趙 偉,林 青,徐紹輝
膠體顆粒對(duì)不同粒徑飽和多孔介質(zhì)滲透性的影響*
趙 偉,林 青,徐紹輝?
(青島大學(xué)環(huán)境科學(xué)與工程學(xué)院,山東青島 266071)
探討膠體顆粒在多孔介質(zhì)中遷移所發(fā)生的物理、化學(xué)及生物作用過(guò)程,在許多學(xué)科中具有重要的科學(xué)意義。采用室內(nèi)石英砂柱實(shí)驗(yàn),開(kāi)展了定水頭條件下不同濃度和粒徑的膠體顆粒在飽和多孔介質(zhì)中的運(yùn)移行為研究。共使用了3種膠體粒徑、3種濃度的膠體溶液和3種粒徑范圍的石英砂。實(shí)驗(yàn)表明:多孔介質(zhì)的相對(duì)滲透系數(shù)0(為各時(shí)刻計(jì)算所得的滲透系數(shù),0為初始滲透系數(shù))減小程度與顆粒濃度成正比;膠體顆粒越大,越易在表層沉積,而小顆粒易向下部遷移,但總體來(lái)看粒徑效應(yīng)沒(méi)有濃度效應(yīng)明顯;當(dāng)膠體顆粒在不同粒徑的飽和多孔介質(zhì)中遷移時(shí),粒徑大的多孔介質(zhì)各段0均有明顯降低,而粒徑小的只在表層變化明顯。不同條件下總體相對(duì)滲透系數(shù)與時(shí)間之間呈二次方相關(guān)關(guān)系,但當(dāng)多孔介質(zhì)粒徑較小時(shí),相關(guān)性不顯著。介質(zhì)滲流流速及砂柱不同位置膠體顆粒濃度變化與介質(zhì)滲透性變化相對(duì)應(yīng)。用掃描電鏡(Scanning Electron Microscope,SEM)進(jìn)行定性表征,進(jìn)一步說(shuō)明膠體顆粒會(huì)堵塞多孔介質(zhì)孔隙影響其滲透性。實(shí)驗(yàn)中發(fā)現(xiàn)當(dāng)輸入濃度0小于0.5 g·L–1且d/D>0.018(d為膠體顆粒粒徑,D為石英砂算數(shù)平均粒徑)時(shí),會(huì)出現(xiàn)多孔介質(zhì)局部0增大的現(xiàn)象。
膠體;多孔介質(zhì);滲透系數(shù);沉積;運(yùn)移
在巖土工程中的土體過(guò)濾器、環(huán)境工程中的供水濾池、石油工程中的水驅(qū)采油、土壤/地下水污染修復(fù)、地下水人工回灌、渾水灌溉和土壤侵蝕等許多工業(yè)和工程應(yīng)用中,均存在懸浮顆粒在多孔介質(zhì)中的運(yùn)移現(xiàn)象,并導(dǎo)致介質(zhì)孔隙堵塞和滲透性能降低問(wèn)題[1-7]。懸浮顆粒在多孔介質(zhì)中會(huì)發(fā)生兩種效應(yīng):滯留(造成堵塞,導(dǎo)致多孔介質(zhì)滲透性降低)、隨滲流遷移(可能改變多孔介質(zhì)孔徑分布,造成侵蝕作用)[8]。堵塞表示懸浮細(xì)小顆粒,如沙粒、淤泥、黏土、細(xì)菌和膠體顆粒等,在通過(guò)多孔介質(zhì)時(shí)的沉積過(guò)程。研究表明,多孔介質(zhì)內(nèi)的堵塞分為物理、化學(xué)和生物堵塞,而物理堵塞占比例最大。物理堵塞會(huì)限制顆粒在土壤和其他多孔介質(zhì)中的運(yùn)動(dòng)[9-10],從而增加了介質(zhì)的水力梯度,進(jìn)而導(dǎo)致多孔介質(zhì)的滲透性降低[3]。其次,膠體等懸浮顆粒比表面積很大,對(duì)污染物具有強(qiáng)烈的吸附作用,在隨水流遷移的過(guò)程中會(huì)促進(jìn)污染物的遷移擴(kuò)散[11-13]。因此了解膠體等懸浮顆粒在多孔介質(zhì)中的遷移沉積行為,在許多學(xué)科均具有重要的科學(xué)意義。
多孔介質(zhì)的入滲性能受多種因素的影響:介質(zhì)的導(dǎo)電性能[14]、入滲水的顆粒濃度[3,7]、介質(zhì)的粒度分布[15-16]、孔隙大小分布[16],以及晶粒的幾何形狀和表面粗糙度[17]等。膠體顆粒在多孔介質(zhì)中遷移沉積現(xiàn)象是復(fù)雜且多變的,國(guó)內(nèi)外已經(jīng)有很多關(guān)于膠體顆粒在多孔介質(zhì)遷移沉積的研究。