何 偉,王 會(huì),韓 飛,胡國(guó)慶,婁燕宏,宋付朋,潘 紅,魏 猛,諸葛玉平
長(zhǎng)期施用有機(jī)肥顯著提升潮土有機(jī)碳組分*
何 偉1,王 會(huì)1?,韓 飛1,胡國(guó)慶1,婁燕宏1,宋付朋1,潘 紅1,魏 猛2,諸葛玉平1?
(1. 土肥資源高效利用國(guó)家工程實(shí)驗(yàn)室,山東農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,山東泰安 271018;2. 江蘇徐淮地區(qū)徐州農(nóng)業(yè)科學(xué)研究所,江蘇徐州 221131)
借助潮土36 a長(zhǎng)期定位施肥試驗(yàn)平臺(tái),利用物理化學(xué)相結(jié)合的方法,研究了不同施肥處理對(duì)耕層土壤有機(jī)碳組分的影響。試驗(yàn)處理包括不施肥(CK)、施氮磷鉀肥不同組合(N、NP、NPK)、施有機(jī)肥(M)、施氮肥和有機(jī)肥(MN)、施氮磷肥和有機(jī)肥(MNP)及施氮磷鉀肥和有機(jī)肥(MNPK)。結(jié)果表明:施肥能顯著提高土壤易氧化有機(jī)碳(EOC)含量,與CK相比,MNPK處理提高效果最為顯著,增幅為72.17%;NPK處理對(duì)顆粒有機(jī)碳(POC)和礦物結(jié)合態(tài)有機(jī)碳(MOC)含量的提升效果高于N處理,但低于施有機(jī)肥處理;施有機(jī)肥處理的POC含量較不施有機(jī)肥處理平均增加92.69%,與CK相比,MNPK處理的POC分配比例增加了13.33%;施有機(jī)肥條件下,所增加的總有機(jī)碳對(duì)MOC的貢獻(xiàn)率明顯提高,MNPK處理所增加的總有機(jī)碳可1︰1進(jìn)入POC和MOC組分。有機(jī)肥施用尤其是氮磷鉀平衡施用并增施有機(jī)肥,能有效改善土壤化學(xué)性質(zhì)、提升土壤碳組分含量、促進(jìn)新碳在各碳組分均衡分配。
土壤碳組分;有機(jī)無(wú)機(jī)配施;平衡施肥;潮土
土壤碳庫(kù)是陸地生態(tài)系統(tǒng)最大的碳庫(kù),全球約有1 500 Gt的碳以有機(jī)質(zhì)形態(tài)固持在土壤中[1]。土壤碳固持對(duì)保持土壤肥力和緩解溫室效應(yīng)具有重要意義,影響著食品安全以及生態(tài)環(huán)境安全[2-3],因而受到研究者的廣泛關(guān)注。施肥等農(nóng)業(yè)管理措施是影響農(nóng)田土壤碳儲(chǔ)量的重要因素,但在土壤背景值較大的條件下,很難利用土壤總有機(jī)碳來(lái)評(píng)價(jià)不同施肥模式對(duì)土壤碳動(dòng)態(tài)的影響[4]。因此,利用土壤碳組分含量變化能更好地把握施肥對(duì)土壤有機(jī)碳的影響。土壤有機(jī)碳作為農(nóng)作物生產(chǎn)重要的肥力因素,各碳組分含量與土壤肥力密切相關(guān),其中易氧化有機(jī)碳(EOC)和顆粒有機(jī)碳(POC)是土壤有機(jī)碳中周轉(zhuǎn)速度快、較不穩(wěn)定的部分,能反映土壤碳庫(kù)的短期變化,是植物營(yíng)養(yǎng)元素的主要來(lái)源,控制著土壤養(yǎng)分的流失;礦物結(jié)合態(tài)有機(jī)碳(MOC)能穩(wěn)定儲(chǔ)存于土壤中,維持土壤肥力[5-7]。
近年來(lái),國(guó)內(nèi)外關(guān)于長(zhǎng)期不同施肥下土壤有機(jī)碳及碳組分的演變特征已做了大量的研究。Liu等[8]研究了連續(xù)16 a黃綿土大豆-玉米輪作體系下不同施肥對(duì)土壤有機(jī)碳含量的影響,發(fā)現(xiàn)長(zhǎng)期施用有機(jī)肥能顯著增加土壤總有機(jī)碳含量,而長(zhǎng)期單施化肥能減少土壤總有機(jī)碳含量;蘭宇等[9]利用棕壤長(zhǎng)期定位31 a試驗(yàn)研究了不同施肥條件下表層土壤有機(jī)碳的含量和儲(chǔ)量特點(diǎn)以及土壤固碳速率,結(jié)果表明有機(jī)(豬廝肥)無(wú)機(jī)肥配施有助于土壤固碳速率的提高;李文軍等[10]研究了26 a不同施肥模式對(duì)洞庭湖區(qū)典型雙季稻輪作水稻土總有機(jī)碳及組分的影響,表明長(zhǎng)期不同施肥有利于提升土壤總有機(jī)碳及組分含量,且以氮磷鉀化肥配施有機(jī)肥處理效果最好;王玲莉等[11]通過(guò)26 a不同施肥對(duì)棕壤有機(jī)碳組分的影響研究發(fā)現(xiàn),長(zhǎng)期單施化肥能降低土壤游離態(tài)顆粒有機(jī)碳含量,施用豬廝肥和豬廝肥配施化肥能增加土壤有機(jī)碳、顆粒有機(jī)碳和礦物結(jié)合態(tài)有機(jī)碳含量,且增加效果優(yōu)于單施化肥。受肥料種類、施肥年限、種植方式、土壤類型等因素影響,對(duì)于長(zhǎng)期不同施肥(如有機(jī)肥和化肥、NPK平衡施用和不平衡施用)如何影響土壤碳組分尚未得出統(tǒng)一的結(jié)論,尤其是潮土上的研究尚鮮有報(bào)道。
