賀 美,王迎春,王立剛?,李成全,王利民,李玉紅,劉平奇
深松施肥對黑土活性有機碳氮組分及酶活性的影響*
賀 美1,王迎春1,王立剛1?,李成全2,王利民2,李玉紅2,劉平奇1
(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,北京 100081;2. 黑龍江省綏化市青岡縣農(nóng)業(yè)技術(shù)推廣中心,黑龍江綏化 151600)
探究不同深松施肥措施對黑土活性有機碳氮組分及酶活性的影響對黑土有機質(zhì)保育有重要意義。于東北黑土典型地區(qū)—黑龍江省綏化市試驗點開展為期2年春玉米種植試驗,共設(shè)5個處理:免耕+單施化肥(T1)、深松25 cm+單施化肥(T2)、深松25 cm+化肥有機肥配施(T3)、深松35 cm+單施化肥(T4)和深松35 cm +化肥有機肥配施(T5)處理,分析黑土活性有機碳氮組分和相關(guān)土壤酶活性的變化。結(jié)果表明:深松、施肥及其交互作用均顯著影響土壤活性有機碳氮組分,對顆粒有機碳和顆粒有機氮影響最顯著(<0.001)。相對T1處理,單純改變深松深度(T2和T4處理)會顯著降低土壤活性有機碳氮組分,尤其顆粒有機碳和顆粒有機氮下降幅度最大;深松+化肥有機肥配施則可以顯著增加土壤活性有機碳氮組分含量,與施化肥的T2處理相比,T3處理土壤有機碳、易氧化有機碳、顆粒有機碳和顆粒有機氮含量分別增加8.37%、35.10%、46.64%和42.39%(<0.05);深松能夠提高土壤碳氮穩(wěn)定性,相比T1免耕處理,深松25cm和深松35 cm土壤微生物生物量碳/有機碳、顆粒有機碳/有機碳比例均顯著降低(<0.05),深松35 cm 下土壤顆粒有機氮/總氮比例也顯著降低(<0.05)。深松對土壤乙?;?葡萄糖胺酶、纖維素酶、β-葡萄糖苷酶和木聚糖酶活性均沒有顯著影響,而增施有機肥(T3相對T2處理)顯著提高了土壤纖維素酶活性。綜合而言,深松25 cm+化肥有機肥配施措施能夠保持土壤活性有機碳氮組分含量,是該地區(qū)黑土地保育和有機質(zhì)提升的推薦技術(shù)。
黑土;深松;土壤活性碳組分;土壤活性氮組分;酶活性
土壤有機碳(Soil organic carbon,SOC)為微生物代謝提供能量和底物,并且能夠維持土壤肥力,在農(nóng)業(yè)生態(tài)系統(tǒng)中發(fā)揮舉足輕重的作用[1]。黑土享有“土中之王”美譽,以富含有機質(zhì)和高肥力著稱,我國黑土資源主要分布在東北地區(qū)[2-3]。黑土區(qū)是我國重要的商品糧基地和經(jīng)濟作物主產(chǎn)區(qū),在國家糧食安全和生態(tài)安全方面均發(fā)揮了重大作用[4]。然而,由于近幾十年來的過度開墾及用養(yǎng)失調(diào),黑土區(qū)農(nóng)田土壤有機質(zhì)呈下降態(tài)勢[5]。綏化市位于黑龍江省中南部,是該省重要的黑土區(qū)之一,長期以來大面積的機械化作業(yè)及化肥農(nóng)藥的使用,使得該地區(qū)農(nóng)田土壤耕層變淺、犁底層上移,土壤板結(jié)嚴(yán)重、耕地蓄水滲水及透氣功能下降等,極大地威脅區(qū)域糧食生產(chǎn)及生態(tài)安全[6-8]。因此,改善黑土耕層構(gòu)造,提高黑土有機質(zhì)含量及耕地質(zhì)量迫在眉睫。
眾多研究均表明深松可有效打破犁底層、延展土壤的通透性;而化肥和有機肥可有效提高SOC含量及其有效性[9-10]。土壤總有機碳的變化在短期內(nèi)不易顯現(xiàn),但其活性組分例如溶解性有機碳(Dissolved organic carbon,DOC)、微生物生物量碳(Microbial biomass carbon,MBC)、易氧化有機碳(Readily organic carbon,ROC)和顆粒有機碳(Particulate organic carbon,POC)等對田間管理措施響應(yīng)較快,被認(rèn)為是早期土壤質(zhì)量變化的敏感指標(biāo)[11],微生物生物量氮(Microbial biomass nitrogen,MBN)與顆粒有機氮(Particulate organic nitrogen,PON)是土壤活性有機養(yǎng)分的組分。戚瑞敏[12]、黃威[13]等研究均發(fā)現(xiàn)長期施肥尤其是有機肥顯著增加了土壤活性有機碳氮組分的含量。目前對不同耕作方式下土壤活性有機碳氮組分的研究結(jié)論尚不統(tǒng)一,如Das[14]和Balota[15]等均發(fā)現(xiàn)免耕相對常規(guī)耕作能夠提高微生物量,提升幅度分別為17%和98%,其結(jié)果差異較大。趙穎等[16]在遼寧省棕壤農(nóng)田研究表明,相對常規(guī)耕作,深松能夠顯著提高土壤MBC及MBN56.8%和77.0%,田慎重等[17]發(fā)現(xiàn),耕作方式從旋耕轉(zhuǎn)變?yōu)樯钏珊?,土?~30 cm活性有機碳(Labile organic carbon,LOC)含量提高,但是LOC/SOC比例卻顯著降低。在砂姜黑土農(nóng)田的一項研究發(fā)現(xiàn)[18],相對旋耕,深松后土壤MBC無顯著變化,而MBN則顯著降低了37.9%。土壤中不同碳氮組分的改變是土壤化學(xué)和生物特性共同作用的結(jié)果,但目前深松結(jié)合施肥及二者交互作用對碳氮組分的影響尚不清楚。