Reddi等[18]對(duì)不同懸浮物在濾砂中遷移的實(shí)驗(yàn)表明,粒徑效應(yīng)沒(méi)有濃度變化效應(yīng)明顯,認(rèn)為這是由于小顆粒發(fā)生絮凝造成的;Xie等[19]通過(guò)巖心驅(qū)油實(shí)驗(yàn)發(fā)現(xiàn),細(xì)粒運(yùn)移是導(dǎo)致滲透性降低的主要原因;Dikinya等[20]采用恒壓裝置在飽和條件下采用不同電解質(zhì)溶液對(duì)土柱進(jìn)行浸出,發(fā)現(xiàn)相對(duì)滲透系數(shù)隨電解質(zhì)濃度的降低而顯著降低,這是由于在浸出過(guò)程中,黏土組分分離后再次沉積造成的;王子佳[21]通過(guò)室內(nèi)回灌實(shí)驗(yàn)發(fā)現(xiàn)懸浮顆粒粒徑與多孔介質(zhì)孔徑的相對(duì)比值(d/50)是決定堵塞速率的關(guān)鍵因素,當(dāng)入滲介質(zhì)的粒徑一定時(shí),懸浮物顆粒越大,即d/50越大,懸浮物越不易通過(guò)介質(zhì)孔隙,導(dǎo)致堵塞速率加快;戴傳山等[22]通過(guò)懸浮顆粒砂柱實(shí)驗(yàn)發(fā)現(xiàn),懸浮液濃度0和懸浮顆粒與多孔介質(zhì)的相對(duì)直徑比值(d/D)對(duì)相對(duì)滲透系數(shù)的變化有很大影響??梢?jiàn)顆粒濃度與粒徑是影響介質(zhì)滲透性的重要因素,但在以往文獻(xiàn)中對(duì)介質(zhì)粒徑的研究較少,且大多用相對(duì)滲透系數(shù)/0的變化對(duì)介質(zhì)滲透性進(jìn)行分析,比較單一。
為了深入探討膠體顆粒在多孔介質(zhì)中的運(yùn)移沉積行為,本文同時(shí)考慮了顆粒濃度、顆粒粒徑與多孔介質(zhì)粒徑對(duì)介質(zhì)滲透性的影響,用石英砂柱不同部分的相對(duì)滲透系數(shù)/0、濃度及總體流速隨時(shí)間的變化進(jìn)行定量描述,對(duì)總體相對(duì)滲透系數(shù)隨時(shí)間的變化進(jìn)行回歸分析,并將實(shí)驗(yàn)結(jié)束后的砂柱樣品用掃描電鏡做定性分析以進(jìn)一步揭示膠體顆粒的沉積特征。
膠體顆粒在多孔介質(zhì)中運(yùn)移的實(shí)驗(yàn)裝置如圖1所示,由定水頭裝置、供水裝置、砂柱、測(cè)壓裝置等部分構(gòu)成[2]。供水裝置包括供水桶、小型水泵和電動(dòng)攪拌器(使顆粒保持懸浮狀態(tài));定水頭裝置包括上部和下部定水頭,其中上部定水頭在砂柱上端的溢流口處,下部定水頭在砂柱底部的方形有機(jī)玻璃盒處,上、下部水頭差可以控制砂柱中滲流的流速;測(cè)壓裝置是在砂柱側(cè)邊開(kāi)孔通過(guò)膠管連接的測(cè)壓管,用于讀取不同位置的水頭值。砂柱為長(zhǎng)40 cm,內(nèi)徑6 cm的有機(jī)玻璃柱,裝填石英砂部分為24 cm,底部出口處放置孔徑為0.1 mm的濾網(wǎng),防止多孔介質(zhì)顆粒隨滲流流出砂柱;在距砂柱頂端5 cm處有溢流口,柱體側(cè)邊共開(kāi)7個(gè)測(cè)壓口,第一個(gè)測(cè)壓口設(shè)在與上部石英砂持平處,其余測(cè)壓口分別位于距第一個(gè)測(cè)壓口3、6、10、15、19、24 cm處;柱體的另一側(cè)有4個(gè)取樣口,分別位于砂柱裝填部分的2、5、14和22 cm處,用于取樣測(cè)定膠體顆粒的濃度。
本實(shí)驗(yàn)多孔介質(zhì)選用3種不同粒徑分布的石英砂,粒徑范圍分別為180~300、300~425和425~600 μm。膠體顆粒選用的硅微粉,是由天然石英(SiO2)或熔融石英經(jīng)破碎、球磨、浮選、酸洗提純、高純水處理等多道工藝加工而成的,純度99.9%,化學(xué)性質(zhì)穩(wěn)定,與多孔介質(zhì)無(wú)靜電吸附作用。實(shí)驗(yàn)選用粒徑d分別為2.6、6.5和13 μm的硅微粉,配制濃度分別為0.1、0.2和0.5 g·L–1。Siriwardene等[23]認(rèn)為,多孔介質(zhì)發(fā)生物理堵塞導(dǎo)致滲透率降低主要是由于直徑小于≤6 μm的膠體顆粒運(yùn)移造成的,Reddi等[18]認(rèn)為,在大多數(shù)過(guò)濾系統(tǒng)中遷移的顆粒絮凝體在10 μm左右,因此本研究選用上述三種粒徑的膠體顆粒,涵蓋了遷移顆粒的可能范圍,以此考察遷移顆粒大小對(duì)多孔介質(zhì)的堵塞作用。實(shí)驗(yàn)條件如表1所示。
本研究用3種不同濃度的膠體溶液在同一飽和多孔介質(zhì)中的入滲實(shí)驗(yàn),探討膠體溶液濃度對(duì)介質(zhì)滲透性的影響;用同一濃度、3種不同粒徑的膠體溶液在同一飽和多孔介質(zhì)中的入滲實(shí)驗(yàn),揭示膠體顆粒粒徑對(duì)介質(zhì)滲透性的作用機(jī)理;用同一濃度和粒徑的膠體顆粒在3種不同粒徑范圍的飽和多孔介質(zhì)中的入滲實(shí)驗(yàn),分析介質(zhì)滲透性對(duì)介質(zhì)粒徑的響應(yīng),共計(jì)7種情況。每次實(shí)驗(yàn)前將石英砂分別用酸、堿各洗24 h,再用蒸餾水洗至中性,在105 ℃下烘干[24];通過(guò)濕法裝樣將石英砂分層裝入砂柱中,底部先鋪2 cm粗砂,之后每3 cm裝一次樣,分8次填裝,砂柱容重約為1.55 g·cm–3。