蒲泓宇,李大海,羅 鵬,章 辰
環(huán)路剪切干涉術(shù)測量附面層密度場
蒲泓宇1,2,李大海1*,羅 鵬1,章 辰1
1四川大學(xué)電子信息學(xué)院,四川 成都 610065;2中國空氣動力研究與發(fā)展中心高速所,四川 綿陽 621000
在附面層測量中,需對微小尺度的高速氣流變化場進(jìn)行瞬態(tài)測量。數(shù)字化的干涉測量方法能定量地解算出流場的密度場,是一種重要的應(yīng)用。介紹了一種共路干涉的環(huán)路剪切干涉方法,對震動不敏感,無需參考面,適合附面層測量使用。采用基于空間位相調(diào)制的快速算法,配以脈沖激光器和同步控制系統(tǒng),可實(shí)時地對擾流密度場進(jìn)行定量測量。該系統(tǒng)采集分辨率200 pixels × 200 pixels,采集頻率可達(dá)每秒1000幀以上。系統(tǒng)的波前重構(gòu)方法經(jīng)過計(jì)算機(jī)仿真,檢測結(jié)果優(yōu)于1/20。在0.6 m風(fēng)洞對圓柱體尾部附面層進(jìn)行測量試驗(yàn),結(jié)果表明,在一定風(fēng)速下,該系統(tǒng)能抑制振動干擾,顯著地區(qū)分出圓柱體尾部擾流信號和振動噪聲,具有良好的應(yīng)用前景。
徑向剪切干涉;密度場;流場;動態(tài)測量
“附面層”指緊貼飛行器表面的粘性力不可忽略的流動薄層[1],其厚度在風(fēng)洞試驗(yàn)中僅為模型表面幾個毫米,附面層湍流因?yàn)槠鋵︼w行器的直接影響受到了廣泛關(guān)注。其呈現(xiàn)典型的微小尺度隨機(jī)擾動特點(diǎn),尺寸小,變化快,由于其理論模型尚不成熟,所以它的實(shí)驗(yàn)研究也就越發(fā)顯得重要[2]。
當(dāng)前的附面層流動顯示方法有粒子示蹤法、油流顯示法、光學(xué)測量方法等,但他們都有各自的缺點(diǎn)。粒子示蹤法為在空氣中加入煙霧發(fā)生器,通過觀測煙霧粒子在流場中的密度情況顯示流動軌跡。這將會改變氣體構(gòu)成,煙霧粒子體積遠(yuǎn)大于氣體分子,其流場是否與原流場一致在氣動力學(xué)上存疑。油流顯示技術(shù)則是附面層流動空氣對壁面摩擦應(yīng)力的反應(yīng),只能間接地從一個方面了解其狀態(tài)。光學(xué)測量方法無接觸,能直接反應(yīng)密度差沿光路的積分,但其中的紋影、陰影法都只能顯示,不能對密度場定量計(jì)算。
干涉測量基于相位差可無接觸地定量解算出流場密度場。但傳統(tǒng)的干涉測量方法基于時間位相調(diào)制,不能檢測一個瞬態(tài)的變化場[3],且由于高速氣流產(chǎn)生的振動影響,干涉圖像易被干擾,解算困難,在附面層測量中不能適用[4]。
環(huán)路徑向剪切干涉儀(Cyclic radial shearing interferometer,CRSI)作為一種高精密干涉計(jì)量技術(shù)不需要專門設(shè)置參考光路[5],采用共光路結(jié)構(gòu),路徑相同,振動對其影響一致[6],因此其具有對振動不敏感的特點(diǎn),適合在附面層測量中使用。利用基于空間位相調(diào)制的方法改進(jìn)其結(jié)構(gòu),配合脈沖激光器和同步控制系統(tǒng),對附面層密度場實(shí)現(xiàn)瞬態(tài)高精度的檢測。分析其在高風(fēng)速振動環(huán)境下的數(shù)據(jù)有效性,在一定馬赫數(shù)以下的環(huán)境中顯著區(qū)分出擾流信號和隨機(jī)噪聲,具有良好的應(yīng)用前景。
早在上世紀(jì)90年代,美軍在阿拉巴馬州即利用剪切干涉系統(tǒng)對超聲速尾流剪切層進(jìn)行了成像試驗(yàn)。如圖1所示[7],但當(dāng)時只是作為圖像參考,并不能區(qū)分瞬態(tài)細(xì)節(jié)。2001年,Griffin等人提出空間移相剪切干涉儀,可以實(shí)現(xiàn)瞬態(tài)測量[8]。2018年,羅切斯特大學(xué)Guo等人利用徑向剪切干涉儀實(shí)現(xiàn)了對時間極短的飛秒脈沖瞬態(tài)測量[9]。