土壤微生物在有機質(zhì)分解和養(yǎng)分生物化學(xué)循環(huán)中起關(guān)鍵作用[19],其活性也是評估農(nóng)田管理措施對土壤健康影響的指標(biāo)之一。通常用微生物合成和分泌的胞外酶表征其活性,這些酶類可以調(diào)控土壤生物化學(xué)過程如不穩(wěn)定碳組分的形成和分解。SOC的轉(zhuǎn)化涉及到一系列生物化學(xué)過程動態(tài),水解酶被認(rèn)為是控制SOC分解的必不可少的調(diào)節(jié)者,是SOC形成和分解的最佳代表。纖維素酶分解纖維素為纖維二糖、果糖和葡萄糖,-葡萄糖苷酶可以進一步分解不穩(wěn)定的纖維素和其他碳水化合物聚合物形成低分子量組分[20]。酶活性通常被碳氮有效性限制,研究表明耕作可通過改變底物有效性及微環(huán)境條件影響微生物活性[21],例如相對常規(guī)耕作,免耕條件下微生物因具有良好的微氣候棲息環(huán)境而豐度更高。田間管理措施和土壤外源碳氮添加會引發(fā)酶類產(chǎn)生不同的響應(yīng),進而影響碳氮循環(huán)生態(tài)過程[22-23]。
近年來我國學(xué)者在耕作、施肥方面對土壤性狀影響方面做了大量研究[24-25],但是有關(guān)不同深度深松對黑土土壤活性有機碳氮組分有效性及土壤酶活性的影響鮮有報道,而明確不同深松措施下黑土碳氮有效性特征對于農(nóng)田生態(tài)系統(tǒng)土壤碳氮調(diào)控管理措施及制定科學(xué)有效的管理方式有重要意義。因此,本研究設(shè)置免耕、不同深松深度配合有機肥施用的試驗研究,旨在探索不同深松施肥措施對活性有機碳氮組分及其有效性和土壤酶活性的影響,為黑土區(qū)合理耕層構(gòu)造,改善土壤質(zhì)量提供科學(xué)依據(jù)。
研究區(qū)位于黑龍江省綏化市青岡縣蘆河鎮(zhèn)保家村(46°35′24.9″N,126°08′53.26″E),屬于溫帶大陸性季風(fēng)氣候,全年無霜期140 d左右[9]。2014年和2015年均溫和年降水量分別是2.75oC、4.95oC和 560.6 mm、614.9 mm。供試土壤類型屬黏壤質(zhì)黑土,呈弱堿性,試驗前土壤理化性質(zhì)見表1。
表1 試驗地土壤基礎(chǔ)理化性狀
試驗于2014年4月開始,共設(shè)置5個處理:T1,免耕+單施化肥;T2,深松25 cm +單施化肥;T3,深松25 cm +有機無機配施;T4,深松35 cm +單施化肥;T5,深松35 cm +有機無機配施。深松作業(yè)是利用深松機具在不翻轉(zhuǎn)和打亂原有耕層土壤的條件下,進行一定深度松土的一種耕作方式,具有打破犁底層,改善土壤水、肥、氣、熱條件等優(yōu)勢。本試驗中免耕處理施肥方式為撒施,其余處理則采用深松農(nóng)機具進行深松作業(yè)后均勻溝施肥料。各處理化肥用量均與當(dāng)?shù)剞r(nóng)民習(xí)慣施肥量保持一致,為氮(N)250 kg·hm–2、磷(P2O5)135 kg·hm–2、鉀(K2O)100 kg·hm–2。T3和T5處理有機肥采用商品化的顆粒有機肥(有機質(zhì)含量≥40%,氮磷鉀≥5%),用量為1500 kg·hm–2。供試春玉米品種為“利民33”,行距均值約67 cm。每處理3個重復(fù),共15個小區(qū),各小區(qū)面積50 m2(10 m×5 m)。
于2015年玉米收獲后,采集0~20 cm表層土樣,5點法采樣混合,用冰盒帶回實驗室。一部分風(fēng)干后挑出碎石、植物根系殘渣并過2 mm篩,用以土壤pH、SOC、TN、POC與ROC含量的測定;另一部分過2 mm篩后冷藏,用以MBC、MBN、DOC和酶活性的測定。各指標(biāo)的測定均在48 h內(nèi)完成。具體測定方法為:SOC采用重鉻酸鉀氧化法[26];TN采用凱氏定氮法;DOC采用0.5 mol·L–1硫酸鉀浸提法[27];POC、PON采用5 g·L–1六偏磷酸納分散法[28];MBC、MBN采用三氯甲烷熏蒸法[29];ROC采用333 mmol·L–1高錳酸鉀氧化法[30];木聚糖酶(BXYL)、纖維素酶(CBH)、乙?;?葡萄糖胺酶(NAG)和β-葡萄糖苷酶(BG)活性均采用熒光微型板檢測技術(shù)[31]。
試驗數(shù)據(jù)采用Microsoft Excel 2010、SAS9.1和OriginPro9.1進行數(shù)據(jù)統(tǒng)計、分析與制圖,基于最小顯著差數(shù)法(Least Significant Difference)進行方差檢驗。
SOC含量與各活性碳組分含量以T3處理最高(表2)。T3處理SOC含量較T2、T5處理高7.82%、5.32%,差異顯著(<0.05),而T5處理較T4處理高7.45%(<0.05)。T5處理MBC含量較T4處理高18.45%(<0.05)。T1處理POC含量較T2和T4處理高40.56%和77.62%(<0.05),T3和T5處理POC含量較T2和T4處理高46.64%和57.36%(<0.05)。T2與T3處理、T4與T5處理DOC含量均無顯著差異。T3處理ROC含量較T2、T5處理高35.10%、69.40%,而T2、T4和T5處理ROC含量無顯著差異(<0.05)。TN含量以免耕T1處理含量最高,深松35cm單施化肥的T4處理最低。T3和T5處理PON含量分別顯著高于相同耕作下單施化肥的T2和T4處理,各處理MBN含量無顯著差異。從表3可以看出,不同土壤活性有機碳氮組分對農(nóng)田施肥管理響應(yīng)不同,其中深松顯著影響土壤POC,DOC,ROC和TN含量(<0.05)。施肥極顯著影響SOC、MBC、POC、TN、PON含量(<0.01)、顯著影響 DOC含量(<0.05)。施肥與深松的交互則對POC和PON影響最為突出(<0.01)。
表2 各處理下土壤活性有機碳氮組分變化特征