本研究借助潮土長(zhǎng)期定位施肥試驗(yàn)平臺(tái),探討長(zhǎng)期不同施肥處理對(duì)土壤化學(xué)性質(zhì)及易氧化有機(jī)碳(EOC)、顆粒有機(jī)碳(POC)和礦物結(jié)合態(tài)有機(jī)碳(MOC)等有機(jī)碳組分的影響,通過(guò)對(duì)土壤有機(jī)碳組分的分析與評(píng)價(jià)全面了解施肥對(duì)土壤有機(jī)碳狀況的影響,以期為農(nóng)業(yè)可持續(xù)發(fā)展提供施肥決策依據(jù)。
試驗(yàn)地位于江蘇徐淮地區(qū)徐州農(nóng)業(yè)科學(xué)研究所第13耕作區(qū)(117°17′E,34°16′N)。該地處于蘇、魯、豫、皖四省接壤區(qū),屬暖溫帶半濕潤(rùn)氣候,冬季寒冷干燥,夏季炎熱多雨,年平均氣溫14℃,全年無(wú)霜期約210 d左右,年降水量860 mm。
試驗(yàn)土壤為黃泛沖積母質(zhì)發(fā)育的砂壤質(zhì)潮土。試驗(yàn)從1980年秋播開(kāi)始,試驗(yàn)前進(jìn)行了2季作物的勻地試驗(yàn)。2001年前采用小麥-玉米一年兩熟輪作制,2002年后改為小麥-甘薯一年兩熟輪作制。試驗(yàn)開(kāi)始前表層土壤主要理化性狀為:pH 8.01,有機(jī)質(zhì)10.80 g·kg–1,全氮0.66 g·kg–1,有效磷12.00 mg·kg–1,速效鉀63.00 g·kg–1[12]。
試驗(yàn)采用復(fù)因子裂區(qū)設(shè)計(jì),主處理為不施有機(jī)肥和施有機(jī)肥,共設(shè)8個(gè)處理:①對(duì)照(CK,不施肥),②施氮肥(N),③施氮磷肥(NP),④施氮磷鉀肥(NPK),⑤施有機(jī)肥(M),⑥施氮肥和有機(jī)肥(MN),⑦施氮磷肥和有機(jī)肥(MNP),⑧施氮磷鉀肥和有機(jī)肥(MNPK)。每處理重復(fù)4次,隨機(jī)區(qū)組排列,小區(qū)面積33.33 m2。
各處理肥料施用情況如表1。肥料種類為尿素(N 460 g·kg–1)、磷酸二銨(N 180g·kg–1,P2O5460 g·kg–1)、硫酸鉀(K2O 500 g·kg–1)。種植甘薯時(shí),肥料作為基肥一次性施入;種植小麥時(shí),肥料分為基肥和追肥兩次施入,基追比1︰1。有機(jī)肥為堆積制腐的廄肥,每年施用量(鮮基)為1981—1984年施馬糞75 t·hm–2;1985年以后改為施牛糞37.50 t·hm–2。有機(jī)肥平均含純N為6.31 mg·kg–1、P2O55.14 mg·kg–1、K2O 7.39 mg·kg–1,C/N為20.30。
表1 不同施肥處理肥料施用情況
注:CK:不施肥;N:施氮肥;NP:施氮磷肥;NPK:施氮磷鉀肥;M:施有機(jī)肥;MN:有機(jī)肥+氮肥;MNP:有機(jī)肥+氮磷肥;MNPK:有機(jī)肥+氮磷鉀肥。下同。Note:CK:no fertilization,N:nitrogen fertilizer,NP:nitrogen and phosphorus fertilizers,NPK:nitrogen,phosphorus and potassium fertilizers,M:organic manure,MN:organic manure + nitrogen fertilizer,MNP:organic manure + nitrogen and phosphorus fertilizers,MNPK:organic manure + nitrogen,phosphorus and potassium fertilizers. ①Organic manure application rate,②Chemical fertilizer application rate(N-P2O5-K2O). The same below.
