡單考慮了幼魚和成魚的體長恢復情況,且實驗中較少的產卵群體數(shù)量(約100尾)可能影響實驗結果。Uusi-Heikkil?等(2017)研究發(fā)現(xiàn),在捕撈過程中差異表達的基因,在恢復階段仍差異表達,涉及蛋白質的轉運和定位、胰島素信號通路等過程,可能因此影響種群恢復?;诖笪餮篦L生態(tài)和演變動態(tài)(個體生長繁殖、密度依賴效應和環(huán)境變化)模擬捕撈,Enberg等(2009)發(fā)現(xiàn),種群生物量恢復時間隨捕撈強度和作用時間的增加而增加,當捕撈時間少于100年、捕撈率低于50%時,才能在較短時間內恢復到初始水平?;谖锓N保護目的,且不考慮環(huán)境因素,Kuparinen等(2012)的模擬結果與Enberg等(2009)的基本一致,此外還發(fā)現(xiàn),由于發(fā)生進化,大西洋鱈的成熟體長和年齡恢復十分緩慢,恢復水平也低于捕撈前。但是,在捕撈進化作用下,魚類親體與補充量的恢復可能加快,保證了種群繁衍。為進一步探究捕撈對種群恢復的影響程度,今后可考慮在模型中加入性別選擇(Hutchings, 2010)、棲息地指數(shù)(楊吝, 2005)及基因交流(Pukk, 2013)等影響因素。
捕撈誘導魚類生活史特征和行為等發(fā)生適應性進化,不僅增加種群恢復時間而且加大種群恢復的不確定性(Neubauer, 2013)。為了加快種群恢復,首先需要全面了解漁業(yè)資源動態(tài)(Heino, 2015),考慮采用聲學探測技術監(jiān)測種群動態(tài)、分子標記評估種群遺傳變化以及在模型中考慮自然因素及遺傳因素等(Langard, 2015;Marty, 2015),從而對漁業(yè)資源進行有效管理。
FIE,一方面改變魚類生物學特征和種群豐度,影響其經濟價值和產量(Eikeset, 2013);另一方面降低物種多樣性和遺傳多樣性,影響生態(tài)系統(tǒng)穩(wěn)定和健康(Pinsky, 2014)。雖然FIE的作用機制還不明確,但不可否認的是,F(xiàn)IE影響著海洋生態(tài)系統(tǒng)服務,特別是食物的可持續(xù)產出。值得注意的是,在捕撈實驗中,捕撈目標為重復產卵群體中的大個體時,漁獲量逐漸下降,而捕撈目標為小個體時,漁獲量幾乎不變(Edley, 1988)。而對單次產卵群體,捕撈大個體和小個體都會使?jié)O業(yè)產量下降(Conover, 2002)。由于實驗處理方法不同,捕撈是否會對不同魚種的漁獲量產生不同的影響,還需要涉及更多魚種的研究??偨Y已有研究,F(xiàn)IE使?jié)O業(yè)經濟效益下降的原因主要有以下幾點:(1) 捕撈導致魚類體長變小,在限定最小網目的政策下,能捕撈到的個體更少,而且魚類平均體重普遍下降(Conover, 2002); (2) 捕撈導致親體數(shù)量大量減少(Walsh, 2006),補充能力下降。雖然有研究表明,魚類把能量更多地投入到繁殖中(Rijnsdorp, 2005),如懷卵量增加,但性成熟提前,導致卵質量下降、孵化率和幼體存活率降低,使補充量遠低于捕撈死亡(Conover, 2002);(3) 捕撈使魚類對網具的敏感性增強且具有遺傳能力,使魚類更難捕獲(Philipp, 2015)。
為了減弱和避免FIE產生不良影響,需要把捕撈誘導的已知和未知的生物、非生物因素及其之間的相互作用納入漁業(yè)管理的范疇,使?jié)O業(yè)經濟效益和生態(tài)效益都保持在可持續(xù)范圍內,這樣的管理稱為基于生態(tài)系統(tǒng)水平的漁業(yè)管理(Ecosystem approach to fisheries, EAF) (Garcia, 2003)。應用這種管理辦法,首先要對各種因素及其產生的效應進行定量。定量FIE影響效應的方法稱為進化影響評估(Evolutionary impact assessment, EvoIA) (Laugen, 2014),評估內容包括捕撈對魚類生物學特征的影響、種群進化動態(tài)、社會經濟動態(tài)和管理策略評估(圖1)。由于實現(xiàn)種群、生態(tài)和經濟效應的定量評估十分困難,已有研究不多。較早使用這種方法的是Mollet (2010),其研究發(fā)現(xiàn),考慮種群的生態(tài)和遺傳過程時,現(xiàn)行的捕撈參考點并不是真正可持續(xù)的,長期實施會導致漁業(yè)產量隨時間不斷下降。隨后,結合生態(tài)遺傳模型和經濟模型提出了生物經濟模型(Bioeconomic model),模型中增加了魚類價格隨漁獲量和需求量波動的過程,研究發(fā)現(xiàn),忽略進化效應會高估捕撈產量和效益,并得出錯誤的管理目標(Zimmermann, 2015)。但是,使用不同的模型和參數(shù)估算方法,可能產生不同甚至相反的結果(Pinsky, 2014),需要對模型進行更多的敏感性分析和驗證。
圖1 捕撈誘導進化(FIE)影響過程及進化影響評估(EvoIA)內容(Laugen et al, 2014)
*指被選擇后剩余群體的特征平均值與選擇前群體特征平均值的差值(朱偉俊等, 2007)
* Refers to the average value difference of characteristics between surplus stock after being selected and stock before being selected (Zhu, 2007)
結合魚類生物學特性和生態(tài)效應制定漁業(yè)資源管理策略,建議:(1) 改進漁具結構,使?jié)O獲物體長組成符合的大個體,這主要應用于休閑漁業(yè)、釣具、陷阱類漁具;(2) 增加種群遺傳和生態(tài)系統(tǒng)水平上的研究,合理規(guī)劃捕撈水域和設置生物學參考點; (3) 降低捕撈力量,建立保護區(qū)。制定漁業(yè)管理政策時,還需要注意兩點,一是不同生活史策略的魚類受FIE影響可能不同;二是FIE也可能通過營養(yǎng)關系作用于沒有遭受捕撈的魚類(張波, 2018)。
FIE是漁業(yè)生物應對過度捕撈所作出的適應性響應。由于其影響范圍廣、作用過程復雜,不能僅僅依靠單一技術手段和單一物種研究,需結合進化種群統(tǒng)計學和數(shù)量遺傳學等方法,建議以功能群為單位,利用基因標記進行長期野外監(jiān)測并盡早開展相關實驗研究。目前,盡管FIE在魚類生物學特征和漁業(yè)資源管理意義方面已經有較多研究,但如何準確預測FIE?其作用方式是改變漁業(yè)種類的生物學特征、種群豐度、行為特征還是遺傳結構?捕撈效應與氣候變化(如溫度升高、極端天氣)之間的相互作用對漁業(yè)生物進化的影響如何?漁業(yè)生物進化對其個體、種群、群落、生態(tài)系統(tǒng)等影響如何進行量化?又是如何進一步影響社會經濟效益?這些問題尚需進一步探究。
Andersen KH, Brander K. Expected rate of fisheries-induced evolution is slow. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(28): 11657–11660