注:T1:免耕+單施化肥;T2:深松25 cm+單施化肥;T3:深松25 cm + 有機無機配施;T4:深松35 cm + 單施化肥;T5:深松35 cm + 有機無機配施。表中數(shù)值均為平均值±標(biāo)準(zhǔn)差(=3);同列小寫字母不同表示處理間差異達0.05顯著水平;下同。Note:T1:no-till + chemical fertilizer,T2:subsoiling 25 cm(in depth)+ chemical fertilizer,T3:subsoiling 25 cm + chemical fertilizer and organic manure,T4:subsoiling 35 cm + chemical fertilizer,T5:subsoiling 35 cm + chemical fertilizer and organic manure;The numeric values are all of mean ± standard deviation(=3);Different letters in the same column mean significant difference at the 0.05 level. SOC:Soil organic carbon;MBC:Microbial biomass carbon;POC:Particulate organic carbon;DOC:Dissolved organic carbon;ROC:Readily organic carbon;TN:Total nitrogen;PON:Particulate organic nitrogen;MBN:Microbial biomass nitrogen. The same below.
表3 深松與施肥及其交互作用對土壤活性有機碳氮組分的影響
注:雙因素方差分析結(jié)果以值和值顯示,*和**表示施肥或深松或二者交互作用對某一指標(biāo)影響顯著(<0.05)和極顯著(<0.01)。Note:Results of the two-way variance analysis are shown asand,*and **represents that the effect of sub-soiling,fertilization or their interaction on a certain index is significant at<0.05 and<0.01,respectively.
土壤活性有機碳與總有機碳的比例可以反映土壤有機碳的穩(wěn)定程度和有效性,比例越高則表示該碳組分越容易被微生物利用,有效性越高[11]。不同處理碳組分有效性有明顯差異(表4),免耕下MBC/SOC比例顯著高于其余各處理(<0.05),POC/SOC比例以T3處理最高為25.49%,T4處理最低為15.46%。DOC/SOC各處理無顯著差異。ROC/SOC以T3處理最高為20.62%,顯著高于其余各處理(<0.05)。施肥和深松與施肥的交互作用對POC/SOC以及PON/TN均有極顯著影響(<0.01)。
土壤酶活性以β-葡萄糖苷酶(BG)最高,乙酰基β-葡萄糖胺酶(NAG)活性最低(表5)。各處理土壤NAG酶活性無顯著差異。土壤纖維素酶(CBH)活性大小表現(xiàn)為T5>T3>T4>T1>T2,其中T5與T3處理CBH酶活性為90.50 nmol·g–1·h–1和88.76 nmol·g–1·h–1,分別較T1與T2處理高44.72%、47.87%和47.55%、50.76%(<0.05)。BG酶活性與木聚糖酶(BXYL)活性各處理均無顯著差異。雙因素方差分析結(jié)果表明,施肥顯著影響土壤CBH酶活性,深松與施肥的交互作用顯著影響土壤CBH酶活性。
綜合所有處理的活性有機碳氮組分、酶活性等數(shù)據(jù)進行主成分分析(PCA)發(fā)現(xiàn)(圖1),前兩個軸(PC1,PC2)共同解釋了60.58%的變異,第一主成分軸貢獻率為41.24%。T1和T3處理在PC1軸上得分較高,T4與T5處理則在PC2軸得分較高,說明免耕(T1)與深松25 cm有機無機配施(T3)對于土壤活性有機碳氮組分的維持貢獻較大,而深松35 cm有機無機配施(T5)對微生物活性貢獻較大。不同處理碳氮組分含量與酶活性存在明顯差異,碳氮組分以T1與T3處理含量較高,4種酶活性則以T5處理高。相關(guān)性分析表明(表6),SOC與MBC、DOC、PON呈極顯著相關(guān)(<0.01),與POC、TN顯著相關(guān)(<0.05)。MBC與POC、TN、PON極顯著相關(guān)(<0.01),與DOC、MBN顯著相關(guān)(<0.05)。POC與PON極顯著相關(guān)(<0.01),與DOC、TN、MBN顯著相關(guān)(<0.05)。DOC與PON顯著相關(guān)(<0.05)。TN與PON極顯著相關(guān)(<0.01)。NAG與其他三種酶均顯著相關(guān)(<0.05),CBH與BXYL極顯著相關(guān)(<0.01)。
表4 不同處理對土壤活性有機碳氮組分分配比率的影響
注:雙因素方差分析結(jié)果以值顯示,**表示施肥或者深松或者二者交互作用對某一指標(biāo)影響極顯著(<0.01)。Note:Results of the two-way variance analysis of the interaction between subsoiling and fertilization are shown as,and ** indicates that the effect of subsoiling,fertilization or their interaction on a certain index is significant at 0.01 level.