先從底部連續(xù)注水飽和24 h,排除砂柱中的截留空氣,之后換為上部進(jìn)水,保持上、下部的水頭差為10 cm,待測(cè)壓管水頭穩(wěn)定后計(jì)算初始滲透系數(shù)0。之后用水泵將懸濁液以0.5~6 L·h–1的流量從上至下輸入砂柱中,并保證有懸浮液從溢流口流出;分別在進(jìn)樣后2、5、8、11、14、18、22、26、30、34、38、42、46、50、54和59 h時(shí)觀測(cè)每個(gè)測(cè)壓管的水頭值和出流量,由此計(jì)算砂柱不同分段的滲透系數(shù)和砂柱總體滲透系數(shù)。同時(shí)從砂柱2、5、14和22 cm處取樣孔和出水口處取樣測(cè)定出流液的濃度。
圖1 實(shí)驗(yàn)裝置圖
表1 實(shí)驗(yàn)條件
注:D為石英砂的算術(shù)平均粒徑 Note:Dstands for arithmetic mean particle size of the quartz sand tested
采用相對(duì)滲透系數(shù)/0來(lái)表征膠體顆粒滯留等引起的砂柱滲透性的變化,其中0和是根據(jù)達(dá)西定律進(jìn)行計(jì)算的:
同時(shí),采用相對(duì)流速/0(0為初始滲流流速,為各時(shí)刻滲流流速)分析介質(zhì)滲透性變化情況,根據(jù)不同時(shí)間砂柱的出流量計(jì)算滲流流速的變化,計(jì)算公式為:
式中,為各時(shí)刻滲流流速(m·d–1);為過(guò)水?dāng)嗝婷娣e(m2);為各時(shí)刻出流量(m3·d–1);為有機(jī)玻璃柱內(nèi)徑(m)。
用濁度儀對(duì)不同位置采集的樣品進(jìn)行濁度測(cè)定,并將濁度轉(zhuǎn)化為濃度,采用濃度變化對(duì)膠體顆粒在多孔介質(zhì)中的遷移進(jìn)行分析。為了進(jìn)一步說(shuō)明多孔介質(zhì)滲透性的變化,實(shí)驗(yàn)結(jié)束后對(duì)石英砂柱取樣做掃描電鏡,分析多孔介質(zhì)堵塞情況。
2.1.1 膠體顆粒濃度對(duì)滲透性的影響 圖2為粒徑為6.5 μm、濃度分別為0.1、0.2和0.5 g·L–1的硅微粉懸浮液在D為362 μm的石英砂柱中入滲時(shí)整個(gè)砂柱相對(duì)滲透系數(shù)的變化,總體來(lái)看,膠體顆粒濃度越高,砂柱的相對(duì)滲透系數(shù)下降越快。圖3為各滲流段的0關(guān)系曲線,由圖可以看出,不同濃度入滲時(shí)的相對(duì)滲透系數(shù)均呈下降趨勢(shì),膠體顆粒濃度越高,各段滲透系數(shù)越低,這是由于濃度越高,孔隙內(nèi)膠體顆粒的滯留率越高;但降低程度有差別,在入滲的初始階段下降較快,之后下降速度放緩;對(duì)于四段土柱的滲透系數(shù)曲線而言,AB段即砂柱表層段的相對(duì)滲透系數(shù)下降最快,其次分別為BC、CE、EG段。
注:K0為初始滲透系數(shù),K為各時(shí)刻滲透系數(shù)。下同。Note:K0 stands for initial permeability coefficient,and K for permeability coefficient at each moment. The same as below
對(duì)于AB段,0.1、0.2和0.5 g·L–1的膠體濃度入滲時(shí)0降至50%所用的時(shí)間分別約為25、13和10 h,如圖中黑色垂線所示位置;實(shí)驗(yàn)結(jié)束時(shí)0分別降為原來(lái)的17.2%、11.7%和10.2%,這說(shuō)明膠體顆粒濃度越大,越容易在表層沉積,使得表層0下降得較快。對(duì)于BC段,0降至50%所用的時(shí)間分別約為59、29和26 h,實(shí)驗(yàn)結(jié)束時(shí)0分別降為原來(lái)的56.5%、26.2%和30.6%,這表明膠體顆粒除了在表層沉積,還向土柱下部運(yùn)移并沉積。對(duì)CE和EG段而言,0變化幅度不大,說(shuō)明沉積在這兩段的膠體顆粒已不多。
注:四條曲線分別表示滲流段AB(0~3 cm)、BC(3~6 cm)、CE(6~15 cm)、EG(15~24 cm)的K/K0隨時(shí)間的變化。下同。Note:The four curves represent temporal variation of K/K0 in the seepage section AB(0~3 cm),BC(3~6 cm),CE(6~15 cm)and EG(15~24 cm). The same as below.