Audzijonyte A, Kuparinen A, Fulton EA. How fast is fisheries- induced evolution? Quantitative analysis of modelling and empirical studies. Evolutionary Applications, 2013, 6(4): 585–595
Barrett RDH, Hoekstra HE. Molecular spandrels: Tests of adaptation at the genetic level. Nature Reviews Genetics, 2011, 12(11): 767–780
Bigler BS, Welch DW, Helle JH. A review of size trends among North Pacific salmon (spp.). Canadian Journal of Fisheries and Aquatic Sciences, 1996, 53(2): 455–465
Biro PA, Post JR. Rapid depletion of genotypes with fast growth and bold personality traits from harvested fish populations. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(8): 2919–2922
Borisov VM. The selective effect of fishing on the population structure of species with long life cycle. 1978, 18
Brander KM. The role of growth changes in the decline and recovery of North Atlantic cod stocks since 1970. ICES Journal of Marine Science, 2007, 64(2): 211–217
Chebib J, Renaut S, Bernatchez L,. Genetic structure and within-generation genome scan analysis of fisheries-induced evolution in a lake whitefish () population. Conservation Genetics, 2016, 17(2): 473–483
Chen JY. Discussion on the degeneration of fish characters in artificial propagation. China Fisheries, 1985(5): 6–7 [陳景元. 關于人工繁殖魚類的性狀退化問題探討. 中國水產, 1985(5): 6–7]
Chen XJ. Fisheries resource and fishing ground. Beijing: China Ocean Press, 2004 [陳新軍. 漁業(yè)資源與漁場學. 北京: 海洋出版社, 2004]
Conover DO, Baumann H. The role of experiments in understanding fishery-induced evolution. Evolutionary Applications, 2009a, 2(3): 276–290
Conover DO, Munch SB, Arnott SA. Reversal of evolutionary downsizing caused by selective harvest of large fish. Proceedings Biological Sciences, 2009b, 276(1664): 2015– 2020
Conover DO, Munch SB. Sustaining fisheries yields over evolutionary time scales. Science, 2002, 297(5578): 94–96
Cooke SJ, Suski CD, Ostrand KG,. Physiological and behavioral consequences of long-term artificial selection for vulnerability to recreational angling in a teleost fish. Physiological and Biochemical Zoology, 2007, 80(5): 480
Cooper, Edwin L. Growth of brook trout () and brown trout () in the Pigeon River. Michigan Academy of Science, 1953, 38: 151–161
Cuveliers EL, Volckaert FA, Rijnsdorp AD,. Temporal genetic stability and high effective population size despite fisheries-induced life-history trait evolution in the North Sea sole. Molecular Ecology, 2011, 20(17): 3555–3568
Dercole F, Rossa FD. A deterministic eco-genetic model for the short-term evolution of exploited fish stocks. Ecological Modelling, 2017, 343: 80–100
Diaz PB, Wiech M, Heino M,. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppyfishery. Journal of Fish Biology, 2015, 86(3): 1030–1045
Dieckmann U, Heino M. Probabilistic maturation reaction norms: Their history, strengths, and limitations. Marine Ecology Progress, 2007, 335(4): 253–269
Dunlop ES, Eikeset AM, Stenseth NC. From genes to populations: How fisheries-induced evolution alters stock productivity? Ecological Applications, 2015, 25(7): 1860– 1868