表5 各處理下土壤酶活性變化特征
圖1 土壤活性有機碳氮組分與土壤酶活性之間的主成分分析(PCA)
在農(nóng)田生態(tài)系統(tǒng)中,土壤耕作被認(rèn)為是加速土壤有機碳礦化分解、影響土壤化學(xué)和生物學(xué)性質(zhì)的重要因素,其強度與頻率是影響土壤碳庫周轉(zhuǎn)的關(guān)鍵[32-34]。張四海等[35]研究表明保護性耕作提高了土壤真菌的比例,使得微生物群落組成朝著有利于土壤碳庫積累的方向進行,土壤微生物的生物量增加2.2%~140%。王旭東等[36]研究不同耕作方式對黃土高原黑壚土有機碳庫組成發(fā)現(xiàn),免耕和深松均增加了0~10 cm SOC、MBC和DOC的含量;張磊等[37]利用短期試驗研究發(fā)現(xiàn),耕作農(nóng)田土壤微生物生物量碳含量始終顯著高于免耕土壤(< 0.01)。Calderón等[38]發(fā)現(xiàn)耕作對土壤活性碳庫沒有顯著的影響,不同耕作方式對土壤活性碳組分的影響不一,這可能與不同耕作引起的土壤結(jié)構(gòu)與微環(huán)境變化、供試土壤理化與生物特性等多重因素有關(guān)。本試驗中黑土深松后(2年)土壤活性有機碳氮組分均有一定程度降低,且土壤DOC/SOC、MBC/SOC、POC/SOC比例均有所降低,這與前人研究[17,36]發(fā)現(xiàn)深松后0~10 cm土壤碳庫活度、碳庫活度指數(shù)以及碳庫管理指數(shù)均有所降低,難氧化有機碳量在SOC中占比升高較為一致,但是深松25 cm與深松35 cm在促進土壤SOC穩(wěn)定方面沒有顯著差異,這可能與試驗?zāi)晗揲L短有關(guān)。從目前的試驗結(jié)果看,深松35 cm處理含碳量和各活性碳庫組分含量均低于同等施肥下深松25 cm的處理,可能與深松35 cm對耕層土壤結(jié)構(gòu)的擾動更加劇烈,土壤結(jié)構(gòu)破碎及其有機碳庫的消耗也相對較多有關(guān)。研究表明,有機物料還田可以供給微生物足夠的底物從而加速土壤原有機碳的礦化和植物殘體及有機物料的腐解,釋放更多的活性碳組分促進土壤碳循環(huán)[39]。本試驗中,深松結(jié)合有機無機肥料配施土壤活性有機碳氮組分則有所提升,除深松35 cm下單施化肥(T4)處理和有機無機配施處理(T5)ROC含量無顯著差異外,有機無機肥料配施下土壤SOC和各碳組分含量均高于僅施化肥的處理,這也證實了前人的研究結(jié)論[40]。本研究中免耕處理總有機碳和各活性碳庫組分(除ROC外)均高于和顯著高于深松25 cm單施化肥(T2)及深松35cm單施化肥(T4)的處理,而免耕處理(T1)和T2處理SOC、DOC和ROC含量差異不顯著的主要原因可能是試驗?zāi)晗掭^短及土壤有機碳背景值較高,這還需要長時間的試驗來探究。Liu等[41]研究以常規(guī)耕作處理為對照,得出保護性耕作后土壤MBC/SOC顯著增高的結(jié)論,與本研究結(jié)果的差異主要緣由是耕作處理不一致且研究區(qū)域土壤條件不一致。本試驗得出深松35 cm顯著降低了土壤顆粒有機氮含量及其在土壤氮庫中的比值,隨著土壤深松程度加強,PON下降速率較土壤全氮快,PON/TN比也隨之降低。本研究相關(guān)性分析表明(圖1),土壤活性有機碳氮組分之間關(guān)聯(lián)性較大,土壤碳氮循環(huán)酶活性在空間上排序均較相近,深松后活性氮在全氮中比例的降低可能通過微生物代謝等間接影響土壤活性碳組分比例。
表6 土壤活性有機碳氮組分與土壤酶活性之間的皮爾遜相關(guān)系數(shù)
*,<0.05;**,<0.01
酶類是土壤生態(tài)系統(tǒng)中生物化學(xué)反應(yīng)的催化劑,與土壤有機碳的分解速率及土壤有機碳庫周轉(zhuǎn)模式密切相關(guān)[42],土壤微生物活性極易受環(huán)境因子影響。有研究認(rèn)為深松和免耕均能提高土壤酶活性[43],如深松耕還田能夠顯著提高華北平原農(nóng)田土壤脲酶、蔗糖酶的活性,免耕提高了黃土高原西部旱區(qū)農(nóng)田土壤脲酶活性11.6%、堿性磷酸酶活性12.4%和蔗糖酶活性20.9%[44]。不過也有研究發(fā)現(xiàn)[45],連續(xù)4年免耕覆蓋,玉米農(nóng)田土壤酶活性基本趨于穩(wěn)定,且Liang等[46]研究表明NAG、CBH和BG酶活性可隨作物生育期而變化,其對農(nóng)田管理措施的響應(yīng)也較為復(fù)雜。本實驗表明深松35 cm處理(T5)CBH酶活性顯著高于深松25 cm(T2)和免耕處理(T1),深松后土壤透氣性增強,土壤中好氧微生物比例迅速提高從而增加土壤酶活性。溫度和施肥及其交互作用均能顯著影響土壤酶活性,而各處理NAG、BG和BXYL酶活均無顯著差異,推測其原因為本試驗中各處理土壤溫度差異不明顯,并且本研究中所有有機肥并非農(nóng)家有機肥,而是商品有機肥,其有機質(zhì)的含量較低也可能是造成增施有機肥后酶活性差異不明顯的原因。