通常而言,顆粒濃度影響著滲透系數(shù)降低的速率,入滲的膠體顆粒濃度越高,滲透系數(shù)下降越快,這是由于孔隙流中顆粒的載荷增加所致[14]。但由圖3可以看出,0.1和0.2 g·L–1入滲濃度的AB和BC段的0下降程度差異較大,而0.2和0.5 g·L–1的AB和BC段0差異不大,但CE和EG段差異較大,這說(shuō)明在超過(guò)一定堵塞狀態(tài)后,無(wú)論孔隙流中顆粒的濃度如何,堵塞孔隙中的流速均足以在表層不發(fā)生明顯沉積的情況下傳導(dǎo)顆粒[18]。
2.1.2 膠體顆粒粒徑對(duì)滲透性的影響 本次實(shí)驗(yàn)選取了粒徑d分別為13、6.5和2.6 μm、濃度為0.2 g·L–1的硅微粉和D為362 μm的石英砂進(jìn)行實(shí)驗(yàn)。由圖4可知,砂柱總體相對(duì)滲透系數(shù)0差異性不明顯,粒徑大的膠體顆粒對(duì)應(yīng)的0相對(duì)減小得大些,這是因?yàn)椴煌降哪z體顆粒在不同位置沉積導(dǎo)致多孔介質(zhì)每段的滲透系數(shù)下降程度不同,但總體上會(huì)產(chǎn)生互補(bǔ)效應(yīng),使得總體滲透系數(shù)的變化程度差異不大。雖然粒徑大的膠體顆粒對(duì)表層的相對(duì)滲透系數(shù)的影響較大,但從總體滲透系數(shù)隨時(shí)間變化曲線來(lái)看,其粒徑效應(yīng)并不如濃度效應(yīng)變化明顯,這也可能是由于粒徑小的顆粒更易發(fā)生絮凝或凝聚,產(chǎn)生大的團(tuán)聚體,使得其效應(yīng)更接近大顆粒[18]。
由圖5a)可知,AB、BC、CE和EG段在實(shí)驗(yàn)結(jié)束時(shí),0分別降為原來(lái)的11.7%、26.2%、81%、95.2%,AB段下降速率最快,在10 h左右即降為初始滲透系數(shù)的50%,這表明粒徑大的膠體顆粒易在表面滯留沉積,堵塞孔隙,減小入滲率。圖5b)中各段在實(shí)驗(yàn)結(jié)束時(shí)0分別降為原來(lái)的19.1%、33.8%、80.4%和94.6%,可以看出CE、EG段下降較快,但AB、BC段的下降速率明顯較圖5a)慢。圖5c)中各段在實(shí)驗(yàn)結(jié)束時(shí)0分別降為原來(lái)的19.5%、35.9%、61.3%和80.1%,AB和BC段0下降速率明顯低于圖5a)和圖5b),但CE和EG段的下降速率高于圖5a)和圖5b)。這是因?yàn)閷?duì)于相對(duì)較大的顆粒,滯留在其沉積過(guò)程中發(fā)揮著重要的作用,滯留表示顆粒無(wú)法通過(guò)小孔喉而被截留的現(xiàn)象。而粒徑較小的膠體顆粒易隨水流到達(dá)更深處滯留,表層沉積量較少,導(dǎo)致滲透率下降比較明顯[9]。
圖4 不同膠體顆粒粒徑處理下砂柱總體相對(duì)滲透系數(shù)隨時(shí)間的變化
圖5 不同膠體顆粒粒徑處理下各滲流段相對(duì)滲透系數(shù)隨時(shí)間的變化
2.1.3 多孔介質(zhì)粒徑分布對(duì)滲透性的影響 實(shí)驗(yàn)選擇了3種粒徑的石英砂,D分別為240、362和513 μm,膠體顆粒粒徑為6.5 μm,濃度為0.2 g·L–1。由圖6總體相對(duì)滲透系數(shù)隨時(shí)間變化可知,膠體顆粒在粒徑大的多孔介質(zhì)中更易向下部遷移沉積,導(dǎo)致總體0變化較大;而對(duì)于粒徑小的多孔介質(zhì),膠體顆粒易滯留在表層,總體0變化不大。有研究指出中細(xì)砂更容易發(fā)生表面堵塞,而粗砂容易發(fā)生內(nèi)部-表面雙重堵塞,從而導(dǎo)致堵塞速率和部位不相同[21]。多孔介質(zhì)粒徑越大,孔隙越大,其捕獲懸浮顆粒的能力越低,懸浮顆粒易在其中遷移;而粒徑小的介質(zhì),孔隙較小,顆粒難以通過(guò),易在表面沉積[3],上述現(xiàn)象從圖6中也可以體現(xiàn)出來(lái)。
通過(guò)圖7可以看出,圖7a)中土柱各段0均有明顯下降,至實(shí)驗(yàn)結(jié)束時(shí)AB、BC、CE和EG的0分別降為原來(lái)的16.5%、28.5%、43.9%和68.5%。圖7b)中AB和BC段有比較明顯的降低,0降為原來(lái)的11.7%、26.2%,而CE和EG段分別降為起始的81%和95.2%,變化不大,這是由于介質(zhì)孔徑小導(dǎo)致大部分顆粒在表層沉積[25]。圖7c)中AB段和BC段0輕微降低,0降為原來(lái)的93.1%和99.4%,CE和EG段0均有明顯增大的現(xiàn)象,在后面部分會(huì)討論相對(duì)滲透系數(shù)增大的原因。
圖6 不同多孔介質(zhì)粒徑處理下砂柱總體相對(duì)滲透系數(shù)隨時(shí)間的變化