Dunlop ES, Heino M, Dieckmann U. Eco-genetic modeling of contemporary life-history evolution. Ecological Applications: A Publication of the Ecological Society of America, 2009, 19(7): 1815–1834
Edeline E, Carlson SM, Stige LC,. Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(40): 15799–15804
Edley MT, Law R. Evolution of life histories and yields in experimental populations of. Biological Journal of the Linnean Society, 1988, 34(4): 309–326
Eikeset AM, Richter A, Dunlop ES,. Economic repercussions of fisheries-induced evolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12259–12264
Elmer KR. Genomic tools for new insights to variation, adaptation, and evolution in the salmonid fishes: A perspective for charr. Hydrobiologia, 2016, 783(1): 191–208
Enberg K, J?rgensen C, Dunlop ES,. Fishing-induced evolution of growth: Concepts, mechanisms and the empirical evidence. Marine Ecology, 2012, 33(1): 1–25
Enberg K, J?rgensen C, Dunlop ES,. Implications of fisheries-induced evolution for stock rebuilding and recovery. Evolutionary Applications, 2009, 2(3): 394–414
Engelhard GH, Heino M. Maturity changes in Norwegian spring-spawning herring: Compensatory or evolutionary responses? Marine Ecology Progress, 2004, 272(3): 245–256
Fan W, Cheng YH, Shen XQ. Effects of global environment change and human activity on fishery resources. Journal of Fishery Sciences of China, 2001, 8(4): 91–94 [樊偉, 程炎宏, 沈新強. 全球環(huán)境變化與人類活動對漁業(yè)資源的影響. 中國水產科學, 2001, 8(4): 91–94]
Feiner ZS, Chong SC, Knight CT,. Rapidly shifting maturationschedules following reduced commercial harvest in a freshwater fish. Evolutionary Applications, 2015, 8(7): 724–737
Food and Agriculture Organization of the United Nations (FAO). The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. Rome: 2016, 1–45
Fu HY, Zhang YP, Fang CL,. Growth and structure analysis ofexploited population in Poyang Lake. Jiangxi Fishery Science and Technology, 2015(3): 17–20 [付輝云, 張燕萍, 方春林, 等. 鄱陽湖日本沼蝦捕撈種群生長與結構分析. 江西水產科技, 2015(3): 17–20]
Garcia SM. The ecosystem approach to fisheries: Issues, terminology, principles, institutional foundations, implementation and outlook. FAO Fisheries Technical Paper, 2003, 443: 71
Gobin J, Lester NP, Cottrill A,. Trends in growth and recruitment of Lake Huron lake whitefish during a period of ecosystem change, 1985 to 2012. Journal of Great Lakes Research, 2015, 41(2): 405–414
Handegard NO, Tj?stheim D. When fish meet a trawling vessel: Examining the behaviour of gadoids using a free-floating buoy and acoustic split-beam tracking. Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(10): 2409–2422
Handford P, Bell G, Reimchen T. A gillnet fishery considered as an experiment in artificial selection. Journal of the Fisheries Research Board of Canada, 1977, 34(7): 954–961
Hard JJ, Gross MR, Heino M,. Evolutionary consequences of fishing and their implications for salmon. Evolutionary Applications, 2008, 1(2): 388–408
Haugen TO, V?llestad LA. A century of life-history evolution in grayling. Genetica, 2001, 112–113(1): 475–491
Hauser L, Adcock GJ, Smith PJ,. Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18): 11742–11747