與免耕提高土壤酶活性的結(jié)論相反[47],本試驗中免耕處理下土壤酶活性均較低,推測可能與土壤理化環(huán)境以及種植作物種類有關(guān),王群等[48]研究發(fā)現(xiàn)土壤微生物數(shù)量隨著土壤容重增加而降低,當(dāng)容重增加(由1.2 g·cm–3增加1.4 g·cm–3)時,細(xì)菌、放線菌和真菌數(shù)量平均減少41.62%、22.25%、30.14%,免耕處理土壤容重相對較高,這可能是造成免耕下酶活性偏低的原因之一。施肥對酶活性的影響因土壤條件、作物種類和肥料類型與用量不同而差異明顯,Wang等[49]研究發(fā)現(xiàn)在半干旱草原土壤,化肥N投入增加會提高土壤團聚體NAG酶活性,但是降低BG酶活性。朱敏等[50]認(rèn)為長期施用有機肥不改變微生物群落結(jié)構(gòu),這可以解釋施用有機肥處理間酶活性沒有顯著差異,但是各處理土壤呼吸速率及土壤溫濕度均不一致,這些均會對土壤酶的產(chǎn)生及其活性高低構(gòu)成不同程度的影響,其原因有待更長時間和更深尺度的試驗來回答。施肥及施肥與深松交互作用顯著影響CBH酶活性,可能由于CBH酶主要來源于細(xì)菌和真菌,微生物群落的微小變動均會對其產(chǎn)生顯著影響,故而施肥對纖維素酶的作用凸顯了出來。
黑土深松顯著降低土壤活性有機碳氮組分含量,相對免耕處理,深松25 cm(T2)顯著降低MBC、POC、DOC 和PON含量7.94%~40.56%(<0.05),深松35cm(T4處理)顯著降低SOC、MBC、POC、DOC、TN和PON含量9.44%~77.62%(<0.05)。深松能夠提高土壤碳氮穩(wěn)定性,深松25 cm和深松35 cm均顯著降低土壤MBC/SOC、POC/SOC比例(<0.05),深松35 cm顯著降低PON/TN比例(<0.05)。相對免耕處理,深松下有機無機肥料配施顯著提高土壤纖維素酶活性。深松、施肥及其交互作用均顯著影響土壤活性有機碳氮組分含量,對POC和PON影響最為突出(<0.001)。綜合而言,深松25 cm下有機無機肥料配施為最優(yōu)的深松耕作施肥措施。
[1] Dungait J A J,Hopkins D W,Gregory A S,et al. Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology,2012,18(6):1781—1796.
[2] Qin Z B,Liu Z Q,Zeng Q Y,et al. Effect of putting the corn stalks on black land on carbon emissions in Northeast China. Journal of Jilin Agricultural Sciences,2011,36(3):37—38. [秦子鎛,劉子琪,曾慶亞,等. 玉米秸稈還田對東北黑土土壤碳排放的影響研究. 吉林農(nóng)業(yè)科學(xué),2011,36(3):37—38.]
[3] Zhang X Y,Sui Y Y,Song C Y. Degradation process of arable mollisols.Soil and Crop,2013,2(1):1—6. [張興義,隋躍宇,宋春雨. 農(nóng)田黑土退化過程. 土壤與作物,2013,2(1):1—6.]
[4] Wang L G,Yang L,He M,et al. Changing of soil organic matter in arable soil of global mollisols and its management technology. Soil and Fertilizer Sciences in China,2016(6):1—7. [王立剛,楊黎,賀美,等. 全球黑土區(qū)土壤有機質(zhì)變化態(tài)勢及其管理技術(shù). 中國土壤與肥料,2016(6):1—7.]
[5] Fang H J,Yang X M,Zhang X P. Organic carbon stock of black soils in Northeast China and its contribution to atmospheric CO2. Journal of Soil and Water Conservation,2003,17(3):9—12. [方華軍,楊學(xué)明,張曉平. 東北黑土有機碳儲量及其對大氣 CO2的貢獻. 水土保持學(xué)報,2003,17(3):9—12.]
[6] Li S,He L W,Dong S Q. Soil erosion hazard in the black soil area of Suihua city and its prevention and control measures. Soil and Water Conservation in China,2008(5):23—24. [李爽,何利偉,董樹清. 綏化市黑土區(qū)水土流失危害及防治對策. 中國水土保持,2008(5):23—24.]