在國內(nèi),浙江大學(xué)楊甬英教授及其課題組在2008年就提出利用空間位相調(diào)制的剪切干涉系統(tǒng)實(shí)現(xiàn)對高速流場的測量,并驗(yàn)證了其雖然采用共路干涉,但在靜態(tài)環(huán)境下,與非共路干涉的ZYGO干涉儀精度差僅0.0043[10]。2016年,其課題組又進(jìn)一步利用偏折型徑向剪切干涉儀在實(shí)驗(yàn)室條件下實(shí)現(xiàn)了在部分遮擋下的瞬態(tài)實(shí)時測量[11]。2017年,中國科學(xué)院Gu等[12]設(shè)計(jì)了一種基于偏振相移原理的空間位相調(diào)制剪切干涉系統(tǒng),抗干擾能力強(qiáng),對振動有顯著的抑制作用。
圖1 剪切層氣動光學(xué)效應(yīng)測量原理圖
環(huán)路徑向剪切干涉系統(tǒng)最早是由Murty于1964年提出,在此次風(fēng)洞環(huán)境中,其在附面層測量中的工作原理如圖2所示。
圖2 環(huán)路徑向剪切干涉測量風(fēng)洞流場原理
其中:
對式(2)進(jìn)行傅里葉變換,得到干涉條紋圖的頻譜分布可表示為
其中:是光源波長,是Gladstone-Dale系數(shù),是光束穿過氣流的路程。
為風(fēng)速與音速的比值,即馬赫數(shù)。若很小,則密度變化可以忽略,屬不可壓縮流動范疇,密度場測量意義不大;若較大,則密度變化較大,屬可壓縮流動。一般取=0.4為其邊界,另因超音速流動振動較大,本次試驗(yàn)針對馬赫數(shù)0.4~1.0亞音速進(jìn)行設(shè)計(jì)。附面層尺寸普遍在10 mm以下,基于冗余設(shè)計(jì),本次設(shè)計(jì)光斑尺寸20 mm。
1) 動態(tài)范圍、測量精度
其附面層湍流強(qiáng)度為波動減少的速度與自由流速度的比值,有經(jīng)驗(yàn)公式[21]:
其中RE為雷諾數(shù),隨風(fēng)速增大而增大,與湍流強(qiáng)度成反比,大多數(shù)湍流強(qiáng)度在該值以下,=0.4時該型風(fēng)洞雷諾數(shù)最小為1.5′106,代入式(7),取得湍流強(qiáng)度為2.7%。流場密度與速度的關(guān)系滿足克拉伯龍方程:
將各參數(shù)代入式(8)計(jì)算,湍流密度相對當(dāng)前密度的波動為1.85′10-3kg/m3,代入式(6)得到光程差的動態(tài)范圍為1575 nm。本裝置光源波長為560 nm,湍流平均波動相位在2.8,即儀器測量動態(tài)范圍需大于2.8,測量精度應(yīng)小于其動態(tài)范圍一個以上數(shù)量級,才認(rèn)為有區(qū)分度,因此需在0.1以下。
2) 采樣時間、分辨率
在現(xiàn)有粒子示蹤法測量設(shè)備中,中國空氣動力研究中心PIV技術(shù)采樣時間在1 ms,分辨率64×64;國防科大NPLS技術(shù),其采樣時間1 ms,分辨率200×200。參照其設(shè)定,本設(shè)備設(shè)計(jì)采樣時間1 ms,分辨率200×200。
如圖3所示,該采集系統(tǒng)以基于開普勒望遠(yuǎn)系統(tǒng)的環(huán)路徑向剪切干涉儀為核心,包括了脈沖激光光源、環(huán)路剪切干涉系統(tǒng)部分、相機(jī)及數(shù)據(jù)處理系統(tǒng)。光束直徑為20 mm,采樣分辨率200×200。
同步控制器接收到中斷信號時,就輸出兩路方波時序信號。一路輸入脈沖激光器電源以觸發(fā)脈沖激光,一路輸入采集卡,觸發(fā)相機(jī)的快門打開,從而使得激光器產(chǎn)生的脈沖激光與相機(jī)快門打開時間準(zhǔn)確同步。
脈沖激光通過同步控制器配合相機(jī)進(jìn)行拍攝,由于曝光時間短,可以摒除擾流在時間上積分的干擾,得到瞬態(tài)的圖像數(shù)據(jù)。
軟件處理流程如圖4所示。
原始干涉條紋由縮小波前與擴(kuò)大波前的相位差產(chǎn)生,經(jīng)過傅里葉變換至頻域,通過帶通濾波器對正一級或負(fù)一級頻譜進(jìn)行數(shù)字加權(quán)濾波,將其附近的頻譜信息提取出來,并將頻譜移中以去掉載頻0,進(jìn)行傅里葉逆變換,利用式(5)提取得到截斷相位,再經(jīng)相位展開獲得相位差波前的連續(xù)相位。
圖3 同步采集系統(tǒng)控制圖
圖4 數(shù)據(jù)處理流程圖
