亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        重慶市更新統(tǒng)沉積物發(fā)育土壤的特性及分類*

        2020-04-25 01:54:28王術(shù)芳連茂山翁昊璐
        土壤學(xué)報 2020年2期
        關(guān)鍵詞:旱地水田沉積物

        胡 瑾,慈 恩,王術(shù)芳,連茂山,翁昊璐,陳 林

        重慶市更新統(tǒng)沉積物發(fā)育土壤的特性及分類*

        胡 瑾,慈 恩?,王術(shù)芳,連茂山,翁昊璐,陳 林

        (西南大學(xué)資源環(huán)境學(xué)院,重慶 400715)

        選取重慶市境內(nèi)分別由夾卵石黃色黏土(PC)、黃色黏土(YC)、紅色黏土(RC)等更新統(tǒng)沉積物發(fā)育的6個典型旱地和水田土壤剖面為研究對象,探討其土壤特性及系統(tǒng)分類歸屬。結(jié)果表明,PC發(fā)育的旱地土壤富含礫石且無鐵錳斑紋,YC發(fā)育的旱地土壤不含礫石但有鐵錳斑紋,RC發(fā)育的旱地土壤耕作層以下黏粒淀積明顯。在PC和YC發(fā)育的水田土體內(nèi),上部土層的有機(jī)質(zhì)累積明顯且彩度較下部低,游離鐵在下部土層有明顯聚積,而母質(zhì)為RC的水田土體內(nèi)游離鐵則遷移不明顯。3個旱地土壤分別被劃歸為普通簡育濕潤雛形土、普通鐵質(zhì)濕潤雛形土和紅色鐵質(zhì)濕潤淋溶土3個亞類,3個水田土壤則分別被劃歸為普通鐵聚水耕人為土和普通簡育水耕人為土2個亞類,共可建立6個土族和6個土系。YC發(fā)育的普通鐵質(zhì)濕潤雛形土有鐵錳斑紋存在,這是古水文條件的反映,現(xiàn)已完全脫離地下水的影響,故不再具有潮濕土壤水分狀況;沉積物特征、區(qū)域氣候等會影響旱地土體內(nèi)黏粒的淋溶淀積,進(jìn)而影響其土綱劃分;水耕活動使更新統(tǒng)沉積物發(fā)育的雛形土和淋溶土演變?yōu)樗藶橥粒坏貕K篩選、坡改梯、揀拾等人為活動會顯著減少PC發(fā)育的水田土體內(nèi)礫石含量,影響其土族控制層段的顆粒大小級別判定。

        更新統(tǒng)沉積物;耕作條件;土壤特性;土壤系統(tǒng)分類;重慶

        更新統(tǒng)的陸相沉積物按沉積相的不同主要分為風(fēng)積黏土、沖積黏土等,研究其土壤發(fā)生與演變規(guī)律對地質(zhì)變遷、古氣候變化和土壤資源的管理有重要意義[1-5]。我國已有學(xué)者在遼寧省[6]、湖北省[7]和湖南省[8]等區(qū)域開展了更新統(tǒng)沉積物發(fā)育土壤的類型歸屬等相關(guān)研究。由于耕作環(huán)境、耕作方式和模式等存在明顯差異,旱地和水田在人為耕作下的成土環(huán)境、成土過程和發(fā)生特征均有所不同,從而導(dǎo)致土壤特性和類型不同。韓光中等[9-10]研究了母質(zhì)對南方丘陵區(qū)水耕人為土屬性演變的影響,認(rèn)為水耕對成土過程有重要作用。重慶市地貌以山地和丘陵為主,大部分土壤較淺薄,但境內(nèi)水系發(fā)達(dá),河谷兩側(cè)的丘陵和山間平壩常遺留有大量古河道,在其形成的高階地上常有更新統(tǒng)地層零星出露[11-13],而更新統(tǒng)沉積物發(fā)育的土壤則較為深厚,土地利用率高,是重慶市重要的農(nóng)業(yè)土壤資源。土壤分類是土壤學(xué)最基礎(chǔ)的研究領(lǐng)域,以診斷層和診斷特性為基礎(chǔ)、以定量化為特點的土壤系統(tǒng)分類目前已成為國際土壤分類的主流[14-15]。近年來我國在土壤系統(tǒng)分類領(lǐng)域發(fā)展迅速,取得了諸多成果[16-23]。重慶市對紫色土、沖積物發(fā)育土壤和中山區(qū)土壤已開展了相關(guān)工作[16-18],但未見更新統(tǒng)沉積物發(fā)育土壤的分類及耕作條件對其特性影響的相關(guān)研究。為此,本文探討了耕作條件下重慶市幾類更新統(tǒng)沉積物發(fā)育土壤的特性及分類,旨在推動重慶市土壤定量化分類的進(jìn)程,為更深入地認(rèn)識土壤演變機(jī)制及合理利用每一類土壤提供重要思路和理論依據(jù)。