[7] Yan B X,Yang Y H,Liu X T,et al. Present status of soil erosion and evolution tendency of black soil region of Northeast.Soil and Water Conservation in China,2008(12):26—30. [閻百興,楊育紅,劉興土,等. 東北黑土區(qū)土壤侵蝕現(xiàn)狀與演變趨勢. 中國水土保持,2008(12):26—30.]
[8] Liu B Y,Yan B X,Shen B,et al. Current status and comprehensive control strategies of soil erosion for cultivated land in the Northeastern black soil area of China. Science of Soil and Water Conservation,2008,6(1):1—8. [劉寶元,閻百興,沈波,等. 東北黑土區(qū)農(nóng)地水土流失現(xiàn)狀與綜合治理對策. 中國水土保持科學(xué),2008,6(1):1—8.]
[9] He M,Wang Y C,Wang L G,et al. Effect of different tillage managements on carbon dioxide emission and content of activated carbon in black soil. Chinese Journal of Soil Science,2016,47(5):1195—1202. [賀美,王迎春,王立剛,等. 不同耕作措施對黑土碳排放和活性碳庫的影響. 土壤通報,2016,47(5):1195—1202.]
[10] Gao J S,Huang J,Dong C H,et al. Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients. Acta Pedologica Sinica,2014,51(2):314—324. [高菊生,黃晶,董春華,等. 長期有機無機肥配施對水稻產(chǎn)量及土壤有效養(yǎng)分影響. 土壤學(xué)報,2014,51(2):314—324.]
[11] Leifeld J,K?gel-Knabner I. Soil organic matter fractions as early indicators for carbon stock changes under different land-use? Geoderma,2005,124(1/2):143—155.
[12] Qi R M. Responses of soil organic carbon mineralization under different fertilization regimes to temperature changes and cattle manure addition. Beijing:Chinese Academy of Agricultural Sciences,2016. [戚瑞敏. 不同施肥制度潮土有機碳礦化對溫度和牛糞的響應(yīng)及其機制研究. 北京:中國農(nóng)業(yè)科學(xué)院,2016. ]
[13] Huang W,Chen A L,Wang W,et al. Effect of long-term fertilization on active organic carbon and nitrogen in paddy soils(In Chinese). Journal of Agro-Environment Science,2012,31(9):1854—1861. [黃威,陳安磊,王衛(wèi),等. 長期施肥對稻田土壤活性有機碳和氮的影響. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012,31(9):1854—1861.]
[14] Das A,Lal R,Patel D P,et al. Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India. Soil & Tillage Research,2014,143:50—58.
[15] Balota E L,Calegari A,Nakatani A S,et al. Benefits of winter cover crops and no-tillage for microbial parameters in a Brazilian Oxisol:A long-term study. Agriculture,Ecosystems & Environment,2014,197:31—40.
[16] Zhao Y,Zhou H,Ma Q,et al. Soil microbial biomass C and N as affected by fertilization and cultivation systems. Chinese Journal of Soil Science,2014,45(5):1099—1103. [趙穎,周樺,馬強,等. 施肥和耕作方式對棕壤微生物生物量碳氮的影響. 土壤通報,2014,45(5):1099—1103.]
[17] Tian S Z,Guo H H,Dong X X,et al. Effect of tillage method change and straw return on soil labile organic carbon. Transactions of the Chinese Society of Agricultural Engineering,2016,32(s2):39—45. [田慎重,郭洪海,董曉霞,等. 耕作方式轉(zhuǎn)變和秸稈還田對土壤活性有機碳的影響. 農(nóng)業(yè)工程學(xué)報,2016,32(s2):39—45.]
[18] Liu S M,Sun W,Zhang Y,et al. Effects of wheat tillage managements on soil microbial characters and soil enzyme activities in summer maize season in Shajiang black soil. Journal of Maize Sciences,2018,6(1):103—107. [劉淑梅,孫武,張瑜,等. 小麥季不同耕作方式對砂姜黑土玉米農(nóng)田土壤微生物特性及酶活性的影響. 玉米科學(xué),2018,6(1):103—107.]
[19] Cusack D F,Silver W L,Torn M S,et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology,2011,92(3):621—632.
[20] Wickings K,Grandy A S,Reed S C,et al. The origin of litter chemical complexity during decomposition. Ecology Letters,2012,15:1180—1188.
[21] Zuber S M,Villamil M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology & Biochemistry,2016,97:176—187.
[22] Burns R G,DeForest J L,Marxsen J,et al. Soil enzymes in a changing environment:Current knowledge and future directions. Soil Biology & Biochemistry,2013,58:216—234.
[23] Li T,Wang Z T,Liu L,et al. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the northwest dryland. Scientia Agricultura Sinica,2017,50(5):859—870. [李彤,王梓廷,劉露,等. 保護性耕作對西北旱區(qū)土壤微生物空間分布及土壤理化性質(zhì)的影響. 中國農(nóng)業(yè)科學(xué),2017,50(5):859—870.]
[24] Liu E,Teclemariam S G,Yan C,et al. Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma,2014,213:379—384.
[25] Xin X,Zhang J,Zhu A,et al. Effects of long-term(23 years)mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil & Tillage Research,2016,156:166—172.
[26] Nelson D W,Sommers L E. Total carbon,organic carbon,and organic matter// Page A L,Miller R H,Keeney D R. Methods of Soil Analysis,Part2 Chemical and Microbiological Properties. 2nd ed. Wisconsin:Madison,USA,1992:562—564.