Heino M, Baulier L, Boukal DS,. Can fisheries-induced evolution shift reference points for fisheries management? ICES Journal of Marine Science, 2013, 70(4): 707–721
Heino M, Pauli BD, Dieckmann U. Fisheries-induced evolution. Annual Review of Ecology Evolution and Systematics, 2015, 46: 461–480
Hsieh C, Yamauchi A, Nakazawa T,. Fishing effects on age and spatial structures undermine population stability of fishes. Aquatic Sciences, 2010, 72(2): 165–178
Hutchings JA, Sherrylynn R. Consequences of sexual selection for fisheries-induced evolution: An exploratory analysis. Evolutionary Applications, 2010, 1(4): 645–649
Hutchings JA. Collapse and recovery of marine fishes. Nature, 2000, 406(6798): 882–885
Hutchings JA. Evolutionary biology: The cod that got away. Nature, 2004, 428(6986): 899–900
J?rgensen C, Enberg K, Dunlop ES,. Managing evolving fish stocks. Science, 2007, 318(5854): 1247–1248
J?rgensen C, Ernande B, Fiksen ?. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evolutionary Applications, 2009, 2(3): 356–370
J?rgensen C, Holt RE. Natural mortality: Its ecology, how it shapes fish life histories, and why it may be increased by fishing. Journal of Sea Research, 2013, 75: 8–18
J?rgensen T. Long-term changes in age at sexual maturity of Northeast Arctic cod (L.). ICES Journal of Marine Science, 1990, 46(3): 235–248
Kokkonen E, Vainikka A, Heikinheimo O. Probabilistic maturation reaction norm trends reveal decreased size and age at maturation in an intensively harvested stock of pikeperch. Fisheries Research, 2015, 167: 1–12
Kraak SBM. Does the probabilistic maturation reaction norm approach disentangle phenotypic plasticity from genetic change? Marine Ecology Progress, 2007, 335(2007): 295– 300
Kuparinen A, Boit A, Valdovinos FS,. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Scientific reports, 2016, 6: 22245–22253
Kuparinen A, Hutchings JA. Consequences of fisheries-induced evolution for population productivity and recovery potential. Proceedings Biological Sciences, 2012, 279(1738): 2571– 2579
Kuparinen A, Meril? J. Detecting and managing fisheries-induced evolution. Trends in Ecology and Evolution, 2007, 22(12): 652–629
Langard L, Skaret G, Jensen KH,. Tracking individual herring within a semi-enclosed coastal marine ecosystem: 3-dimensional dynamics from pre- to post-spawning. Marine Ecology Progress, 2015, 518: 267–279
Laugen AT, Engelhard GH, Whitlock R,. Evolutionary impact assessment: Accounting for evolutionary consequences of fishing in an ecosystem approach to fisheries management. Plant Systematics and Evolution, 2014, 15(1): 65–96
Leclerc M, Zedrosser A, Pelletier F. Harvesting as a potential selective pressure on behavioural traits. Journal of Applied Ecology, 2017, 54: 1941–1945
Li L, Zhang GF. The stress adaptation of the marine fishery organisms under the view of genome and its key scientific problems. Bulletin of Chinese Academy of Sciences, 2016, 31(12): 1347–1354 [李莉, 張國范. 基因組視域下海洋漁業(yè)生物對脅迫環(huán)境的適應策略研究. 中國科學院院刊, 2016, 31(12): 1347–1354]