        1 材料與方法

        1.1 研究區(qū)概況

        重慶市地處四川盆地東部,屬我國陸地地勢第二級階梯;全市大致可分為渝東北中山區(qū)、渝東南中山區(qū)、渝西方山丘陵區(qū)和中部平行嶺谷區(qū)(低山、丘陵區(qū))等4個地貌分區(qū);全市屬亞熱帶濕潤季風(fēng)氣候,具有夏熱冬暖、光熱同季、濕潤多陰、無霜期長、立體氣候顯著等特點;其年均氣溫為17.5℃,年均降水量為1 125 mm,年均相對濕度為80%,年均日照時數(shù)為1 000 h~1 400 h,日照百分率僅為25%~35%,為全國年日照最少的地區(qū)之一[16]。在重慶市境內(nèi),有多種更新統(tǒng)沉積物分布,其中,夾卵石黃色黏土和黃色黏土(兩者俗稱“老沖積物”)主要分布在嘉陵江及其主要支流兩岸的高階地上,紅色黏土主要分布在秀山縣境內(nèi)的喀斯特平原及部分槽谷平壩上,另有極少量的黃土或黃土狀土(巫山黃土)則僅零星分布于巫山縣城一帶[11],目前已基本被人造建筑物覆蓋。夾卵石黃色黏土、黃色黏土和紅色黏土是重慶市更新統(tǒng)沉積物中最為主要的3種分布類型,為此本文僅選取以上3種更新統(tǒng)沉積物發(fā)育的典型土壤為研究對象。在中國土壤發(fā)生分類中,夾卵石黃色黏土、黃色黏土和紅色黏土等3種母質(zhì)發(fā)育的典型旱地土壤分別為黃壤土類的卵石黃泥土、面黃泥土和紅壤土類的黃紅泥土3個土種,其發(fā)育的水田土壤分別為水稻土土類的卵石銹黃泥田、老沖積黃泥田和黃紅泥田3個土種。

        1.2 樣品采集與分析

        選擇重慶市境內(nèi)更新統(tǒng)沉積物出露且同時有旱地和水田的區(qū)域為采樣區(qū)域,參照實際情況,控制水田與旱地的母質(zhì)相同,之后選取旱地和水田的采樣點。供試土壤的成土環(huán)境如表1所示,所處海拔范圍為189~395 m,其成土母質(zhì)分別為夾卵石黃色黏土(PC)、黃色黏土(YC)和紅色黏土(RC),剖面數(shù)字編號01為旱地,02為水田。其中,剖面PC01和PC02采于合川區(qū)境內(nèi)的嘉陵江干流的高階地上,剖面YC01和YC02采于銅梁區(qū)境內(nèi)的嘉陵江主要支流涪江的高階地上,剖面RC01和RC02采于秀山縣喀斯特平原。上述6個供試土壤的土種歸屬分別為:卵石黃泥土(PC01)、卵石銹黃泥田(PC02)、面黃泥土(YC01)、老沖積黃泥田(YC02)、黃紅泥土(RC01)和黃紅泥田(RC02)。參照《野外土壤描述與采樣手冊》(簡稱《手冊》)[24],挖掘標(biāo)準(zhǔn)土壤剖面,開展成土環(huán)境調(diào)查(表1)、剖面形態(tài)觀察、土壤比色[25]以及相關(guān)記錄工作,分層采集土壤分析樣,確定其測定指標(biāo)[26]及方法:pH—水浸提法;土壤有機(jī)碳(SOC)—重鉻酸鉀-硫酸消化法;顆粒組成—吸管法;黏粒陽離子交換量(黏粒CEC)—NH4OAc(pH7.0)交換法;交換性鹽基—NH4OAc(pH7.0)浸提,原子吸收光譜法和火焰光度法;全鐵(Fet)—HF、HClO4酸溶比色法;游離氧化鐵(Fed)—DCB浸提比色法;土壤礦物組成及黏土礦物含量—X射線衍射法。

        表1 供試土壤剖面的成土環(huán)境

        ①Hechuan District;?②Tongliang District;?③Xiushan County;? ④Pebble-mixed yellow clays;?⑤Yellow clays;? ⑥Red clays

        2 結(jié) 果

        2.1 土壤形態(tài)特征

        由表2可見,由供試PC發(fā)育土壤的剖面色調(diào)均為7.5YR,其中剖面PC01通體均一,明度為4~6,彩度為3~4,而剖面PC02的明度為5~7,水耕表層彩度為2~3,下層彩度為6,剖面YC01的色調(diào)為10YR,明度為5~7,耕作層彩度為4,下層彩度為6,而剖面YC02其水耕表層和Br1層的色調(diào)演化為2.5Y,下層色調(diào)為10YR,明度為5~7,水耕表層和Br1層彩度為4,下層彩度為6~8,剖面RC01的色調(diào)為5YR,通體均一,明度為4~7,彩度為6,而剖面RC02色調(diào)向10YR演化,明度為5~7,彩度為3~4;供試剖面PC01的礫石含量在耕作層為10%,下層為25%~60%,剖面PC02的礫石含量通體低于剖面PC01,耕作層為2%,下層為5%~10%;此外,6個供試土壤剖面均無亞鐵反應(yīng);剖面PC01中無鐵錳斑紋,剖面YC01除耕作層外均有鐵錳斑紋,且剖面下部有少量鐵管,剖面RC01除耕作層外有大量黏粒膠膜,而剖面PC02、YC02和RC02均有鐵錳斑紋,且在水耕表層之下至少有一個土層存在灰色腐殖質(zhì)-粉砂-黏粒膠膜;供試的旱地和水田土壤均為塊狀結(jié)構(gòu),且水田土壤逐漸演變?yōu)榇髩K狀結(jié)構(gòu),向棱柱狀結(jié)構(gòu)演化。

        表2 供試土壤的剖面形態(tài)特征和理化性質(zhì)

        續(xù)表

        ①Loam;? ②Silt loam;?③Silty clay loam;④Sandy clay loam;? ⑤Clay loam;? ⑥Silty clay;? ⑦Clay;? ⑧Iron-manganese speckles or stripes;?⑨Grey colloids;? ⑩Iron tube;? Clay colloids;? Blocky structure.