土壤采樣時(shí)間為2016年10月甘薯收獲后,按之字型采集各小區(qū)耕層(0~20 cm)的混合土樣,樣品風(fēng)干后過(guò)1 mm和0.25 mm篩備用。
土壤酸堿度(pH)和電導(dǎo)率(EC)采用pH計(jì)(雷磁 PHS-3C,上海)和電導(dǎo)率儀(雷磁 DDSJ- 308A,上海)測(cè)得;土壤全氮(TN)用半微量凱氏法測(cè)定;土壤有機(jī)碳(SOC)用重鉻酸鉀氧化—外加熱法測(cè)定;有效磷用0.5 mol·L–1碳酸氫鈉溶液浸提,鉬銻抗比色法測(cè)定;速效鉀用1.0 mol·L–1醋酸銨溶液浸提,火焰光度計(jì)法測(cè)定[13];土壤易氧化有機(jī)碳采用0.02 mol·L–1高錳酸鉀氧化法[14]測(cè)定;顆粒有機(jī)碳采用六偏磷酸鈉分散,重鉻酸鉀氧化—外加熱法測(cè)定,礦物結(jié)合態(tài)有機(jī)碳采用差值法求得[15-16]。
試驗(yàn)結(jié)果統(tǒng)計(jì)與分析采用Excel 2013和SPSS 18.0軟件進(jìn)行,所有數(shù)據(jù)測(cè)定結(jié)果均以平均值±標(biāo)準(zhǔn)差(Mean ± SD)表示。不同施肥處理之間采用鄧肯(Duncan)新復(fù)極差法進(jìn)行差異顯著性檢驗(yàn)(< 0.05)。
長(zhǎng)期不同施肥對(duì)土壤化學(xué)性質(zhì)影響顯著(表2)。與CK相比,NP、NPK、MN、MNP和MNPK處理均使土壤pH顯著降低(< 0.05);單施化肥處理(N、NP和NPK)電導(dǎo)率降低幅度為7.74%~56.35%,施用有機(jī)肥處理(M、MN、MNP、MNPK)電導(dǎo)率降低幅度為55.47%~71.27%。施肥能顯著增加土壤全氮和有效磷含量(< 0.05),施有機(jī)肥處理土壤全氮、有效磷含量分別較不施有機(jī)肥處理平均高75%和10.94倍;NP和NPK處理的土壤有效磷含量較不施肥處理分別高3.9倍和4.4倍。MNPK處理土壤速效鉀含量最高,常年不施鉀肥的CK、N、NP處理土壤速效鉀含量顯著低于NPK處理和有機(jī)肥處理(< 0.05)。
表2 不同施肥處理的土壤化學(xué)性質(zhì)
注:EC:土壤電導(dǎo)率,TN:全氮,AP:有效磷,AK:速效鉀;表中數(shù)值均為平均值±標(biāo)準(zhǔn)誤差;同列中不同字母表示處理間差異達(dá)0.05顯著性水平。下同。Note:EC:Electronic conductivity,TN:Total nitrogen,AP:Available phosphorus,AK:Available potassium;The values in the table are means ± SD(=4);Different letters in the same column mean significant difference between treatments at the 0.05 level. The same below.
施肥(N處理除外)使土壤有機(jī)碳(SOC)含量顯著增加(< 0.05)(圖1)。施有機(jī)肥處理SOC含量較不施有機(jī)肥處理(CK、N、NP和NPK)平均增加86.03%,M、MN、MNP和MNPK處理的SOC含量分別較CK處理高107.9%、133.4%、140.2%、132.1%;對(duì)比化肥不同施用模式,不施有機(jī)肥情況下,SOC含量總體表現(xiàn)為:NPK > NP > N(< 0.05),施有機(jī)肥情況下,三種化肥施用模式的SOC含量無(wú)顯著差異(> 0.05)。
與CK相比,施肥顯著增加土壤易氧化有機(jī)碳(EOC)含量,MNPK處理對(duì)EOC含量的提高效果最為顯著,提高比例達(dá)72.17%(< 0.05)(圖2),其次為M處理,MN和MNP處理的EOC含量無(wú)顯著差異,但顯著高于不施有機(jī)肥處理。在化肥施用模式一致的條件下,增施有機(jī)肥可顯著提高土壤EOC含量,MN、MNP和MNPK處理EOC含量分別較N、NP和NPK處理提高23.18%、12.53%和25.92%(< 0.05)。
注:圖柱上不同字母表示處理間差異達(dá)0.05顯著性水平。下同。 Note:Different letters above the bars denote significant differences between treatments based on one-ways analysis of variance(P <0.05). The same below.
圖2 長(zhǎng)期不同施肥下土壤易氧化有機(jī)碳含量
土壤中易氧化有機(jī)碳分配比例是指EOC 在SOC含量中的占比,可反映土壤中易被微生物分解利用的有機(jī)碳含量。各施肥處理土壤易氧化有機(jī)碳分配比例介于2.45%~4.35%之間,N處理的土壤易氧化有機(jī)碳分配比例最高,為4.35%,MN處理最低,為2.45%。施加有機(jī)肥后土壤中易氧化有機(jī)碳分配比例明顯降低(< 0.05);對(duì)比化肥不同施用模式,不施有機(jī)肥條件下EOC分配比例總體表現(xiàn)為:N ≥ NP ≤ NPK,施有機(jī)肥條件下則表現(xiàn)出相反的規(guī)律,即MNPK > MNP = MN(< 0.05)(圖3)。
注:EOC:易氧化有機(jī)碳;SOC:土壤有機(jī)碳。Note:EOC:Easily oxidized organic carbon;SOC:Soil organic carbon.
與CK相比,施肥(N處理除外)顯著增加土壤顆粒有機(jī)碳(POC)含量(< 0.05)(圖4),施有機(jī)肥處理的POC含量較不施有機(jī)肥處理平均增加92.69%。對(duì)比施有機(jī)肥處理,MNPK處理的POC含量顯著高于M處理和MN處理(< 0.05),其他處理間POC含量的差異未達(dá)到顯著性水平(0.05)。對(duì)比化肥不同施用模式,NP、NPK處理的POC含量顯著高于N處理(< 0.05)。
圖4 長(zhǎng)期不同施肥下土壤顆粒有機(jī)碳含量
施有機(jī)肥處理的礦物結(jié)合態(tài)有機(jī)碳(MOC)含量較CK平均增加10.06%(< 0.05)(圖5),單施化肥不能增加土壤MOC含量(0.05)。在化肥施用模式一致的條件下,增施有機(jī)肥可顯著提高土壤MOC含量,MN、MNP和MNPK處理MOC含量分別較N、NP和NPK處理高93.04%、79.45%和41.59%,不同化肥施用模式間MOC含量無(wú)顯著差異。
圖5 長(zhǎng)期不同施肥下土壤礦物結(jié)合態(tài)有機(jī)碳含量
與CK相比,各施肥處理中僅MNPK處理的POC分配比例和MOC分配比例有顯著變化(< 0.05)(圖6),其中POC分配比例增加了13.33%,MOC分配比例相應(yīng)降低;N處理的POC分配比例顯著低于除MN處理之外的其他施肥處理,其他各施肥處理的POC分配比例和MOC分配比例無(wú)顯著差異(0.05)。
注:白色圖柱上不同字母表示顆粒有機(jī)碳各處理間差異達(dá)0.05顯著性水平,灰色圖柱上不同字母表示礦物結(jié)合態(tài)有機(jī)碳各處理間差異達(dá)0.05顯著性水平。下同。 Note:Different letters above the white bars denote significant differences between treatments in content of particulate organic carbon based on one-ways analysis of variance(P <0.05),and different letters above the gray bars denote significant differences between treatments in content of mineral incorporated organic carbon based on one-ways analysis of variance(P <0.05). The same below.