2.1.4 土柱總體相對(duì)滲透系數(shù)隨時(shí)間變化特征 為了定量地了解整個(gè)砂柱滲透性能隨時(shí)間的變化特征,將上述不同條件下土柱總體相對(duì)滲透系數(shù)(用表示)與時(shí)間(用表示)進(jìn)行回歸分析,結(jié)果見(jiàn)表2。由表中回歸方程和2可知,除處理1外,其余實(shí)驗(yàn)砂柱總體相對(duì)滲透系數(shù)與時(shí)間之間呈二次方相關(guān)關(guān)系,2>0.92,均具有較好的相關(guān)性。處理1選用的石英砂相比于處理4和7而言的石英砂較細(xì),總體相對(duì)滲透系數(shù)與時(shí)間之間沒(méi)有明顯的相關(guān)性,表明介質(zhì)粒徑過(guò)小時(shí),滲透性能隨時(shí)間降低的規(guī)律不顯著,而處理4和7相比處理4的2較高,這說(shuō)明在膠體顆粒濃度與粒徑相同時(shí),D為362 μm的石英砂柱的總體相對(duì)滲透系數(shù)與時(shí)間的相關(guān)性較好;3、4、5處理相比,處理5的2最高,表明在石英砂粒徑和膠體顆粒粒徑相同時(shí),濃度大的膠體溶液處理下砂柱的總體相對(duì)滲透系數(shù)與時(shí)間的相關(guān)性較好;處理2、4、6相比,處理4的2最高,說(shuō)明在石英砂粒徑和膠體溶液濃度相同時(shí),d為6.5 μm的膠體顆粒處理下的總體相對(duì)滲透系數(shù)與時(shí)間的相關(guān)性較好。
圖7 不同多孔介質(zhì)粒徑處理下各滲流段相對(duì)滲透系數(shù)隨時(shí)間的變化
表2 砂柱總體相對(duì)滲透系數(shù)與時(shí)間的回歸分析
膠體顆粒的滯留和沉積對(duì)砂柱滲透性能有很大影響,滲流流速隨時(shí)間變化很大[7]。滲流流速變化與介質(zhì)滲透性變化關(guān)系密切,由達(dá)西定律可知,水通過(guò)多孔介質(zhì)的速度同水力梯度的大小及介質(zhì)的滲透性能成正比[26]。不同因素影響下的流速變化如圖8所示,總體而言膠體顆粒濃度、粒徑和多孔介質(zhì)粒徑越大,流速降低地越快。流速降低最慢和最快的分別為處理3和5,即濃度為0.1 g·L–1和0.5 g·L–1的膠體顆粒,分別降為原來(lái)的56.52%和12%。由3、4、5處理可知,流速降低速度由大到小分別為5、4、3處理,這表明其余條件相同時(shí),濃度越大,越易發(fā)生堵塞,流速降低越快;由2、4、6處理可知,處理2即d為2.6 μm的膠體顆粒入滲時(shí)流速降低最慢,其次分別為d為13和6.5 μm的膠體顆粒,表明膠體顆粒粒徑對(duì)流速變化不明顯,這與上文多孔介質(zhì)滲透性變化相一致;由處理1、4、7可知,流速降低速度由大到小分別為7、4、1處理,這表明在相同膠體顆粒入滲的情況下,介質(zhì)粒徑越大,膠體顆粒易向下部遷移,在介質(zhì)表層和下部發(fā)生雙重堵塞,從而使得流速降低越快。
注:圖中處理1、2、3等與表1中的實(shí)驗(yàn)處理對(duì)應(yīng);v0為初始滲流流速,v為各時(shí)刻滲流流速。Note:Treatments 1,2 and 3,etc. in the figure correspond to the experiment treatments in Table 1;v0 stands for initial seepage velocity,and v for seepage velocity at each moment.
本實(shí)驗(yàn)對(duì)一系列已知濃度的膠體懸浮液濁度進(jìn)行測(cè)定得出濁度和濃度的關(guān)系,發(fā)現(xiàn)粒徑為6.5和13 μm的膠體顆粒濃度和濁度的關(guān)系分別為=0.0012–0.0003和=0.0013+0.0002,2為0.9973和0.9975,說(shuō)明兩者具有高度相關(guān)性,可以用濁度來(lái)反映濃度的變化。對(duì)實(shí)驗(yàn)4和6不同位置的濃度變化進(jìn)行分析,由于表層與底部濃度的數(shù)量級(jí)差距較大,所以以log10作圖分析,兩種粒徑的膠體顆粒濃度變化見(jiàn)圖9。
由圖9可以看出,砂柱不同位置處膠體顆粒濃度隨時(shí)間變化差別較大,隨著時(shí)間的延長(zhǎng),整體上呈現(xiàn)先增加后降低或趨于穩(wěn)定的趨勢(shì),在前期濃度變化幅度較大,后期僅上下浮動(dòng)。由圖9可知,當(dāng)膠體顆粒粒徑為6.5 μm時(shí),土柱5個(gè)不同位置處(從上到下)膠體顆粒濃度的最大值分別為76.9、0.309、0.040、0.052和0.019 g·L–1;當(dāng)膠體顆粒的粒徑為13 μm時(shí),土柱5個(gè)不同位置處膠體顆粒濃度的最大值分別為138.6、60.6、0.164、0.014和0.010 g·L–1,大顆粒在14 cm以上沉積較多,而小顆粒能更多地遷移至14 cm以下,表明小顆粒較大顆粒更易向下部遷移。由于本實(shí)驗(yàn)選用的膠體顆粒和多孔介質(zhì)的成分均為SiO2,化學(xué)性質(zhì)穩(wěn)定,不考慮靜電吸附作用,可以認(rèn)為是多孔介質(zhì)的篩濾作用造成的,膠體顆粒粒徑越大篩濾作用越明顯[27-28]。不同位置的濃度越大,0降低越快,這與相對(duì)滲透系數(shù)的變化相對(duì)應(yīng)。
圖9 砂柱不同位置膠體顆粒濃度隨時(shí)間的變化
對(duì)處理5結(jié)束后的多孔介質(zhì)進(jìn)行分析,表面沉積層的形成得到了直觀的確認(rèn),如圖10所示。為了進(jìn)一步證實(shí)以上實(shí)驗(yàn)結(jié)果,用掃描電鏡(SEM)對(duì)實(shí)驗(yàn)結(jié)束后的多孔介質(zhì)顆粒進(jìn)行了微觀分析,顯微圖(圖11)顯示石英砂顆粒表面光滑且有明顯的沉積物,說(shuō)明膠體顆粒會(huì)在多孔介質(zhì)表面沉積,堵塞孔隙。