Li ZY, Wu Q, Shan XJ,. Interannual variations in fish community structure in the Bohai Sea. Journal of Fishery Sciences of China, 2017, 24(2): 403–413 [李忠義, 吳強, 單秀娟, 等. 渤海魚類群落結構的年際變化. 中國水產科學, 2017, 24(2): 403–413]
Liang ZL, Sun P, Yan W,. Significant effects of fishing gear selectivity on fish life history. Journal of Ocean University of China, 2014, 13(3): 467–471
Lin Q, Wang J, Yuan W,. Effects of fishing and environmental change on the ecosystem of the Bohai Sea. Journal of Fishery Sciences of China, 2016, 23(3): 619–629 [林群, 王俊, 袁偉, 等. 捕撈和環(huán)境變化對渤海生態(tài)系統(tǒng)的影響. 中國水產科學, 2016, 23(3): 619–629]
Liu QG, Shen JZ, Chen MK,. Advances of the study on the miniaturization of natural economical fish resources. Journal of Shanghai Fisheries University, 2005, 14(1): 79–83 [劉其根, 沈建忠, 陳馬康, 等. 天然經濟魚類小型化問題的研究進展. 上海海洋大學學報, 2005, 14(1): 79–83]
Liu Y, Gao L, Feng JR. Research progress on population genomics of marine fishes. Biotechnology Bulletin, 2016, 32(11): 30–37 [柳瑩, 高麗, 馮俊榮. 海洋魚類種群基因組學研究進展. 生物技術通報, 2016, 32(11): 30–37]
Marty L, Dieckmann U, Ernande B. Fisheries-induced neutral and adaptive evolution in exploited fish populations and consequences for their adaptive potential. Evolutionary Applications, 2015, 8(1): 47–63
Mollet FM. Evolutionary effects of fishing and implications for sustainable management: A case study of North Seas plaice and sole. Doctoral Dissertation of Wageningen University, 2010
Morbey YE, Mema M. Size-selective fishing and the potential for fisheries-induced evolution in lake whitefish. Evolutionary Applications, 2018, 11(8): 1412–1424
Musick JA. Criteria to define extinction risk in marine fishes: American fisheries society initiative. Fisheries, 1999, 24(12): 6–14
Ne HY, Liu JK, Su JP,. Progress in the study of animal life history evolution. Acta Ecologica Sinica, 2007, 27(10): 4267–4277 [聶海燕, 劉季科, 蘇建平, 等. 動物生活史進化理論研究進展. 生態(tài)學報, 2007, 27(10): 4267–4277]
Neubauer P, Jensen OP, Hutchings JA,. Resilience and recovery of overexploited marine populations. Science, 2013, 340(6130): 347–349
Olsen EM, Heino M, Lilly GR,. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature, 2004, 428(6986): 932–935
O'Malley KG, Jacobson DP, Kurth R,. Adaptive genetic markers discriminate migratory runs of Chinook salmon () amid continued gene flow. Evolutionary Applications, 2013, 6(8): 1184–1194
Pardoe H, Vainikka A, Thórdarson G,. Temporal trends in probabilistic maturation reaction norms and growth of Atlantic cod () on the Icelandic shelf. Journal Canadien Des Sciences Halieutiques et Aquatiques, 2009, 66(10): 1719–1733
Pauli BD, Heino M. What can selection experiments teach us about fisheries-induced evolution? Biological Journal of the Linnean Society, 2014, 111(3): 485–503
Perez-Rodriguez A. Morgan J,. Disentangling genetic change from phenotypic response in reproductive; parameters of Flemish Cap cod. Fisheries Research, 2013, 138(3): 62–70
Philipp DP, Claussen JE, Koppelman JB,. Fisheries-induced evolution in largemouth bass: Linking vulnerability to angling, parental care, and fitness. Black Bass Diversity: Multidisciplinary Science for Conservation, 2015, 83: 223–234