采用下式計(jì)算長(zhǎng)期不同施肥模式下土壤中增加的總有機(jī)碳進(jìn)入不同有機(jī)碳組分的比例:施肥對(duì)有機(jī)碳組分的貢獻(xiàn)率(%)=(施肥處理土壤中某有機(jī)碳組分含量-CK處理中某有機(jī)碳組分含量)÷(施肥處理土壤總有機(jī)碳含量-CK處理土壤總有機(jī)碳含量)×100[17]。結(jié)果表明,單施化學(xué)N肥條件下,增加的總有機(jī)碳基本全部進(jìn)入MOC組分;施NP和NPK肥條件下,增加的總有機(jī)碳主要進(jìn)入POC組分;施M、MN、MNP條件下,增加的總有機(jī)碳主要進(jìn)入MOC組分;氮磷鉀平衡施用并增施有機(jī)肥(MNPK)條件下,所增加的總有機(jī)碳可1︰1進(jìn)入POC和MOC組分(圖7)。
圖7 施肥所增加有機(jī)碳進(jìn)入POC和MOC組分的比例
陸海飛等[18]在長(zhǎng)期定位施肥30 a的紅壤性水稻土上的研究得出,與CK處理相比,各施肥處理中僅MNPK處理能提升土壤全氮含量,N和NPK處理不能顯著提升土壤全氮含量。本研究發(fā)現(xiàn),與CK相比,各施肥處理的土壤全氮含量均顯著提升(表2),這可能是由于各施肥樣地長(zhǎng)期進(jìn)行施氮處理和作物根茬、秸稈還田的緣故。相比CK處理,施磷鉀肥或有機(jī)肥的處理(NPK、M、MN、MNP和MNPK)土壤有效磷和速效鉀含量增加,而不施磷鉀肥或有機(jī)肥的處理(N和NP)土壤速效鉀含量降低,有機(jī)無(wú)機(jī)肥配施的MNPK處理有效養(yǎng)分含量最高(表2),導(dǎo)致這種現(xiàn)象的原因可能是作物生長(zhǎng)要不斷吸收土壤中的有效養(yǎng)分,根茬和秸稈還田的有效養(yǎng)分量少于作物吸收的量,長(zhǎng)期有機(jī)無(wú)機(jī)肥配施可以更好地補(bǔ)充土壤速效養(yǎng)分[19-22]。與CK相比,各施肥處理能顯著降低土壤pH和電導(dǎo)率,其中有機(jī)無(wú)機(jī)肥配施對(duì)土壤電導(dǎo)率的降低效果優(yōu)于單施化肥(表2),這可能是由于常年施用有機(jī)肥后,土壤中有機(jī)膠體數(shù)量增加,吸附鹽基離子能力增強(qiáng)。
本研究結(jié)果表明,各施肥處理對(duì)土壤有機(jī)碳含量的提升效果由高到低依次為有機(jī)無(wú)機(jī)肥配施處理、單施有機(jī)肥處理、單施化肥處理(圖1)。龔偉等[23]對(duì)華北平原小麥-玉米輪作農(nóng)田的18 a田間施肥試驗(yàn)研究表明,施用有機(jī)肥及有機(jī)無(wú)機(jī)肥配合施用是增加土壤有機(jī)碳的關(guān)鍵,與本研究結(jié)果一致。在僅施化肥的情況下,與CK相比,NP和NPK處理也顯著增加了土壤有機(jī)質(zhì)含量,可能與化肥能促進(jìn)根系和微生物活動(dòng)、增加作物生物量和秸稈歸還等有關(guān),但增加幅度不如施用有機(jī)肥的大;單施氮肥處理的土壤有機(jī)碳含量與CK無(wú)顯著差異(圖1),這與Treseder[24]和Liu等[25]的研究結(jié)果——單施氮肥能減少土壤有機(jī)碳含量不一致,分析原因可能一方面與試驗(yàn)?zāi)晗抻嘘P(guān),周晶等[26]總結(jié)前人研究發(fā)現(xiàn)10 a以上的定位施肥試驗(yàn)的結(jié)論均支持施氮肥能增加土壤有機(jī)碳,另一方面可能與秸稈、根茬等是否還田有關(guān)。
易氧化有機(jī)碳具有移動(dòng)快、穩(wěn)定性差與易氧化的特點(diǎn),可以表征土壤有機(jī)質(zhì)短暫的波動(dòng)情況。本研究中,在不施有機(jī)肥的情況下,單施氮肥可促進(jìn)土壤EOC含量增加,但效果不如NPK平衡施用(圖2);在施入有機(jī)肥時(shí),所配施化肥的種類對(duì)土壤EOC含量有很大的影響,MN和MNP處理間無(wú)顯著差異,MNPK處理提升效果最為顯著,原因可能是加入有機(jī)肥后,供給微生物底物增多,加速了有機(jī)物質(zhì)的周轉(zhuǎn),釋放更多的土壤易氧化有機(jī)碳。