        2.2 土壤理化性質(zhì)

        由表2可見,供試的水田土壤Ap2層容重為Ap1層容重的1.13倍~1.39倍,而旱地土壤耕作層之下的土層其容重未明顯增加。在6個供試土壤剖面中,剖面PC01的質(zhì)地為壤土類,而剖面PC02為黏壤土類;剖面YC01為壤土類和黏壤土類,而剖面YC02為黏壤土類和黏土類;剖面RC01和RC02均為黏土類。此外,如圖1a所示,剖面PC01和YC01無黏粒淀積現(xiàn)象,剖面RC01的黏粒含量隨土層深度增加而增加,且剖面中含有大量黏粒膠膜。

        如圖1b所示,剖面PC01和YC01的鹽基飽和度均隨深度先增大后減小,剖面PC02和YC02均在Br2及其下層的鹽基飽和度明顯高于上層,剖面RC01的鹽基飽和度隨深度先減小后增大再減小,有復(fù)鹽基化的趨勢,剖面RC02在25~75 cm處的鹽基飽和度明顯高于上層和下層,故更新統(tǒng)沉積物的旱地土壤表層鹽基淋失淀積于剖面中部,而PC和YC的水田土壤其鹽基淋失淀積于剖面下部,RC的水田土壤其鹽基淋失淀積于剖面中部。如圖1c所示,剖面PC01和RC01的黏粒CEC含量變化較均一,剖面YC01內(nèi)部變異較大,而水田剖面黏粒CEC含量內(nèi)部變異大,在耕作層下部會出現(xiàn)一個極低值。供試的更新統(tǒng)沉積物發(fā)育的土壤的全鐵含量在34.98~103.20 g·kg–1之間,游離氧化鐵含量在15.35~69.34 g·kg–1之間,3種更新統(tǒng)沉積物發(fā)育土壤的全鐵含量RC>YC>PC。如圖1e所示,剖面PC01的游離氧化鐵含量內(nèi)部變異小,剖面PC02在Br1(28~45 cm)及下層的游離氧化鐵含量明顯高于上層;剖面YC01的游離氧化鐵含量在Br3(70~82 cm)及下層明顯低于上層,剖面YC02在Br2(47~75 cm)及下層的游離氧化鐵含量明顯高于上層,剖面RC01和RC02的游離氧化鐵含量內(nèi)部變異小。如圖1d和圖1e所示,供試土壤的全鐵含量變化趨勢與游離氧化鐵含量十分相似,這表明重慶市更新統(tǒng)沉積物發(fā)育土壤的游離氧化鐵對全鐵的貢獻(xiàn)大于硅酸鹽鐵。如圖1f所示,剖面PC01的鐵游離度內(nèi)部變異均一,而剖面PC02的Br1(28~45 cm)及下層的鐵游離度明顯高于上層;剖面YC01的鐵游離度在Br3(70~82 cm)及下層明顯低于上層,而剖面YC02的Br4(47~75 cm)及下層的鐵游離度明顯高于上層;剖面RC01和RC02的鐵游離度隨深度的變異不大,剖面RC01的鐵游離度高于剖面RC02。

        ?①Clay content;?②Fed/Fet

        2.3 土壤系統(tǒng)分類

        2.3.1 診斷層和診斷特性 由表4可知,根據(jù)《中國土壤系統(tǒng)分類檢索(第三版)》[15](簡稱《檢索》)對6個供試土壤剖面的成土條件和各項指標(biāo)進(jìn)行檢索,共鑒定出1個診斷表層、3個診斷表下層和4個診斷特性。結(jié)果如下:診斷層有:(1)水耕表層:剖面PC02、YC02和RC02在淹水耕作條件下符合水耕表層的檢索條件。(2)雛形層:剖面PC01和YC01在風(fēng)化成土過程中形成的無或基本上無物質(zhì)的淀積,有結(jié)構(gòu)發(fā)育的B層,符合雛形層的鑒定條件。(3)水耕氧化還原層:剖面PC02、YC02和RC02符合水耕氧化還原層的檢索條件。(4)黏化層:依照黏化層的鑒定條件[15],剖面RC01由黏粒的淋溶淀積所形成的黏化層。診斷特性有:(1)土壤水分狀況:剖面PC01、YC01和RC01年干燥度<1,為濕潤土壤水分狀況;剖面PC02、YC02和RC02在耕作條件下,耕作層被灌溉水飽和,符合人為滯水土壤水分狀況。(2)氧化還原特征:剖面PC02、YC01、YC02、RC01和RC02均有鐵錳銹斑紋,符合氧化還原特征。(3)土壤溫度狀況:本文中各剖面土壤年平均土溫位于15~22℃之間,符合熱性土壤溫度狀況。(4)鐵質(zhì)特性:剖面PC02、YC01、YC02、RC01和RC02的整個B層部分DCB浸提游離氧化鐵≥20 g·kg–1,符合鐵質(zhì)特性。

        表3 供試土壤的診斷層和診斷特性

        ①Udic;? ②Anthrostagnic;? ③Thermic.

        2.3.2 系統(tǒng)分類單元歸屬 根據(jù)供試土壤的診斷層和診斷特性(表3),依照《檢索》[15]劃分其系統(tǒng)分類高級單元(表4),再依據(jù)“中國土壤系統(tǒng)分類土族和土系劃分標(biāo)準(zhǔn)”[27]確定供試土壤的控制層段,選擇供試土壤土族控制層段的鑒別特征—顆粒大小級別、礦物學(xué)類型、石灰性和酸堿反應(yīng)類別和土壤溫度等級(表5),通過比土、評土,最后確立典型土壤個體的基層分類單元(土族-土系)。礦物組成分析表明,RC01土族控制層段黏粒部分的高嶺石及其他非膨脹的2︰1型層狀礦物含量> 50%,但其非膨脹的2︰1型層狀礦物(伊利石)含量要明顯高于高嶺石含量,故其礦物學(xué)類型被定為伊利石混合型,而不是高嶺石型;RC02土族控制層段黏粒部分的高嶺石及其他非膨脹的2︰1型層狀礦物(伊利石)含量> 50%,且其非膨脹的2︰1型層狀礦物(伊利石)低于高嶺石含量,故其礦物學(xué)類型被定為高嶺石型。依據(jù)供試土壤的土族鑒別特征(表4),可建立6個土族,其中PC01為粗骨壤質(zhì)硅質(zhì)型非酸性熱性-普通簡育濕潤雛形土,PC02為黏壤質(zhì)硅質(zhì)混合型非酸性熱性-普通鐵聚水耕人為土,YC01為黏壤質(zhì)硅質(zhì)混合型非酸性熱性-普通鐵質(zhì)濕潤雛形土,YC02為黏質(zhì)伊利石混合型非酸性熱性-普通鐵聚水耕人為土,RC01為極黏質(zhì)伊利石混合型酸性熱性-紅色鐵質(zhì)濕潤淋溶土,RC02為黏質(zhì)高嶺石型非酸性熱性-普通簡育水耕人為土;每個土族僅對應(yīng)1個典型土壤個體,故可建立6個土系(表4)。