通常而言,膠體顆粒入滲會(huì)造成介質(zhì)孔隙堵塞,從而使?jié)B透性下降,滲透系數(shù)減小。但從圖3、圖5(a)和圖7(c)中可以發(fā)現(xiàn),隨著實(shí)驗(yàn)觀測(cè)時(shí)間的增長(zhǎng),CE和EG段0有增大甚至大于1的現(xiàn)象。對(duì)此也有文獻(xiàn)得出了膠體顆粒在多孔介質(zhì)中入滲并不一定會(huì)導(dǎo)致相對(duì)滲透系數(shù)下降的結(jié)論,但解釋卻不盡相同[21-22,29-30]。田燚等[30]認(rèn)為由于多孔介質(zhì)粒徑過(guò)小而懸浮物濃度高,使得砂柱表層堵塞嚴(yán)重,表層滲透系數(shù)下降迅速難以繼續(xù)滲透,砂柱內(nèi)部可能處于非飽和狀態(tài)。路瑩[29]認(rèn)為是多孔介質(zhì)中的空氣溶于水所導(dǎo)致的,且深度越深,其中的空氣就越難排出,從而出現(xiàn)底部滲透系數(shù)增大的現(xiàn)象;而戴傳山等[22]則認(rèn)為實(shí)驗(yàn)過(guò)程中應(yīng)盡量保證砂柱中無(wú)氣泡存在,認(rèn)為這與懸浮顆粒和多孔介質(zhì)粒徑的相對(duì)直徑比d/D有關(guān),當(dāng)在d/D比值>0.02且懸浮顆粒濃度小于1.0 g·L–1的情況下會(huì)出現(xiàn)局部相對(duì)滲透系數(shù)增大的現(xiàn)象。由于膠體的流動(dòng)濃度由其沉積的相對(duì)大小和釋放速率決定,膠體溶液在體系中的停留時(shí)間也起著重要的作用,停留時(shí)間越長(zhǎng),越接近顆粒沉積與釋放的平衡狀態(tài),而停留時(shí)間越短,則越有利于膠體沉積而非釋放[31]。因此本文認(rèn)為滲透系數(shù)增大可能是由于進(jìn)樣時(shí)間較長(zhǎng),表層顆粒沉積不易向下遷移,下部已沉積的顆粒釋放流出砂柱,導(dǎo)致滲透系數(shù)增大。
圖10 多孔介質(zhì)下部與表層對(duì)比圖
圖11 實(shí)驗(yàn)后多孔介質(zhì)掃描電鏡圖像
本實(shí)驗(yàn)計(jì)算了相對(duì)直徑比d/D與實(shí)驗(yàn)結(jié)果相結(jié)合,參照戴傳山等[22]的數(shù)據(jù)解釋?zhuān)L制了不同文獻(xiàn)數(shù)據(jù)的對(duì)比圖,發(fā)現(xiàn)當(dāng)d/D>0.018且濃度小于0.5 g·L–1時(shí),會(huì)出現(xiàn)0增加的現(xiàn)象,而d/D<0.018時(shí),未出現(xiàn)0增加的現(xiàn)象。實(shí)驗(yàn)結(jié)果與戴傳山等[22]的解釋有偏差,可能是由于所用裝置與實(shí)驗(yàn)條件有差異,其次濃度大于0.5 g·L–1的入滲實(shí)驗(yàn)還未進(jìn)行,且膠體顆粒在多孔介質(zhì)中遷移沉積的機(jī)理復(fù)雜,今后會(huì)繼續(xù)進(jìn)行實(shí)驗(yàn)探討有關(guān)相對(duì)滲透系數(shù)增大的原因,文獻(xiàn)數(shù)據(jù)對(duì)比圖見(jiàn)圖12。
注:dp為膠體顆粒粒徑,Dp為石英砂算數(shù)平均粒徑。Note:dp stands for colloidal particle size,and Dp for arithmetic average particle size of quartz sand.
本研究采用了3種膠體粒徑、3種濃度的膠體溶液和3種粒徑范圍的石英砂,開(kāi)展了定水頭條件下不同濃度和粒徑的膠體顆粒在不同粒徑范圍的飽和多孔介質(zhì)中的運(yùn)移行為研究。得出以下結(jié)論:(1)膠體顆粒在多孔介質(zhì)中運(yùn)移會(huì)造成物理堵塞,導(dǎo)致滲透性降低。(2)膠體顆粒在多孔介質(zhì)中的遷移沉積受膠體顆粒濃度、膠體顆粒粒徑和多孔介質(zhì)粒徑的影響,膠體顆粒濃度、膠體顆粒粒徑和多孔介質(zhì)粒徑越大時(shí),滲透性降低得越快。(3)介質(zhì)滲流流速及砂柱不同位置膠體顆粒濃度變化也反映出膠體顆粒對(duì)介質(zhì)的堵塞。(4)當(dāng)輸入濃度0小于0.5 g·L–1且d/D>0.018時(shí),會(huì)出現(xiàn)多孔介質(zhì)局部0增大的現(xiàn)象。
[1] Moghadasi J,Müller-Steinhagen H,Jamialahmadi M,et al. Theoretical and experimental study of particle movement and deposition in porous media during water injection. Journal of Petroleum Science and Engineering,2004,43(3/4):163—181.
[2] Zheng X L,Shan B B,Cui H,et al. Test and numerical simulation on physical clogging during aquifer artificial recharge.Journal of China University of Geosciences(Earth Science),2013,38(6):1321—1326. [鄭西來(lái),單蓓蓓,崔恒,等. 含水層人工回灌物理堵塞的實(shí)驗(yàn)與數(shù)值模擬. 中國(guó)地質(zhì)大學(xué)學(xué)報(bào)(地球科學(xué)),2013,38(6):1321—1326.]