李忠徽等[27]研究了有機(jī)肥施用對(duì)黃綿土有機(jī)碳組分的影響,發(fā)現(xiàn)施有機(jī)肥處理土壤EOC含量較不施有機(jī)肥處理增加7.8%;陳濤等[28]通過(guò)湖南省3個(gè)稻田長(zhǎng)期定位施肥試驗(yàn)發(fā)現(xiàn),化肥配施有機(jī)肥處理的土壤EOC含量顯著高于不施肥對(duì)照,本研究結(jié)果表明施有機(jī)肥處理土壤EOC含量較不施有機(jī)肥處理增加27.12%,這也證實(shí)了前人的研究結(jié)論。但趙玉皓等[29]在褐土長(zhǎng)期施肥研究中發(fā)現(xiàn),盡管化肥和有機(jī)肥配合施用明顯提升了土壤EOC含量,但單施化肥或有機(jī)肥對(duì)土壤EOC無(wú)明顯影響,出現(xiàn)這種現(xiàn)象的原因可能是肥料養(yǎng)分形態(tài)影響了土壤微生物的活動(dòng),可能會(huì)使土壤EOC的生物消耗變大,土壤EOC總量變化不明顯。
賀美等[30]對(duì)黑土的研究發(fā)現(xiàn),長(zhǎng)期有機(jī)無(wú)機(jī)配施對(duì)土壤POC含量提高顯著,且有機(jī)肥用量越多提高效果越明顯。本研究表明,施肥(單施氮肥除外)能顯著提高土壤POC含量,有機(jī)無(wú)機(jī)肥配施較單施化肥或有機(jī)肥效果顯著(圖4)。主要是因?yàn)橛袡C(jī)肥進(jìn)入土壤后與部分砂粒結(jié)合,直接提供了與POC組成相近的有機(jī)碳組分,再加上化肥的配施,也在一定程度上促進(jìn)了外源有機(jī)物料的分解和原有有機(jī)物質(zhì)的周轉(zhuǎn)[31-32],對(duì)POC的形成和轉(zhuǎn)化起到了促進(jìn)作用。各施肥處理(N處理除外)均能在一定程度上增加土壤MOC和POC含量,但從碳組分分配比例來(lái)看,有機(jī)無(wú)機(jī)肥配施處理POC分配比例較單施化肥大,其中MNPK處理最高(圖6),主要是因?yàn)樵撎幚硇迈r有機(jī)物料年投入量最大,而新鮮有機(jī)物料在逐漸分解過(guò)程中優(yōu)先進(jìn)入POC組分[33]。施肥對(duì)有機(jī)碳組分的貢獻(xiàn)度因化肥施用模式和有機(jī)肥施用與否而不同,單施N肥增加的總有機(jī)碳量較少;施NP和NPK肥增加的總有機(jī)碳大多進(jìn)入POC(圖7),可能與碳輸入以根茬和秸稈為主,更有利于POC組分周轉(zhuǎn)有關(guān)[34];施有機(jī)肥條件下,增加的總有機(jī)碳在MOC組分的分配率明顯提高(圖7),可能與施有機(jī)肥能直接提供與MOC組成相近的有機(jī)碳組分有關(guān)[35]。不同施肥模式對(duì)有機(jī)碳組分的貢獻(xiàn)度不同,分析原因可能是:一方面土壤碳輸入類型(如秸稈、有機(jī)肥等)的相對(duì)比例因施肥處理不同而不同,而不同外源有機(jī)物料對(duì)POC和MOC的貢獻(xiàn)可能是不一致的[36];另一方面,不同施肥處理對(duì)土壤微生物數(shù)量和群落結(jié)構(gòu)的影響不同,施有機(jī)肥更有利于微生物數(shù)量增加和細(xì)菌群落占優(yōu)勢(shì)[37],從而更有利于新碳在MOC組分的分配。
長(zhǎng)期施肥可顯著改善土壤化學(xué)性質(zhì),施有機(jī)肥處理的土壤有機(jī)碳、全氮和有效磷含量較不施有機(jī)肥處理平均高86%、75%和10.94倍;施有機(jī)肥能有效降低土壤pH和電導(dǎo)率,有機(jī)無(wú)機(jī)肥配施效果優(yōu)于單施化肥或單施有機(jī)肥。施肥能顯著提高土壤易氧化有機(jī)碳的含量,MNPK處理對(duì)土壤易氧化有機(jī)碳含量的提升效果最好,提升比例達(dá)72.17%。NPK平衡施用對(duì)顆粒有機(jī)碳和礦物結(jié)合態(tài)有機(jī)碳含量的提升效果優(yōu)于僅施氮肥,但差于有機(jī)無(wú)機(jī)配施。MNPK處理所增加的總有機(jī)碳在顆粒有機(jī)碳與礦物結(jié)合態(tài)有機(jī)碳的分配率基本相等。由此可見(jiàn),有機(jī)肥施用尤其是氮磷鉀平衡施用并增施有機(jī)肥,對(duì)于改善土壤化學(xué)性質(zhì)、提升土壤碳組分含量、促進(jìn)新碳在各碳組分均衡分配有重要意義。
[1] Jobbágy E G,Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications,2000,10(2):423—436.