        3 討 論

        3.1 沉積物特征對更新統(tǒng)沉積物發(fā)育土壤特性及類型的影響

        雖然3種供試母質(zhì)均為更新統(tǒng)沉積物,但不同類型沉積物的物質(zhì)來源、分布位置、顆粒組成、顏色以及其他理化性質(zhì)等存在明顯差異。第二次土壤普查資料認(rèn)為PC和YC母質(zhì)系更新統(tǒng)冰水沉積物[28,29],較之PC母質(zhì),供試的YC母質(zhì)樣點海拔較低,位于涪江下游沿岸階地的較平緩地段,可能是因沿河搬運距離的延長導(dǎo)致流水挾礫能力的下降,使得其以黏土等細(xì)顆粒物質(zhì)沉積為主而無卵石分布;此外,兩者間的礫石含量差異也可能與沉積相不同有關(guān),PC母質(zhì)可能是古河床相沉積,富含卵石和其他粗顆粒物質(zhì)[1,11],而YC母質(zhì)可能是古河漫灘相沉積,受古河流分選作用的影響,該沉積物以粒徑較小的黏土類物質(zhì)為主,故無卵石存在。PC發(fā)育的土壤礫石含量很高、透水性較好,不易形成水分飽和且呈還原狀態(tài)的土壤層次或區(qū)域,土體內(nèi)的鐵錳氧化物難以發(fā)生還原遷移和再氧化,使得土壤結(jié)構(gòu)體面上無明顯鐵錳斑紋存在;與PC母質(zhì)發(fā)育的土壤相比,YC母質(zhì)發(fā)育的土壤更黏、透水性較差,受古水文條件(如地下水位等)的影響,土體內(nèi)易出現(xiàn)水分飽和并呈還原狀態(tài)的土壤水分狀況—潮濕土壤水分狀況,故使其發(fā)育的旱地土壤剖面上有明顯的鐵錳斑紋和少量鐵管存在。然而,受新構(gòu)造運動的影響,河流不斷下切,使老沖積物(PC和YC母質(zhì))的分布位置由河床和河漫灘逐漸演變?yōu)楦唠A地,其發(fā)育的土壤已完全脫離了現(xiàn)代地下水的影響,YC母質(zhì)發(fā)育的土壤已不再具有潮濕土壤水分狀況,其土體內(nèi)存在的鐵錳斑紋和鐵管僅僅是其古水文條件或古土壤水分狀況的反映,因此本文將剖面YC01歸為普通鐵質(zhì)濕潤雛形土亞類。在重慶市境內(nèi),更新統(tǒng)沉積物RC母質(zhì)則主要是由石灰?guī)r風(fēng)化發(fā)育而成,在濕熱的氣候條件下,經(jīng)溶蝕、沖積、洪積等作用后,最終堆積于秀山縣境內(nèi)的喀斯特平原或槽谷區(qū)域[1,11,28],在地勢較低或匯水區(qū)域(如水田),其發(fā)育的土壤復(fù)鹽基作用較為明顯,這使得水田土壤的pH明顯高于旱地土壤(圖1b);RC母質(zhì)富含黏粒,其發(fā)育的土壤質(zhì)地黏重,加上所處地域的降雨量較為豐富[13],導(dǎo)致該類母質(zhì)發(fā)育的旱地土體中水分向下運動頻繁,使得其耕作層以下土體內(nèi)出現(xiàn)了明顯的黏粒淀積;受RC母質(zhì)的游離氧化鐵含量及其色調(diào)的影響,其發(fā)育的旱地土壤游離鐵含量較高,且色調(diào)較老沖積物(PC和YC母質(zhì))發(fā)育的旱地土壤更紅,一般為5YR且在140 cm深度范圍內(nèi)明度和色度的變異較小,故被劃歸為紅色鐵質(zhì)濕潤淋溶土亞類。

        表4 供試土壤的系統(tǒng)分類歸屬

        表5 供試土壤的土族鑒別特征

        注:礦物學(xué)類型測定中,剖面PC01、PC02和YC01測定土壤砂粒部分,YC02、RC01和RC02測定土壤黏粒部分。Note:In determination of mineralogical types,Profiles PC01,PC02 and YC01 were analyzed for sand content;and Profiles YC02,RC01 and RC02 were for clay content ①?Coarse bone loamy;?②Clay loamy;③Clayey;? ④Heavy clayey;?⑤Silicatype;⑥Silica mixture type;⑦Illitic mixture type;?⑧Kaolinitic type