[27] Bhargava A,Carmona F F,Bhargava M,et al. Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management,2012,105:103—120.
[28] Lee J H. An overview of phytoremediation as a potentially promising technology for environmental pollution control. Biotechnology and Bioprocess Engineering,2013,18(3):431—439.
[29] Wu J S,Lin Q M,Huang Q Y,et al. Soil microbial biomass—Methods and application. Beijing:China Meteorological Press,2006:117—141. [吳金水,林啟美,黃巧云,等.土壤微生物生物量測定方法及其應(yīng)用.北京:氣象出版社,2006:117—141.]
[30] Wu J,Meng X X,Li K. Phytoremediation of soils contaminated by lead. Soils,2005,37(3):258—264. [伍鈞,孟曉霞,李昆. 鉛污染土壤的植物修復(fù)研究進展. 土壤,2005,37(3):258—264.]
[31] DeForest J L. The influence of time,storage temperature,and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biology & Biochemistry,2009,41(6):1180—1186.
[32] Lenka N K,Lal R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil & Tillage Research,2013,126:78—89.
[33] Jha P,Garg N,Lakaria B L,et al. Soil and residue carbon mineralization as affected by soil aggregate size. Soil & Tillage Research,2012,121:57—62.
[34] Martínez E,F(xiàn)uentes J P,Pino V,et al. Chemical and biological properties as affected by no-tillage and conventional tillage systems in an irrigated Haploxeroll of Central Chile. Soil & Tillage Research,2013,126:238—245.
[35] Zhang S H,Cao Z P,Zhang G,et al. Effects of conversation tillage on soil organic carbon pool. Ecology and Environmental Sciences,2012,21(2):199—205. [張四海,曹志平,張國,等. 保護性耕作對農(nóng)田土壤有機碳庫的影響. 生態(tài)環(huán)境學(xué)報,2012,21(2):199—205.]
[36] Wang X D,Zhang X,Wang Y L,et al. Effects of different tillage methods on soil organic carbon pool composition in dark loessial soil on Loess Plateau. Transactions of the Chinese Society for Agricultural Machinery,2017,48(11):229—237. [王旭東,張霞,王彥麗,等. 不同耕作方式對黃土高原黑壚土有機碳庫組成的影響. 農(nóng)業(yè)機械學(xué)報,2017,48(11):229—237.]
[37] Zhang L. Dynamic characteristics of SMBC and DOC after soil tillage. Journal of Soil and Water Conservation,2008,22(2):146—150. [張磊. 土地耕作后微生物量碳和水溶性有機碳的動態(tài)特征. 水土保持學(xué)報,2008,22(2):146—150.]
[38] Calderón F J,Jackson L E,Scow K M,et al. Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry,2000,32(11/12):1547—1559.
[39] Zhang L,Zhang W J,Xu M G,et al. Effects of long-term fertilization on change of labile organic carbon in three typical upland soils of China. Scientia Agricultura Sinica,2009,42(5):1646—1655. [張璐,張文菊,徐明崗,等. 長期施肥對中國 3 種典型農(nóng)田土壤活性有機碳庫變化的影響. 中國農(nóng)業(yè)科學(xué),2009,42(5):1646—1655.]
[40] Qi R M,Zhao B Q,Li J,et al. Effects of cattle manure addition on soil organic carbon mineralization and priming effects under long-term fertilization regimes. Transactions of the Chinese Society of Agricultural Engineering,2016,32(S2):118—127. [戚瑞敏,趙秉強,李娟,等. 添加牛糞對長期不同施肥潮土有機碳礦化的影響及激發(fā)效應(yīng). 農(nóng)業(yè)工程學(xué)報,2016,32(S2):118—127.]
[41] Liu E,Yan C,Mei X,et al. Long-term effect of chemical fertilizer,straw,and manure on soil chemical and biological properties in northwest China. Geoderma,2010,158:173—180.
[42] Qi R,Li J,Lin Z,et al. Temperature effects on soil organic carbon,soil labile organic carbon fractions,and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology,2016,102:36—45.
[43] Wang Y,Han B,Shi Z Q,et al. Effects of conservation tillage on soil microbial characters and soil enzyme activities. Journal of Soil and Water Conservation,2006,20(4):120—122. [王蕓,韓賓,史忠強,等. 保護性耕作對土壤微生物特性及酶活性的影響. 水土保持學(xué)報,2006,20(4):120—122.]
[44] Miao L,Wang L,Huang G B,et al. Effects of conservation tillage on soil enzymatic activities in rainfed wheat field. Agricultural Research in the Arid Areas,2009,27(1):6—11. [苗琳,王立,黃高寶,等. 保護性耕作對旱地麥田土壤酶活性的影響. 干旱地區(qū)農(nóng)業(yè)研究,2009,27(1):6—11.]
[45] Zhang L H,Huang G B,Zhang R Z. Effects of no-tillage on soil microbial biomass C,N and P in rain-fed agriculture. Gansu Agricultural Science and Technology,2006(12):3—6. [張麗華,黃高寶,張仁陟. 旱作條件下免耕對土壤微生物量碳、氮、磷的影響. 甘肅農(nóng)業(yè)科技,2006(12):3—6.]
[46] Liang G,Houssou A A,Wu H,et al. Seasonal patterns of soil respiration and related soil biochemical properties under nitrogen addition in winter wheat field. PLoS One,2015,10(12):e0144115.DOI:10.1371/journal.pone. 0144115.