[2] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science,2004,304(5677):1623—1627.
[3] Schmidt M W,Torn M S,Abiven S,et al. Persistence of soil organic matter as an ecosystem property. Nature,2011,478(7367):49—56.
[4] Garten C T,Wullschleger S D. Soil carbon inventories under a bioenergy crop(Switchgrass):Measurement limitations. Journal of Environmental Quality,1999,28(4):1359—1365.
[5] Ren C,Wang T,Xu Y,et al. Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. Forest Ecology & Management,2018,409:170—178.
[6] Ma J,Kang F,Cheng X,et al. Moderate thinning increases soil organic carbon in)plantations. Geoderma,2018,329:118—128.
[7] Xu J H,Gao L,Sun Y,et al. Distribution of mineral-bonded organic carbon and black carbon in forest soils of Great Xing'an Mountains,China and carbon sequestration potential of the soils.Acta Pedologica Sinica,2018,55(1):236—246. [徐嘉暉,高雷,孫穎,等. 大興安嶺森林土壤礦物結(jié)合態(tài)有機(jī)碳與黑碳的分布及土壤固碳潛力. 土壤學(xué)報(bào),2018,55(1):236—246.]
[8] Liu H F,Zhang J Y,Ai Z M,et al. 16-Year fertilization changes the dynamics of soil oxidizable organic carbon fractions and the stability of soil organic carbon in soybean-corn agroecosystem. Agriculture,Ecosystems & Environment,2018,265:320—330.
[9] Lan Y,Asshraf M I,Han X R,et al. Effect of long-term fertilization on total organic carbon storage and carbon sequestration rate in a brown soil. Acta Scientiae Circumstantiae,2016,36(1):264—270. [蘭宇,Asshraf M I,韓曉日,等. 長(zhǎng)期施肥對(duì)棕壤有機(jī)碳儲(chǔ)量及固碳速率的影響. 環(huán)境科學(xué)學(xué)報(bào),2016,36(1):264—270.]
[10] Li W J,Peng B F,Yang Q Y,et al. Effectsof long-term fertilization on organic carbon and nitrogen accumulation and activity in a paddy soil in double cropping rice area in Dongting Lake of China. Scientia Agricultura Sinica ,2015,48(3):488—500. [李文軍,彭保發(fā),楊奇勇. 長(zhǎng)期施肥對(duì)洞庭湖雙季稻區(qū)水稻土有機(jī)碳、氮積累及其活性的影響. 中國(guó)農(nóng)業(yè)科學(xué),2015,48(3):488—500.]
[11] Wang L L,Han X R,Yang J F,et al. Effect of long-term fertilization on organic carbon fractions in a brown soil. Plant Nutrition and Fertilizer Science ,2008,14(1):79—83. [王玲莉,韓曉日,楊勁峰,等. 長(zhǎng)期施肥對(duì)棕壤有機(jī)碳組分的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2008,14(1):79—83.]
[12] Wei M,Zhang A J,ZhuGe Y P,et al. Effect of different long-term fertilization on winter wheat yield and soil nutrient contents in yellow fluvo-aquic soil area.Plant Nutrition and Fertilizer Science 2017,23(2):304—312. [魏猛,張愛(ài)君,諸葛玉平,等. 長(zhǎng)期不同施肥對(duì)黃潮土區(qū)冬小麥產(chǎn)量及土壤養(yǎng)分的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2017,23(2):304—312.]
[13] Bao S D. Soil and agricultural chemistry analysis. 3rded. Beijing:China Agriculture Press,2000. [鮑士旦. 土壤農(nóng)化分析. 3版. 北京:中國(guó)農(nóng)業(yè)出版社,2000.]
[14] Weil R R,Islam K R,Stine MAGruver J B,et al. Estimating active carbon for soil quality assessment:A simplified method for laboratory and field use. American Journal of Alternative Agriculture,2003,18(1):3—17.
[15] Jr C T G,Iii W M P,Hanson P J,et al. Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains. Biogeochemistry,1999,45(2):115—145.
[16] Adams J L,Tipping E,Bryant C L,et al. Aged riverine particulate organic carbon in four UK catchments. Science of the Total Environment,2015,536:648—654.
[17] Tong X G,Huang S M,Xu M G,et al. Effects of the different long-term fertilizations on fractions of organic carbon in fluvo-aquic soil. Plant Nutrition and Fertilizer Science,2009,15(4):831—836. [佟小剛,黃紹敏,徐明崗,等. 長(zhǎng)期不同施肥模式對(duì)潮土有機(jī)碳組分的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2009,15(4):831—836.]
[18] Lu H F,Zheng J W,Yu X C,et al. Microbial community diversity and enzyme activity of red paddy soil under long-term combined inorganic-organic fertilization.Plant Nutrition and Fertilizer Science,2015,21(3):632—643. [陸海飛,鄭金偉,余喜初,等. 長(zhǎng)期無(wú)機(jī)有機(jī)肥配施對(duì)紅壤性水稻土微生物群落多樣性及酶活性的影響. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(3):632—643.]
[19] Wei M ,Zhang A J,ZhuGe Y P,et al. Effects of long-term fertilization on soil fertility in yellow fluvo-aquic soil. Chinese Journal of Applied Ecology,2017,28(3):838—846. [魏猛,張愛(ài)君,諸葛玉平,等. 長(zhǎng)期不同施肥方式對(duì)黃潮土肥力特征的影響. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(3):838—846.]