        3.2 人類活動對更新統(tǒng)沉積物發(fā)育土壤特性及類型的影響

        人類活動使3種更新統(tǒng)沉積物發(fā)育土壤的特性及分類存在明顯差異,PC和YC發(fā)育的水田土壤其上部彩度降低,結(jié)合表2可知,彩度降低的土層較旱地土壤更厚,這類土層有機(jī)碳含量較下部土層更高,游離氧化鐵和全鐵含量較下部土層更低,這可能是水耕作用使得其長期處于淹水厭氧狀態(tài),有機(jī)碳易在土壤表層積累后向下遷移,且土壤上部游離氧化鐵被還原為低價鐵,隨水向下淋溶淀積于土壤下層。因此,表層有機(jī)碳積累并向下遷移以及鐵元素淋溶共同導(dǎo)致PC和YC發(fā)育的水田土壤上部彩度降低,由此可通過拋荒土壤上部土層彩度降低的厚薄來判斷PC和YC發(fā)育土壤從前的耕作條件,這與已有的研究結(jié)果一致[30-33]。此外,人類活動會導(dǎo)致PC發(fā)育的水田土壤其礫石含量低于旱地土壤,原因如下:(1)造田時人為篩選卵石含量相對較低的地塊進(jìn)行開墾;(2)該類型土壤分布于高階地上,在坡改梯、挖高填低形成梯田和后期水耕的過程中,人為揀拾較深土層的卵石(筆者調(diào)查與推測至少為1 m),才能使水田形成滯水層。故PC01的顆粒大小級別為粗骨壤質(zhì),PC02的顆粒大小級別為黏壤質(zhì)。剖面PC02的Br1層礫石含量較高,是因為最初耕作時耕作層的卵石被壓在犁底層,犁底層容重增加(表2),后期在水耕過程中,受周圍土壤的淤積作用,耕作層變深,犁底層上升,之前的犁底層變?yōu)锽r1層。

        在老沖積物(PC和YC)發(fā)育的水田土壤其下層的游離氧化鐵含量和鐵游離度明顯高于上層,而在紅色黏土RC發(fā)育的水田土壤其游離氧化鐵含量和鐵游離度的內(nèi)部變異較小,故水耕作用使得PC和YC發(fā)育的水田土壤其游離氧化鐵在剖面上部被還原為低價鐵,向下淋溶淀積于土壤下層,在耕作層以下發(fā)生游離氧化鐵聚積,故被劃歸為普通鐵聚水耕人為土;而RC的水田土壤由于所處地形部位和耕作時間影響,在人為水耕作用下其游離氧化鐵聚積均不明顯,故被劃歸為普通簡育水耕人為土。剖面RC01的礦物學(xué)類型為伊利石混合型,剖面RC02的礦物學(xué)類型為高嶺石型,原因如下:(1)該類沉積物的礦物分布不均勻;(2)水耕作用會導(dǎo)致RC發(fā)育的水田土壤其次生礦物伊利石等緩慢脫鹽基而逐步減少[34]。由表2和圖1b可見,剖面R C01的pH較低,鹽基飽和度較低,RC02的pH較高,鹽基飽和度較高,是由于RC發(fā)育的旱地土壤在復(fù)鹽基作用后風(fēng)化溶蝕過程中淋失較多鹽基離子,而其水田土壤在水耕作用下,復(fù)鹽基化持續(xù)發(fā)生,故剖面RC01的石灰性和酸堿反應(yīng)類別為酸性,RC02的石灰性和酸堿反應(yīng)類別為非酸性。

        4 結(jié) 論

        在重慶市境內(nèi),夾卵石黃色黏土(PC)、黃色黏土(YC)和紅色黏土(RC)等3種更新統(tǒng)沉積物發(fā)育的典型旱地土壤分別歸為普通簡育濕潤雛形土、普通鐵質(zhì)濕潤雛形土和紅色鐵質(zhì)濕潤淋溶土3個亞類,老沖積物(PC和YC)和紅色黏土(RC)發(fā)育的典型水田土壤則分別歸為普通鐵聚水耕人為土和普通簡育水耕人為土2個亞類。YC發(fā)育的普通鐵質(zhì)濕潤雛形土有鐵錳斑紋存在,這是其古水文條件的反映,現(xiàn)已完全脫離地下水的影響,故不具有潮濕土壤水分狀況;沉積物特征、區(qū)域氣候等會影響旱地土體內(nèi)黏粒的淋溶淀積,進(jìn)而影響其土綱劃分,使得PC和YC發(fā)育的旱地土壤劃分為雛形土,RC發(fā)育的旱地土壤為劃分為淋溶土;水耕活動使更新統(tǒng)沉積物發(fā)育的雛形土和淋溶土演變?yōu)樗藶橥?;地塊篩選、坡改梯、揀拾等人為活動會使得PC發(fā)育的水田土體內(nèi)礫石含量較低,影響其土族控制層段的顆粒大小級別判定。

        [1] Yang H R. Quaternary geology. Beijing:Higher Education Press,1987. [楊懷仁. 第四紀(jì)地質(zhì). 北京:高等教育出版社,1987.]

        [2] Johnson D L,Keller E A,Rockwell T K. Dynamic pedogenesis:New views on some key soil concepts,and a model for interpreting quaternary soils. Quaternary Research,1990,33(3):306—319.

        [3] Vlaminck S,Kehl M,Rolf C,et al. Late Pleistocene dust dynamics and pedogenesis in Southern Eurasia – Detailed insights from the loess profile Toshan(NE Iran). Quaternary Science Reviews,2018,180:75—95.

        [4] Jagercikova M,Cornu S,Bourlès D,et al. Understanding long-term soil processes using meteoric10Be:A first attempt on loessic deposits. Quaternary Geochronology,2015,27:11—21.

        [5] Badía D,Martí C,Casanova J,et al. A Quaternary soil chronosequence study on the terraces of the Alcanadre River(semiarid Ebro Basin,NE Spain). Geoderma,2015,241/242:158—167.

        [6] Han C L,Wang Q B,Sun F J,et al. Properties and taxonomy of Quaternary paleo-latosol-like soils in Chaoyang area of Liaoning Province. Acta Pedologica Sinica,2010,47(5):836—846. [韓春蘭,王秋兵,孫福軍,等. 遼寧朝陽地區(qū)第四紀(jì)古紅土特性及系統(tǒng)分類研究.土壤學(xué)報,2010,47(5):836—846.]

        [7] Chen F,Zhang H T,Wang T W,et al. Taxonomy and spatial distribution of soils typical of Jianghan Plain. Acta Pedologica Sinica,2014,51(4):761—771. [陳芳,張海濤,王天巍,等. 江漢平原典型土壤的系統(tǒng)分類及空間分布研究.土壤學(xué)報,2014,51(4):761—771.]