Philipp DP, Cooke SJ, Claussen JE,. Selection for vulnerability to angling in largemouth bass. Transactions of the American Fisheries Society, 2009, 138(1): 189–199
Pinsky ML, Palumbi SR. Meta-analysis reveals lower genetic diversity in overfished populations. Molecular Ecology, 2014, 23(1): 29–39
Pukk L, Kuparinen A, J?rv L,. Genetic and life-history changes associated with fisheries-induced population collapse. Evolutionary Applications, 2013, 6(5): 749–760
Quinn TP, Hodgson S, Flynn L,. Directional selection by fisheries and the timing of sockeye salmon () migrations. Ecological Applications, 2007, 17(3): 731
Redpath TD, Cooke SJ, Robert A,. Life-history traits and energetic status in relation to vulnerability to angling in an experimentally selected teleost fish. Evolutionary Applications, 2009, 2(3): 312–323
Ricker WE. Changes in the average size and average age of Pacific salmon. Canadian Journal of Fisheries and Aquatic Sciences, 1981, 38: 1636–1656
Rijnsdorp AD, Grift RE, Kraak SB. Fisheries-induced adaptive change in reproductive investment in North Sea plaice ()? Canadian Journal of Fisheries and Aquatic Sciences, 2005, 62(4): 833–843
Roff DA. Contributions of genomics to life-history theory. Nature Reviews Genetics, 2007, 8(2): 116–125
Rutter C. Natural history of the Quinnat salmon: A report on investigations in the Sacramento River, 1896–1901. Bulletin of the United States Fish Commission, 1902, 22: 65–141
Shan XJ, Li ZL, Dai FQ,. Seasonal and annual variations in biological characteristics of small yellow croakerin the central and southern Yellow Sea. Progress in Fishery Sciences, 2011, 32(6): 7–16 [單秀娟, 李忠爐, 戴芳群, 等. 黃海中南部小黃魚種群生物學特征的季節(jié)變化和年際變化. 漁業(yè)科學進展, 2011, 32(6): 7–16]
Silva A, Faria S, Nunes C. Long-term changes in maturation of sardine,, in Portuguese waters. Scientia Marina, 2013, 77(3): 429–438
Sinclair AF, Swain DP, Hanson JM. Disentangling the effects of size-selective mortality, density, and temperature on length- at-age. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(2): 372–382
Spangler GR, Payne NR, Thorpe JE,. Responses of percids to exploitation. Canadian Journal of Fisheries and Aquatic Sciences, 1977, 34(10): 1972–1982
Sun P. A simulation study of impact of trawl selectivity on traits of fish life history. Doctoral Dissertation of Ocean University of China, 2013 [孫鵬. 拖網選擇性對魚類生活史性狀影響的模擬研究. 中國海洋大學博士研究生學位論文, 2013]
Sutter DAH, Suski CD, Philipp DP,. Recreational fishing selectively captures individuals with the highest fitness potential. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51): 20960–20965
Swain DP. Life-history evolution and elevated natural mortality in a population of Atlantic cod (). Evolutionary Applications, 2011, 4(1): 18–29
Therkildsen NO, Hemmer-Hansen J, Als TD,. Microevolution in time and space: SNP analysis of historical DNA reveals dynamic signatures of selection in Atlantic cod. Molecular Ecology, 2013, 22(9): 2424–2440
Uusi-Heikkil? S, Savilammi T, Leder E,. Rapid, broad-scale gene expression evolution in experimentally harvested fish populations. Molecular Ecology, 2017, 26(15): 3954–3967