[20] Xia X,Shi K,Huang Q R,et al. The changes of microbial community structure in red paddy soil under long-term fertilization.Acta Pedologica Sinica,2015,52(3):697—705. [夏昕,石坤,黃欠如,等. 長(zhǎng)期不同施肥條件下紅壤性水稻土微生物群落結(jié)構(gòu)的變化. 土壤學(xué)報(bào),2015,52(3):697—705.]
[21] Liu Z L,Yu W T,Zhou H,et al. Effects of long-term fertilization on aggregate size distribution and nutrient content. Soils,2011,43(5):720—728. [劉中良,宇萬(wàn)太,周樺,等. 長(zhǎng)期施肥對(duì)土壤團(tuán)聚體分布和養(yǎng)分含量的影響. 土壤,2011,43(5):720—728.]
[22] Fang C Y,Tu N M,Zhang Q Z,et al. Effects of fertilization modes on available nutrient contents of reddish paddy soils and rice yields. Soils,2018,50(3):462—468. [方暢宇,屠乃美,張清壯,等. 不同施肥模式對(duì)稻田土壤速效養(yǎng)分含量及水稻產(chǎn)量的影響. 土壤,2018,50(3):462—468.]
[23] Gong W,Yan X Y,Cai Z C,et al. Effects of long-term fertilization on soil particulate organic carbon and nitrogen in a wheat maize cropping system. Chinese Journal of Applied Ecology,2008,19(11):2375—2381. [龔偉,顏曉元,蔡祖聰,等. 長(zhǎng)期施肥對(duì)小麥-玉米作物系統(tǒng)土壤顆粒有機(jī)碳和氮的影響. 應(yīng)用生態(tài)學(xué)報(bào),2008,19(11):2375—2381.]
[24] Treseder K. Nitrogen additions and microbial biomass:a meta-analysis of ecosystem studies. Ecology Letters,2008,11(10):1111—1120.
[25] Liu Y,Shi G,Mao L,et al.Direct and indirect influences of 8 year of nitrogen and phosphorus fertilization onin anecosystem. New Phytologist,2012,194(2):523—535.
[26] Zhou J,Jiang X,Ma M C,et al. Effects of long-term nitrogen fertilization on soil fertility and microorganism:A review. Soil and Fertilizer Sciences in China,2016(6):8—13. [周晶,姜昕,馬鳴超,等. 長(zhǎng)期施氮對(duì)土壤肥力及土壤微生物的影響. 中國(guó)土壤與肥料,2016(6):8—13.]
[27] Li Z H,Wei B M,Liu D,et al. Effect of calcium carbonate content and composted manure application on soil organic carbon fractions and CO2emissions in loessal soil. Acta Scientiae Circumstantiae,2018,38(6):2498—2505. [李忠徽,魏彬萌,劉丹,等. 黃綿土中碳酸鈣含量和有機(jī)肥施用對(duì)土壤有機(jī)碳組分及CO2排放的影響. 環(huán)境科學(xué)學(xué)報(bào),2018,38(6):2498—2505.]
[28] Chen T,Du L J,Hao X H,et al. Effect of long-term fertilization on soil active organic carbon in paddy soils. Chinese Journal of Soil Science,2009,40(4):809—814. [陳濤,杜麗君,郝曉暉,等. 長(zhǎng)期施肥對(duì)水稻土活性有機(jī)碳的影響. 土壤通報(bào),2009,40(4):809—814.]
[29] Zhao Y H,Zhang Y J,Li G C,et al. Soil organic carbon stock and active carbon fractions under four kinds of long-term fertilization. Chinese Journal of Ecology ,2016,35(7):1826—1833. [趙玉皓,張艷杰,李貴春,等. 長(zhǎng)期不同施肥下褐土有機(jī)碳儲(chǔ)量及活性碳組分. 生態(tài)學(xué)雜志,2016,35(7):1826—1833.]
[30] He M,Wang L G,Zhu P,et al. Carbon emission characteristics,carbon library components,and enzyme activity under long-term fertilization conditions of black soil. Acta Ecologica Sinica,2017,37(19):6379—6389. [賀美,王立剛,朱平,等. 長(zhǎng)期定位施肥下黑土碳排放特征及其碳庫(kù)組分與酶活性變化. 生態(tài)學(xué)報(bào),2017,37(19):6379—6389.]
[31] He M,Wang Y C,Wang L G,et al. Effects of subsoiling combined with fertilization on the fractions of soil active organic carbon and soil active nitrogen,and enzyme activities in black soil in Northeast China.Acta Pedologica Sinica,2020,57(2):446—456. [賀美,王迎春,王立剛,等. 深松施肥對(duì)黑土活性有機(jī)碳氮組分及酶活性的影響. 土壤學(xué)報(bào),2020,57(2):446—456.]
[32] Wang X F,Hu F,Peng X H,et al. Effects of long-term fertilization on soil organic carbon pools and their turnovers in a red soil.Acta Pedologica Sinica,2012,49(5):954—961. [王雪芬,胡鋒,彭新華,等. 長(zhǎng)期施肥對(duì)紅壤不同有機(jī)碳庫(kù)及其周轉(zhuǎn)速率的影響. 土壤學(xué)報(bào),2012,49(5):954—961.]
[33] Li J,Wen Y C,Li X H,et al. Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain. Soil & Tillage Research,2018,175:281—290.
[34] Xu M,Li X L,Cai X B,et al. Impact of land use type on soil organic carbon fractionation and turnover in southeastern Tibet. Scientia Agricultura Sinica,2018,51(19):3714—3725. [徐夢(mèng),李曉亮,蔡曉布,等. 藏東南地區(qū)不同土地利用方式下土壤有機(jī)碳組分及周轉(zhuǎn)變化特征. 中國(guó)農(nóng)業(yè)科學(xué),2018,51(19):3714—3725.]