        [8] Ouyang N X,Zhang Y Z,Sheng H,et al. Attribution of typical soils derived from Quaternary Red Clay of eastern Hunan in Chinese Soil Taxonomy. Soils,2018,50(4):841-852. [歐陽寧相,張楊珠,盛浩,等. 湘東紅色黏土發(fā)育的典型土壤在中國土壤系統(tǒng)分類中的歸屬. 土壤,2018,50(4):841—852.]

        [9] Han G Z,Zhang G L. Influence of parent material on evolution of physico-chemical properties of hydragric anthrosols in hilly regions of south China. Acta Pedologica Sinica,2014,51(4):772—780. [韓光中,張甘霖. 母質(zhì)對南方丘陵區(qū)水耕人為土理化性質(zhì)演變的影響.土壤學(xué)報,2014,51(4):772—780.]

        [10] Han G Z,Zhang G L,Li D C,et al. Pedogenetic evolution of clay minerals and agricultural implications in three paddy soil chronosequences of south China derived from different parent materials. Journal of Soils & Sediments,2015,15(2):423—435.

        [11] Liu X S. Quaternary system in Sichuan Basin.Chengdou:Sichuan Science and Technology Press,1983. [劉興詩. 四川盆地的第四系. 成都:四川科學(xué)技術(shù)出版社,1983.]

        [12] Gong L M,Wang C S,F(xiàn)eng D G,et al. Preliminary study of Quaternary climate in Chongqing. Journal of Stratigraphy,2012,36(3):620—626. [龔黎明,王長生,馮代剛,等. 重慶地區(qū)第四紀(jì)氣候的初步研究.地層學(xué)雜志,2012,36(3):620—626.]

        [13] Chen S Q,Cai S L,Xiao T,et al. Chongqing geography. Chongqing:Southwest Normal University Press,2003. [陳升琪,蔡書良,肖挺,等. 重慶地理. 重慶:西南師范大學(xué)出版社,2003.]

        [14] Gong Z T,et al. Chinese soil taxonomy:Theory,methodology,practices. Beijing:Science Press,1999. [龔子同,等. 中國土壤系統(tǒng)分類:理論·方法·實踐. 北京:科學(xué)出版社,1999.]

        [15] Chinese Soil Taxonomy Research Group,Institute of Soil Science,Chinese Academy of Sciences,Cooperative Research Group on Chinese Soil Taxonomy. Keys to Chinese Soil Taxonomy. 3rd ed. Hefei:University of Science and Technology of China Press,2001. [中國科學(xué)院南京土壤研究所土壤系統(tǒng)分類課題組,中國土壤系統(tǒng)分類課題研究協(xié)作組. 中國土壤系統(tǒng)分類檢索. 第3版. 合肥:中國科技大學(xué)出版社,2001.]

        [16] Ci E,Tang J,Lian M S,et al. Higher category partition for purple soils in Chongqing in Chinese soil taxonomy. Acta Pedologica Sinica,2018,55(3):569—584. [慈恩,唐江,連茂山,等. 重慶市紫色土系統(tǒng)分類高級單元劃分研究.土壤學(xué)報,2018,55(3):569—584.]

        [17] Hu J,Ci E,Lian M S,et al. Taxonomy of soils derived from Holocene alluvial sediments in Chongqing. Soils,2018,50(1):202—210. [胡瑾,慈恩,連茂山,等. 重慶市全新統(tǒng)沖積物發(fā)育土壤的系統(tǒng)分類研究.土壤,2018,50(1):202—210.]

        [18] Lian M S,Ci E,Tang J,et al. Soil taxonomy of typical soils in middle-mountain area of northeastern Chongqing. Acta Agriculturae Zhejiangensis,2018,30(10):1729— 1738. [連茂山,慈恩,唐江,等.渝東北中山區(qū)典型土壤的系統(tǒng)分類. 浙江農(nóng)業(yè)學(xué)報,2018,30(10):1729—1738.]

        [19] Li D C,Zhang G L. On difficulties and countermeasures in describing soil series in Chinese Soil Taxonomy. Acta Pedologica Sinica,2016,53(6):1563—1567. [李德成,張甘霖. 中國土壤系統(tǒng)分類土系描述的難點與對策.土壤學(xué)報,2016,53(6):1563—1567.]

        [20] Qu X L,Long H Y,Xie P,et al. Genetic characteristics and classification of typical sierozem in central Ningxia. Acta Pedologica Sinica,2018,55(1):75—87. [曲瀟琳,龍懷玉,謝平,等. 寧夏中部地區(qū)典型灰鈣土的發(fā)育特性及系統(tǒng)分類研究. 土壤學(xué)報,2018,55(1):75—87.]

        [21] Wu K N,Gao X C,Zha L S,et al. Soil taxonomy of artificial soils containing artifacts typical of Henan Province. Acta Pedologica Sinica,2017,54(5):1091—1101. [吳克寧,高曉晨,查理思,等. 河南省典型含有人工制品土壤的系統(tǒng)分類研究. 土壤學(xué)報,2017,54(5):1091—1101.]

        [22] Wang X L,Zhang F R,Wang S,et al. Discussion on characteristics,pedogenetic process and taxonomy of red clay in Beijing. Acta Pedologica Sinica,2014,51(2):238—246. [王秀麗,張鳳榮,王數(shù),等. 北京地區(qū)紅色黏土特性及成土過程和系統(tǒng)分類探討. 土壤學(xué)報,2014,51(2):238—246.]

        [23] Zhang C,Yuan D G,Song Y G,et al. Taxonomy of soils featuring organic soil materials in West Sichuan. Acta Pedologica Sinica,2018,55(5):1085—1097. [張楚,袁大剛,宋易高,等. 川西地區(qū)具有機(jī)土壤物質(zhì)特性土壤的系統(tǒng)分類. 土壤學(xué)報,2018,55(5):1085—1097.]