Uusi-Heikkil? S, Whiteley AR, Kuparinen A,. The evolutionary legacy of size‐selective harvesting extends from genes to populations. Evolutionary Applications, 2015, 8(6): 597–620
Uusi-Heikkil? S, Wolter C, Klefoth T,. A behavioral perspective on fishing-induced evolution. Trends in Ecology and Evolution, 2008, 23(8): 419–421
van Wijk SJ, Taylor MI, Creer S,. Experimental harvesting of fish populations drives genetically based shifts in body size and maturation. Frontiers in Ecology and the Environment, 2013, 11(4): 181–187
Walraven LV, Mollet FM, Damme CJGV,. Fisheries-induced evolution in growth, maturation and reproductive investment of the sexually dimorphic North Sea plaice (L.). Journal of Sea Research, 2010, 64(1–2): 85–93
Walsh MR, Munch SB, Chiba S,. Maladaptive changes in multiple traits caused by fishing: Impediments to population recovery. Ecology Letters, 2006, 9(2): 142–148
Wang HY, H??k TO. Eco-genetic model to explore fishing-induced ecological and evolutionary effects on growth and maturation schedules. Evolutionary Applications, 2009, 2(3): 438–455
Yang L. Effect of fishing gear and fishing method on benthic community and habitat. Modern Fisheries Information, 2005, 20(3): 15–17 [楊吝. 漁具漁法對底棲群落(Benthic Community)及其棲息地(Habitat)的影響. 漁業(yè)信息與戰(zhàn)略, 2005, 20(3): 15–17]
Zhan BY, Lou DC, Zhong JSAn assessment of the filefish population and rational exploitation of the resource. Journal of Fisheries of China, 1986, 10(4): 409–418 [詹秉義, 樓冬春, 鐘俊生. 綠鰭馬面鲀資源評析與合理利用. 水產學報, 1986, 10(4): 409–418]
Zhan BY. Fishery resources assessment. Beijing: China Agriculture Press, 1995 [詹秉義. 漁業(yè)資源評估. 北京: 中國農業(yè)出版社, 1995]
Zhang B. Feeding ecology of fishes in the Bohai Sea. Progress in Fishery Sciences, 2018, 39(3): 11–22 [張波. 渤海魚類的食物關系. 漁業(yè)科學進展, 2018, 39(3): 11–22]
Zhu CD, Zhong S. Biology and fishery significance of fish breeding and conservation in large and medium lakes in China. Fisheries Science and Technology Information, 1979, 8: 2–5 [朱成德, 鐘世. 論我國大中型湖泊魚類資源繁殖保護的生物學及其漁業(yè)意義. 水產科技情報, 1979, 8: 2–5]
Zhu XG, Fang YY, Yan LJ,. The ecological strategy evolution of marine fishes under high intensity fishing environment. Bulletin of Science and Technology, 2009, 25(1): 51–55 [朱曉光, 房元勇, 嚴力蛟, 等. 高捕撈強度環(huán)境下海洋魚類生態(tài)對策的演變. 科技通報, 2009, 25(1): 51–55]
Zhu WJ, Liang ZL, Xu BD. Preliminary study on the trawl fishing induced phenotypic traits selection differential in fish. Transactions of Oceanology and Limnology, 2007(1): 95–102 [朱偉俊, 梁振林, 徐賓鐸. 拖網選擇性引起的魚類表型性狀選擇差的初步研究. 海洋湖沼通報, 2007(1): 95–102]
Zimmermann F, J?rgensen C. Bioeconomic consequences of fishing-induced evolution: A model predicts limited impact on net present value. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(4): 612–624
Progress in the Study of Fishing-Induced Evolution of Fish Biological Characteristics
SHAN Xiujuan1,2①, HU Zhijun1,3, SHAO Changwei1,2, TANG Zheng1,3
(1.Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Science; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs; Shandong Provincial Key Laboratory of Fishery Resources and Eco-Environment, Qingdao 266071; 2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071; 3. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306)