[35] Zhang J,Xu N T,Meng Q F,et al. Effect of years of manure fertilizer application on soil organic carbon component,its source and corn yield. Transactions of the Chinese Society of Agricultural Engineering,2019,35(2):107—113. [張娟,徐寧彤,孟慶峰,等. 有機(jī)肥施用年限對(duì)土壤有機(jī)碳組分及其來(lái)源與玉米產(chǎn)量的影響. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(2):107—113.]
[36] Duval M E,Galantini J A,Capurro J E,et al. Winter cover crops in soybean monoculture:Effects on soil organic carbon and its fractions. Soil & Tillage Research,2016,161:95—105.
[37] Wei M,Hu G,Wang H,et al. 35 years of manure and chemical fertilizer application alters soil microbial community composition in a Fluvo-aquic soil in Northern China. European Journal of Soil Biology,2017,82:27—34.
Effect of Long-term Application of Organic Manure Expanding Organic Carbon Fractions in Fluvo-aquic Soil
HE Wei1, WANG Hui1?, HAN Fei1, HU Guoqing1, LOU Yanhong1, SONG Fupeng1, PAN Hong1, WEI Meng2, ZHUGE Yuping1?
(1. National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai' An, Shangdong 271018, China; 2. Xuzhou Institute of Agricultural Sciences of the Xuhuai District, Xuzhou, Jiangsu 221131, China)
Based on a 36-year fertilization experiment in a field of fluvo-aquic soil, effects of fertilization, especially application of organic manure, on organic carbon fractions in the plow layer were studied in an attempt to learn comprehensively how soil carbon changes and explore effects of fertilization on the status of soil organic carbon through analysis and evaluation of soil organic carbon fractions, so as to better master the physico-chemical and biological mechanisms of the changes in soil organic carbon fractions as affected by long-term fertilization and to provide scientific basis for decision-making for fertilization in sustainable development of agriculture.In this study, physical means were used in combination with chemical ones to determine contents of organic carbon, easily oxidized organic carbon, particulate organic carbon and mineral incorporated organic carbon in soils, and effects of fertilization on soil organic carbon fractions were analyzed. To that end the experiment in the study was designed to have 8 treatments, that is, no fertilization (CK), application of N alone (N), application of N and P (NP), application of N, P and K(NPK), application of organic manure (M), application of nitrogen fertilizer plus organic manure (MN), application of nitrogen and phosphorus fertilizers plus organic manure (MNP), and application of nitrogen, phosphorus and potassium fertilizers plus organic manure (MNPK).Results show that long-term fertilization significantly improved soil fertility. Application of organic manure was closely related to increase in soil organic carbon, particulate organic carbon and mineral incorporated organic carbon. Fertilization significantly increased the content of easily oxidized organic carbon (EOC) in the soil. The effect was the most significant in Treatment MNPK with an increase up to 72.13% as compared with CK, while EOC content in Treatment MN, MNP and MNPK increased by 23.18%, 12.53% and 25.92%, respectively, as compared with their respective chemical counterparts, Treatment N, NP and NPK. Fertilization (except for N application alone) significantly increased the content of soil particulate organic carbon (POC). The effect was particularly significant in organic manure-amended treatments, whose mean POC content was 92.69% higher than that of the treatments without organic manure. The content of mineral incorporated organic carbon (MOC) in the organic manure amended treatments was 10.06% higher than that in CK. The proportion of particulate organic carbon (POC/SOC) in Treatment MNPK increased by 13.33%, while the proportion of mineral incorporated organic carbon (MOC/SOC) decreased correspondingly, as compared with those in CK. Application of organic manure significantly enhanced the contribution of increased total organic carbon to MOC, especially Treatment MNPK where the increased total organic carbon and the native total organic carbon formed a ratio of 1: 1 in POC and MOC.In conclusion, application of organic manure, especially when in combination with balanced nitrogen, phosphorus and potassium fertilizers, is of great significance to improving soil physico-chemical properties, expanding the fractions of organic carbon, and promoting balanced distribution of newly-sequestrated carbon in various carbon fractions. The findings in the study may serve as a theoretical basis for rational fertilization in sandy loam fluvo-aquic soils.
Soil organic carbon fraction; Combination of chemical and organic fertilizers; Balanced fertilization; Fluvo-aquic soil
S153.6
A
10.11766/trxb201902180011
何偉,王會(huì),韓飛,胡國(guó)慶,婁燕宏,宋付朋,潘紅,魏猛,諸葛玉平. 長(zhǎng)期施用有機(jī)肥顯著提升潮土有機(jī)碳組分[J]. 土壤學(xué)報(bào),2020,57(2):425–434.
HE Wei,WANG Hui,HAN Fei,HU Guoqing,LOU Yanhong,SONG Fupeng,PAN Hong,WEI Meng,ZHUGE Yuping. Effect of Long-term Application of Organic Manure Expanding Organic Carbon Fractions in Fluvo-aquic Soil[J]. Acta Pedologica Sinica,2020,57(2):425–434.
* 國(guó)家自然科學(xué)基金項(xiàng)目(41601237,41701257,41771273)資助 Supported by the National Natural Science Foundation of China(Nos. 41601237,41701257 and 41771273)
,Email:huiwang@sdau.edu.cn;zhugeyp@sdau.edu.cn
何 偉(1993—),男,山東德州人,碩士研究生。主要從事土壤質(zhì)量演變與退化治理方面研究。Email:hewei0534@163.com
2019–02–18;
2019–04–02;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–05–10
(責(zé)任編輯:陳榮府)