        [24] Zhang G L,Li D C. Manual of soil description and sampling. Beijing:Science Press,2016. [張甘霖,李德成. 野外土壤描述與采樣手冊. 北京:科學(xué)出版社,2016.]

        [25] Institute of Soil Science,Chinese Academy of Sciences,Xi’an Institute of Optics and Precision Mechanics,Chinese Academy of Sciences. Standard soil colour charts. Nanjing:Nanjing Press,1989. [中國科學(xué)院南京土壤研究所,中國科學(xué)院西安光學(xué)精密機(jī)械研究所. 中國標(biāo)準(zhǔn)土壤色卡. 南京:南京出版社,1989.]

        [26] Zhang G L,Gong Z T. Soil survey laboratory methods. Beijing:Science Press,2012. [張甘霖,龔子同. 土壤調(diào)查實驗室分析方法. 北京:科學(xué)出版社,2012.]

        [27] Zhang G L,Wang Q B,Zhang F R,et al. Criteria for establishment of soil family and soil series in Chinese Soil Taxonomy. Acta Pedologica Sinica,2013,50(4):826—834. [張甘霖,王秋兵,張鳳榮,等. 中國土壤系統(tǒng)分類土族和土系劃分標(biāo)準(zhǔn). 土壤學(xué)報,2013,50(4):826—834.]

        [28] Agriculture and Animal Husbandry Department of Sichuan Province,Soil Survey Office of Sichuan Province. Soils of Sichuan Province. Chengdu:Sichuan Science and Technology Press,1997. [四川省農(nóng)牧廳,四川省土壤普查辦公室. 四川土壤. 成都:四川科學(xué)技術(shù)出版社,1997.]

        [29] Agriculture and Animal Husbandry Department of Sichuan Province,Soil Survey Office of Sichuan Province. Chorography of Sichuan soil species. Chengdu:Sichuan Science and Technology Press,1994. [四川省農(nóng)牧廳,四川省土壤普查辦公室. 四川土種志.成都:四川科學(xué)技術(shù)出版社,1994.]

        [30] Pan G X,Wu L S,Li L Q,et al. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region,China. Journal of Environmental Sciences,2008,20(4):456—463.

        [31] Han G Z,Zhang G L,Li D C. Accumulation of soil organic carbon and their influencing factors of hydragric anthrosols in hilly regions of South China. Soils,2013,45(6):978—984. [韓光中,張甘霖,李德成. 南方丘陵區(qū)三種母質(zhì)水耕人為土有機(jī)碳的累積特征與影響因素分析.土壤,2013,45(6):978—984.]

        [32] Wang L Y,Qin L,Lü X G,et al. Progress in researches on effect of iron promoting accumulation of soil organic carbon. Acta Pedologica Sinica,2018,55(5):1041—1050. [王璐瑩,秦雷,呂憲國,等. 鐵促進(jìn)土壤有機(jī)碳累積作用研究進(jìn)展.土壤學(xué)報,2018,55(5):1041—1050.]

        [33] Qu Z,Li L N,Jia R. Contribution of water dissolved organic carbon to iron(Ⅲ)reduction in paddy soils. Journal of Plant Nutrition and Fertilizers,2018,24(2):346—356. [曲植,李麗娜,賈蓉. 水稻土中水溶性有機(jī)碳對鐵還原過程的貢獻(xiàn).植物營養(yǎng)與肥料學(xué)報,2018,24(2):346—356.]

        [34] Gao X. Clay mineralogy. Beijing:Chemical Industry Press,2017. [高翔. 黏土礦物學(xué). 北京:化學(xué)工業(yè)出版社,2017.]

        Genetic Characteristics and Classification of Soil Derived from Pleistocene Sediments under Cultivation in Chongqing

        HU Jin, CI En?, WANG Shufang, LIAN Maoshan, WENG Haolu, CHEN Lin

        (College of Resources and Environment, Southwest University, Chongqing 400715, China)

        It is of great significance to explore genetic characteristics and evolution laws of the soils derived from Pleistocene sediments to the study of geological evolution and ancient climate change and the management of the soil resources. Chongqing is a region dominated by mountains and hills, and hence known as “Mountain City”, where the soil layer is thin, except for the soils derived from Pleistocene sediments, which are often quite thick in soil layer and hence high in land utilization rate, so it is the important agricultural resource of Chongqing. However, so far little has been reported on genetic characteristics and classification of the soils and effects of cultivation on evolution of their properties. Therefore, this paper addressed the issue in an attempt to promote development of quantitative classification of the soils, to provide certain theoretic bases and important ideas for rational utilization of the soils, relative to soil type.Field soil surveys were conducted to specify six soil profiles, 3 upland soils and 3 paddy soils, derived from Pleistocene sediments of pebble-mixed yellow clay (PC), yellow clay (YC) and red clay (RC), of which soil morphological characteristics were obtained through investigations of their soil-forming environments. PC and YC (commonly known as old alluvial sediments) are mainly distributed on the high terraces on both sides of the Jialing River and its main tributaries, and RC mainly on the karst plains and some valleys in Xiushan County. Soil samples were collected from the profiles by horizon for analysis of physico-chemical properties. Based on the comparative analysis, genetic characteristics and classification of the soils relative to cultivation mode were discussed, and diagnostic horizons and diagnostic characteristics of the soils were determined, and the soils were attributed and named in CST level by level in the light of the “Chinese Soil Taxonomy (3rd ed.)”.The upland soil derived from PC was found to have a lot of gravels but no iron-manganese speckles or stripes, while that derived from YC was found to be in a reverse condition and that derived from RC to have apparent clay deposition right beneath the plow layer. In the profiles of paddy soils derived from PC and YC, organic matter accumulation was obvious in the upper part, while iron oxide accumulation was in the lower part, so the upper part was lowery the lower part in chroma. However in the paddy soil derived from RC, migration of iron oxide was not as obvious. The 3 upland soils were sorted into 3 subgroups, i.e. Typic Hapli-Udic Cambosols, Typic Ferri- Udic Cambosols and Red Ferri -Udic Argosols, and further into 3 soil families, i.e. Coarse bone loamy silica non-acid thermic -Typic Hapli-Udic Cambosols, Clay loamy silica mixture non-acid thermic - Typic Ferri-Udic Cambosols and Heavy clayey illitic mixture acid thermic - Red Ferri - Udic Argosols, separately. The 3 paddy soils were sorted into 2 subgroups, i.e. Typic Fe-accumuli- Stagnic Anthrosols and Typic Hapli- Stagnic Anthrosols, and further into 3 soil families, i.e. Clay loamy silica mixture non-acid thermic - Typic Fe-accumuli - Stagnic Anthrosols, Clayey illitic mixture non-acid thermic - Typic Fe - accumuli - Stagnic Anthrosols and Clayey kaolinitic non-acid thermic - Typic Hapli - Stagnic Anthrosols, separately. The six soils formed 6 soil series in total.The soils derived from YC have iron-manganese speckles or stripes, which are reflections of paleo-hydrological conditions, but now they are completely free from the influence of groundwater and no longer were the aquic soil moisture regime. The characteristics of sediments and regional climate do have some impact on clay deposition in the upland soils, thus affecting their classification on the soil order level. Long-term paddy cultivation would transform Cambosols and Argosols derived from Pleistocene sediments into Stagnic Anthrosols. Artificial activities, such as field screening, changing slopes into terraces, gathering pebbles et al, would reduce gravel content in the paddy soil derived from PC, which would in turn influence particle-size fractionation of the soil layers controlled by soil family.