With the increase of fishing intensity, fish gradually evolve to adapt in response to fishing pressures to maintain the reproduction of the population. This process is called fishing-induced evolution (FIE). Nowadays, many fish in the world have evolved these biological characteristics. For example, Atlantic cod (), small yellow croaker () and other fish became smaller size and earlier mature. These lead to further the simplification of fish population structure, the decline of ecosystem stability and the reduction of fishing economic benefits, finally FIE seriously affects the sustainable development of fish resources in many countries. Therefore, it is essential to recognize the fishing-induced adaptive evolution and grasp the mechanism of fishing effects on fish resources, in order to formulate a scientific and rational strategy for recovery and management of fishing resources. Although FIE has caused wide concerns, the mechanisms underlying the impact of fishing on physiological, ecological and genetic characteristics of fish are not clear, especially in the dynamic environment of climate change and multi-species interactions. The role of FIE is more complex due to a number of influencing factors and the complex evolutionary process. The existing studies mainly focus on fishing-induced changes in fish biological traits, computer-simulated population resilience and fish resource management strategies, but rarely on the mechanisms of FIE. Here, we reviewed the main research methods of fish FIE including methods of field ecology, experimental ecology, numerical simulation, and genetics. We summarized the related research results that fishing affects fish body length, sexual maturity, behavior and other factors, by selecting the larger individuals caught by the most important kind of fishing, bottom trawling, and analyzed the effects on the fish population recovery and management of fish stocks. Finally, we concluded that the key scientific problems to be solved, in order to provide help for further FIE research and scientific management of fish resources.
Fish;FIE; Fisheries resource; Biological characteristics; Evolutionary impact assessment
SHAN Xiujuan, E-mail: shanxj@ysfri.ac.cn
10.19663/j.issn2095-9869.20190221006 http://www.yykxjz.cn/
S937
A
2095-9869(2020)03-0165-11
單秀娟, 胡芷君, 邵長偉, 唐政. 捕撈誘導魚類生物學特征進化研究進展. 漁業(yè)科學進展, 2020, 41(3): 165–175
Shan XJ, Hu ZJ, Shao CW, Tang Z. Progress in the study of fishing-induced evolution of fish biological characteristics. Progress in Fishery Sciences, 2020, 41(3): 165–175
* 國家重點研發(fā)計劃(2017YFE0104400)、山東省泰山學者專項基金項目和青島海洋科學與技術試點國家實驗室“鰲山計劃”優(yōu)秀青年學者專項(2017ASTCP-ES07)共同資助 [This work was supported by the National Key Research Program ofChina (2017YFE0104400), Special Funds for Taishan Scholar Project of Shandong Province, and Aoshan Talents CultivationProgram Supported by Pilot National Laboratory for Marine Science and Technology (Qingdao) (2017ASTCP-ES07)].
單秀娟,研究員,E-mail: shanxj@ysfri.ac.cn
2019-02-21,
2019-04-10
(編輯 馮小花)