[47]Sun J,Liu M,Li L J,et al. Influence of non-tillage and stubble on soil microbial biomass and enzyme activities in rain-fed field of Inner Mongolia. Acta Ecologica Sinica,2009,29(10):5508—5515. [孫建,劉苗,李立軍,等. 免耕與留茬對土壤微生物量C、N及酶活性的影響. 生態(tài)學(xué)報,2009,29(10):5508—5515.]
[48] Wang Q,Yin F,Hao S P,et al. Effects of subsoil bulk density on rhizospheric soil microbial population,microbial biomass carbon and nitrogen of corn(L.)field. Acta Ecologica Sinica,2009,29(6):3096—3104. [王群,尹飛,郝四平,等.下層土壤容重對玉米根際土壤微生物數(shù)量及微生物量碳、氮的影響.生態(tài)學(xué)報,2009,29(6):3096—3104.]
[49] Wang R Z,Dorodnikov M,Yang S,et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland. Soil Biology & Biochemistry,2015,81:159—167.
[50] Zhu M,Guo Z B,Cao C F,et al. Impact of model of fertilization on microbial abundance and enzyme activity in lime concretion black soil. Journal of Nuclear Agricultural Sciences,2014,28(9):1693—1700. [朱敏,郭志彬,曹承富,等. 不同施肥模式對砂姜黑土微生物群落豐度和土壤酶活性的影響. 核農(nóng)學(xué)報,2014,28(9):1693—1700.]
Effects of Subsoiling Combined with Fertilization on the Fractions of Soil Active Organic Carbon and Soil Active Nitrogen,and Enzyme Activities in Black Soil in Northeast China
HE Mei1, WANG Yingchun1, WANG Ligang1?, LI Chengquan2, WANG Limin2, LI Yuhong2, LIU Pingqi1
(1. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Agricultural Technology Extension Center, Qinggang, Heilongjiang 151600, China)
It is of great scientific significance to explore effects of the practice of subsoiling coupled with fertilization on the fractions of activated organic carbon and nitrogen, and enzyme activities in black soil.Based on a 2-year field experiment in Qinggang County, Heilongjiang Province, a black soil region typical of Northeast China, variations of the soil were analyzed in fractions of dissolved organic carbon (DOC), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), particulate organic carbon (POC), particulate organic nitrogen (PON), and readily oxidizable organic carbon (ROC), and in activity of N-acetylglucosaminnidase (NAG), Cellobiohydrolase (CBH), β-glucosidase (BG) and β-xylosidase (BXYL) with treatment in the experiment, which consisted of five treatments, including no-till + chemical fertilizer (T1), subsoiling 25 cm (in depth)+ chemical fertilizer (T2), subsoiling 25 cm + chemical fertilizer + organic manure (T3), subsoiling 35 cm + chemical fertilizer (T4), sub-soiling 35 cm + chemical fertilizer+ organic manure (T5).Results showed that both subsoiling and fertilization and their interactions significantly affected the contents of soil activated carbon and nitrogen, particularly of POC and PON; Subsoiling (T2 and T4) significantly reduced the contents of soil activated organic carbon and nitrogen components with varying degree relative to depth of subsoiling, T2 was significantly lower than T1 (<0.05) in POC and PON content; T3 and T5 significantly increased the contents of soil activated organic carbon and nitrogen. T3 was 8.37%, 46.64%, 35.10% and 42.39% (<0.05) higher than T2 in content of SOC, POC, ROC and PON. Besides, subsoiling improved stability of the soil activated organic carbon and nitrogen components. Compared with T1, subsoiling treatments significantly reduced the ratios of MBC/SOC and POC/SOC in the soil (<0.05), and subsoiling 35 cm in depth significantly decreased the ratio of PON/TN (<0.05); T2 and T4 did not differed much from T1 in enzyme activity, whereas T3 significantly increased CBH activity relative to T2.To sum up, subsoiling 25 cm in depth combined with application of chemical fertilizer and organic manure can maintain the content of activated organic carbon and nitrogen components in the soil, hence it is recommended to be extrapolate as an effective farming technique to build up black soil farmland and to increase organic matter content in the soil of this area.
Black soil; Subsoiling; Soil active organic carbon; Soil active organic nitrogen; Enzyme activity
S363
A
10.11766/trxb201810180282
賀美,王迎春,王立剛,李成全,王利民,李玉紅,劉平奇. 深松施肥對黑土活性有機碳氮組分及酶活性的影響[J]. 土壤學(xué)報,57(2):446–456.
HE Mei,WANG Yingchun,WANG Ligang,LI Chengquan,WANG Limin,LI Yuhong,LIU Pingqi. Effects of Subsoiling Combined with Fertilization on the Fractions of Soil Active Organic Carbon and Soil Active Nitrogen,and Enzyme Activities in Black Soil in Northeast China[J]. Acta Pedologica Sinica,57(2):446–456.
* 國家重點研發(fā)計劃項目(2017YFD0201801,2016YFE0101100)、國家自然科學(xué)基金項目(31770486)資助 Supported by the National Basic Research Program of China(Nos. 2017YFD0201801,2016YFE0101100)and the National Natural Science Foundation of China(No. 31770486)
,E-mail:wangligang@caas.cn
賀美(1990—),女,河南漯河人,碩士研究生,主要從事黑土耕地碳氮循環(huán)研究。E-mail:hemei0911@126.com
2018–10–18;
2019–01–12;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–03–26
(責(zé)任編輯:盧 萍)