[3] Yousif O,Karakouzian M,Rahim N,et al. Physical clogging of uniformly graded porous media under constant flow rates. Transport in Porous Media,2017,120(3):643—659.
[4] Zeinijahromi A,Vaz A,Bedrikovetsky P. Well impairment by fines migration in gas fields. Journal of Petroleum Science and Engineering,2012,88/89(2):125—135.
[5] Liu Q L,Xu S H,Liu J L. Comparison between kaolinite and SiO2colloid in transport behavior in saturated porous media. Acta Pedologica Sinica,2008,45(3):445—451. [劉慶玲,徐紹輝,劉建立. 飽和多孔介質(zhì)中高嶺石膠體和SiO2膠體運(yùn)移行為比較. 土壤學(xué)報(bào),2008,45(3):445—451.]
[6] Liu Q L,Xu S H,Liu J L. Effects of ionic-strength and pH on kaolinite transport in saturated porous media. Acta Pedologica Sinica,2007,44(3):425—429. [劉慶玲,徐紹輝,劉建立. 離子強(qiáng)度和pH對(duì)高嶺石膠體運(yùn)移影響的實(shí)驗(yàn)研究. 土壤學(xué)報(bào),2007,44(3):425—429.]
[7] Yao L. Experimental study on remainer during muddy water infiltrating. Beijing:Tsinghua University,2004. [姚雷. 渾水入滲滯留實(shí)驗(yàn)研究. 北京:清華大學(xué),2004.]
[8] Khilar K C. Migrations of fines in porous media. Springer-Science+Business Media,B.Y:Kluwer Academic,1998.
[9] Alem A,Elkawafi A,Ahfir N D,et al. Filtration of kaolinite particles in a saturated porous medium:Hydrodynamic effects. Hydrogeology Journal,2013,21(3):573—586.
[10] Pavelic P,Dillon P J,Mucha M,et al. Laboratory assessment of factors affecting soil clogging of soil aquifer treatment systems. Water Research,2011,45(10):3153—3163.
[11] Sun H M,Gao B,Tian Y,et al. Kaolinite and lead in saturated porous media:Facilitated and impeded transport. Journal of Environmental Engineering,2010,136(11):1305—1308.
[12] Zhai Z Q. Laboratory test on the effect of the suspended particle on the seepage migration of heavy metal irons. Beijing:Beijing Jiaotong University,2017. [翟振乾. 懸浮顆粒對(duì)重金屬離子滲流遷移過(guò)程影響的實(shí)驗(yàn)研究. 北京:北京交通大學(xué),2017.]
[13] Shao Z Z,Lin Q,Xu S H. Effect of silica colloids on adsorption and migration of sulfadiazine in soil relative to ionic intensity. Acta Pedologica Sinica,2018,55(2):411—421. [邵珍珍,林青,徐紹輝. 不同離子強(qiáng)度下SiO2膠體對(duì)磺胺嘧啶土壤吸附遷移行為的影響. 土壤學(xué)報(bào),2018,55(2):411—421.]
[14] Reddi L N,Xiao M,Hajra M G,et al. Physical clogging of soil filters under constant flow rate versus constant head. Canadian Geotechnical Journal,2005,42(3):804—811.
[15] Ahfir N D,Hammadi A,Alem A,et al. Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. Journal of Environmental Sciences,2017,53(3):161—172.
[16] Bennacer L,Ahfir N D,Bouanani A,et al. Suspended particles transport and deposition in saturated granular porous medium:Particle size effects. Transport in Porous Media,2013,100(3):377—392.
[17] Tong M P,Johnson W P. Excess colloid retention in porous media as a function of colloid size,fluid velocity,and grain angularity. Environmental Science & Technology,2006,40(24):7725—7731.
[18] Reddi L N,Ming X,Hajra M G,et al. Permeability reduction of soil filters due to physical clogging. Journal of Geotechnical and Geoenvironmental Engineering,2000,126(3):236—246
[19] Xie Q,Saeedi A,Delle Piane C,et al. Fines migration during CO2injection:Experimental results interpreted using surface forces. International Journal of Greenhouse Gas Control,2017,65:32—39.
[20] Dikinya O,Hinz C,Aylmore G. Dispersion and re-deposition of fine particles and their effects on saturated hydraulic conductivity. Australian Journal of Soil Research,2006,44(1):47—56.
[21] Wang Z J. Laboratory research on the law of suspended solids clogging during urban stormwater groundwater recharge. Changchun:Jilin University,2012. [王子佳. 城市雨洪水地下回灌過(guò)程中懸浮物堵塞規(guī)律的實(shí)驗(yàn)研究. 長(zhǎng)春:吉林大學(xué),2012.]
[22] Dai C S,Qi Y Z,Lei H Y,et al. Deposition effect of suspended microparticle on the local permeability in porous media. Hydrogeology & Engineering Geology,2016,43(6):1—6. [戴傳山,祁蕓芝,雷海燕,等. 懸浮微小顆粒對(duì)多孔介質(zhì)滲流特性影響的實(shí)驗(yàn)研究. 水文地質(zhì)工程地質(zhì),2016,43(6):1—6.]
[23] Siriwardene N R,Deletic A,F(xiàn)letcher T D. Clogging of stormwater gravel infiltration systems and filters:Insights from a laboratory study. Water Research,2007,41(7):1433—1440.
[24] Cai L,Tong M P,Wang X T,et al. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environmental Science & Technology,2014,48(13):7323—7332.
[25] Xiao Z H,Wan H F. Effect of irrigation water quality on soil hydraulic and physical properties. Acta Pedologica Sinica,1998,35(3):359—366. [肖振華,萬(wàn)洪富. 灌溉水質(zhì)對(duì)土壤水力性質(zhì)和物理性質(zhì)的影響. 土壤學(xué)報(bào),1998,35(3):359—366.]