        Pleistocene Sediments; Cultivation conditions; Genetic Characteristics; Chinese soil taxonomy; Chongqing

        S155.3

        A

        10.11766/trxb201812210567

        胡瑾,慈恩,王術(shù)芳,連茂山,翁昊璐,陳林. 重慶市更新統(tǒng)沉積物發(fā)育土壤的特性及分類[J]. 土壤學(xué)報,2020,57(2):273–283.

        HU Jin,CI En,WANG Shufang,LIAN Maoshan,WENG Haolu,CHEN Lin. Genetic Characteristics and Classification of Soil Derived from Pleistocene Sediments under Cultivation in Chongqing[J]. Acta Pedologica Sinica,2020,57(2):273–283.

        * 國家科技基礎(chǔ)性工作專項(2014FY110200)、中央高校基本科研業(yè)務(wù)費專項(XDJK2017B027)和西南大學(xué)科技創(chuàng)新“光炯”培育項目(2016001)資助 Supported by the Special Project of National Science and Technology Basic Research(No. 2014FY110200),F(xiàn)undamental Research Funds for the Central Universities(No. XDJK2017B027)and The Science and Technology Innovation “GUANG Jiong” Project of Southwest University(No. 2016001)

        ,E-mail:cien777@163.com

        胡 瑾(1999-),女,云南昭通人,碩士研究生,主要研究方向為土壤發(fā)生與分類。E-mail:hujin0421@163.com

        2018–12–21;

        2019–02–28;

        優(yōu)先數(shù)字出版日期(www.cnki.net):2019–03–26

        (責(zé)任編輯:檀滿枝)

        猜你喜歡
        旱地水田沉積物
        旱地麥田夏閑期復(fù)種綠肥 保持土壤的可持續(xù)生產(chǎn)力
        晚更新世以來南黃海陸架沉積物源分析
        海洋通報(2022年2期)2022-06-30 06:07:04
        渤海油田某FPSO污水艙沉積物的分散處理
        海洋石油(2021年3期)2021-11-05 07:43:12
        水體表層沉積物對磷的吸收及釋放研究進(jìn)展
        旱地冰球運動開展價值的研究
        冰雪運動(2020年6期)2020-07-21 03:28:16
        先鋒廈地水田書店
        旱地冰球運動推廣及發(fā)展策略
        冰雪運動(2019年5期)2019-08-24 08:04:48
        近世長三角南緣的水田經(jīng)營與環(huán)境博弈
        討論用ICP-AES測定土壤和沉積物時鈦對鈷的干擾
        鳳頭豬肚豹尾說“白傳”——讀《白水田傳》
        新聞前哨(2015年2期)2015-03-11 19:29:30
        国产自拍视频在线观看免费| 国产AⅤ无码久久丝袜美腿| 色窝综合网| 精品人妻一区二区三区狼人| 欧美亚洲一区二区三区| 亚洲精品97久久中文字幕无码| 9久久精品视香蕉蕉| 日本一道高清在线一区二区| 久草青青91在线播放| 久久无码专区国产精品s| 无码一区二区三区AV免费换脸| 国产av一区二区三区在线 | 日本免费大片一区二区| 18禁真人抽搐一进一出在线| 福利在线国产| 日本黑人人妻一区二区水多多| 丝袜美腿国产一区精品| 欧美人与动牲交a精品| 国产特级全黄一级毛片不卡| 少妇裸淫交视频免费看| 国产精品国产三级国产密月| 极品新婚夜少妇真紧| 无遮挡十八禁在线视频国产制服网站| 91麻豆精品激情在线观最新| 在线观看一级黄片天堂| 精品国模一区二区三区| 亚洲一区二区久久青草| 中文字幕人妻精品一区| 久久精品国产亚洲av香蕉| 国产农村妇女高潮大叫| 区一区一日本高清视频在线观看| 国产91色综合久久高清| 伊人久久久精品区aaa片 | 无码人妻精品丰满熟妇区| 亚洲成a∨人片在线观看无码| 亚洲国产精品久久性色av| 免费大片黄国产在线观看| 香蕉视频www.5.在线观看| 最近亚洲精品中文字幕| 国产一区二区三区久久悠悠色av | 思思久久96热在精品国产 |