[26] Swartzendruber D. Darcy's law//Encyclopedia of soils in the environment. Oxford:Elsevier,2005:363—369.
[27] Chen X X. Study on the particle transport and deposition in saturated porous media. Beijing:Beijing Jiaotong University,2013. [陳星欣. 飽和多孔介質(zhì)中顆粒遷移和沉積特性研究. 北京:北京交通大學(xué),2013.]
[28] Chen X X,Bai B,Yu T,et al. Coupled effects of particle size and flow rate on characteristics of particle transportation and deposition in porous media. Chinese Journal of Rock Mechanics and Engineering,2013,32(S1):2840—2845. [陳星欣,白冰,于濤,等. 粒徑和滲流速度對(duì)多孔介質(zhì)中懸浮顆粒遷移和沉積特性的耦合影響. 巖石力學(xué)與工程學(xué)報(bào),2013,32(S1):2840—2845.]
[29] Lu Y,Du X Q,Chi B M,et al. The porous media clogging due to suspended solid during the artificial recharge of groundwater. Journal of Jilin University(Earth Science Edition),2011,41(2):448—454. [路瑩,杜新強(qiáng),遲寶明,等. 地下水人工回灌過(guò)程中多孔介質(zhì)懸浮物堵塞實(shí)驗(yàn). 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2011,41(2):448—454.]
[30] Tian Y. The construction of management and assessment system in groundwater over-exploited regions. Beijing:China University of Geosciences,2012. [田燚. 北京市平原典型巖性地下水回灌堵塞及防治的沙柱實(shí)驗(yàn). 北京:中國(guó)地質(zhì)大學(xué),2012.]
[31] Bin G,Cao X,Dong Y,et al. Colloid deposition and release in soils and their association with heavy metals. Critical Reviews in Environmental Science and Technology,2011,41(4):336—372.
Effect of Colloidal Particle on Permeability of Saturated Porous Media Different in Particle Size
ZHAO Wei, LIN Qing, XU Shaohui?
(College of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China)
It is of great scientific significance to study physical, chemical and biological processes of the migration of colloidal particles in saturated porous media. Therefore, it is essential to determine factors affecting the migration and deposition of colloidal particles in saturated porous media.An in-lab quartz sand column experiment was conducted to study migration behavior of colloidal particles in the sand column. The colloidal particles, were poured into saturated porous media with water solution of a set water head. The experiment was designed to have three levels of particle size of the colloidal particles, three levels of concentration of the colloidal solution and three levels of particle size of the quartz sand in the column.Results show that/0of the media was reduced to an extent that was positively related to concentration and particle size of the colloidal particles in columns treated with colloidal particles the same in particle size. The smaller the size of the colloidal particles with the same concentration, the larger the/0of the overall column and the AB segment (surface layer) at the end of the experiment, and the smaller the/0of the lower EG segment (bottom layer) , indicating that large particles were more likely to deposit in the surface layer, while small particles were to move to the bottom. As a whole, the particle size effect was not as noticeable as the effect of change in particle concentration. When the colloidal particles migrated through the porous media different in particle size,/0of each segment of the porous media large in particle size was significantly lower, while it was only low in the surface layer of the column of sands small in particle size. Regression analysis of temporal variation of the overall relative permeability coefficient with other factors shows a quadratic relationship between the two with2being greater than 0.92 except in a few cases, which indicates good correlations. However, the correlation was not significant when the porous media were small in particle size. Analysis of velocity variation indicates that the higher the colloidal particles in concentration and particle size and the porous medium in particle size, the faster the decline of flow rate. Comparison between columns treated with colloidal particles different in concentration and in different particle, separately shows that large particles concentrated mostly in the upper part of the sand column, while small particles did in the lower part, which corresponded to the change of the medium in permeability. Qualitative characterization of the columns with a scanning electron microscope displays significant deposition of colloidal particles on the surface of the porous media after the experiment, which further demonstrates that colloidal particles could clog pores of the porous media, thus affecting their permeability. Secondly, the deposition of colloidal particles in the porous media increased/0under certain conditions, which was related to concentration0of the input and diameter ratiod/D(dstands for colloidal particle size, andDfor arithmetic average particle size of the quartz sand) of the particles. Phenomena of rising local permeability coefficient would appear whend/Dwas higher than 0.018 and0was lower than 0.5 g·L–1.Generally speaking, the colloidal particles migrating in porous media may clog the pores of the media physically, and hence reduce their permeability. Particle size and concentration of the colloidal particles tested and particle size of the porous media are main factors affecting migration and deposition of the colloidal particles in saturated porous media.
Colloid; Porous media; Permeability coefficient; Deposition; Migration
S152.7
A
10.11766/trxb201905280227
趙偉,林青,徐紹輝. 膠體顆粒對(duì)不同粒徑飽和多孔介質(zhì)滲透性的影響[J]. 土壤學(xué)報(bào),2020,57(2):336–346.
ZHAO Wei,LIN Qing,XU Shaohui. Effect of Colloidal Particle on Permeability of Saturated Porous Media Different in Particle Size[J]. Acta Pedologica Sinica,2020,57(2):336–346.
* 國(guó)家自然科學(xué)基金項(xiàng)目(41571214、41807010)資助Supported by the National Natural Science Foundation of China(Nos. 41571214,41807010)
,E-mail:shhxu@qdu.edu.cn
趙 偉(1995—),女,山東煙臺(tái)人,碩士研究生,主要從事地下環(huán)境中水流和溶質(zhì)運(yùn)移及模擬研究。E-mail:zhaowqd@163.com
2019–05–28;
2019–09–11;
優(yōu)先數(shù)字出版日期(www.cnki.net):2019–10–21
(責(zé)任編輯:檀滿枝)