為方便光路布置,本系統(tǒng)設(shè)計(jì)的徑向剪切比為0.67,并不足夠小,因此重疊區(qū)域的擴(kuò)大光束不能簡單地近似于平面波處理,此相位差波前還需要通過迭代法縮小徑向剪切比以提高波前重建精度。迭代的約束條件為當(dāng)前次求和結(jié)果與前+1次求和結(jié)果之間的差小于/1000,此時可認(rèn)為擴(kuò)大波前近似平面[12],其仿真結(jié)果如圖5、圖6所示。
圖5 第一類波前仿真。(a) 原始波前;(b) 擴(kuò)大波前;(c) 相位差波前;(d) 重建波前;(e) 殘差
圖6 第二類波前仿真。(a) 原始波前;(b) 擴(kuò)大波前;(c) 相位差波前;(d) 重建波前;(e) 殘差
系統(tǒng)在中國空氣動力研究與發(fā)展中心0.6 m風(fēng)洞進(jìn)行了附面層測量的實(shí)驗(yàn),該風(fēng)洞是當(dāng)前國內(nèi)流場品質(zhì)最好的亞跨超聲速風(fēng)洞之一,流場均勻性良好,可認(rèn)為在無模型條件下,風(fēng)洞流場密度值近似均勻。
在同一馬赫數(shù)下,分別對空風(fēng)洞和傾斜圓柱體側(cè)后方附面層進(jìn)行測量。光斑與圓柱體的相對位置如圖7所示,測量區(qū)域邊緣處距圓柱體1 mm,處于附面層影響范圍內(nèi)。
圖8與圖9分別展示了在馬赫數(shù)0.4的條件下,在同一測量位置加裝模型和不加裝模型時10 s內(nèi)連續(xù)測得的相對密度分布圖,加裝模型時測得的為附面層湍流,不加裝模型時測得的是風(fēng)洞自由流。可以直觀地看到,有模型時測得圖像中湍流黃色擾動較多,未加裝模型時相位分布較為平滑,其波動為風(fēng)洞振動給系統(tǒng)帶來的擾動。附面層湍流疊加于該擾動之上,位置與尺度可分辨。
圖7 測量區(qū)域
圖8 有模型擾流時密度圖(單位:kg/m3)。(a) 1.2 s;(b) 3.6 s;(c) 4.5 s;(d) 6.3 s;(e) 7.8 s
在同一馬赫數(shù)時,比較在圓柱擾流狀態(tài)下和空風(fēng)洞狀態(tài)下多幅圖像相位分布圖的RMS值,以其作為信噪比,如表1所示。
可見,隨著馬赫數(shù)增大,振動逐漸增大,系統(tǒng)抗振能力相應(yīng)衰減,在低馬赫數(shù)時擾流信號強(qiáng)度顯著高于振動帶來的背景噪聲。
表1 多幅圖像相位RMS比值對比
圖9 空風(fēng)洞時密度圖(單位:kg/m3). (a) 1.3 s;(b) 3.4 s;(c) 4.7 s;(d) 6.9 s;(e) 7.7 s
該噪聲變化點(diǎn)在采樣時間內(nèi)隨機(jī)分布,即為滿足泊松分布的散斑噪聲,信噪比(SNR)為
環(huán)路徑向剪切干涉組合采用共光路結(jié)構(gòu),易于在附面層測量環(huán)境下布局使用,利用基于空間位相調(diào)制的快速算法,可以對附面層流場進(jìn)行動態(tài)實(shí)時檢測。該系統(tǒng)波前檢測精度高,抗噪抗干擾性能良好。試驗(yàn)表明,0.7馬赫數(shù)以下,可抑制氣流振動干擾,顯著區(qū)分出擾流與背景,在附面層測量這種實(shí)時性要求比較高的場合有廣泛的應(yīng)用前景。
此次實(shí)驗(yàn)為驗(yàn)證性實(shí)驗(yàn),為方便光路調(diào)試,所有光學(xué)部件采用可調(diào)節(jié)式,如若能將其集成與固定化,并單設(shè)直接來自地基的支撐架,應(yīng)能更好地抑制震動。
[1] Yu J Y. Flow control with the vortex induced by DBD plasma in boundary layer flow[D]. Harbin: Harbin University of Technology, 2017. 俞建陽. DBD等離子體誘導(dǎo)渦結(jié)構(gòu)控制附面層流動研究[D]. 哈爾濱: 哈爾濱工業(yè)大學(xué), 2017.
[2] Li Q, Jiang T, Chen S Y,. Measurement technique and application of boundary layer transition in shock tunnel[J]., 2019, 40(8): 122740.
李強(qiáng), 江濤, 陳蘇宇, 等. 激波風(fēng)洞邊界層轉(zhuǎn)捩測量技術(shù)及應(yīng)用[J]. 航空學(xué)報, 2019, 40(8): 122740.
[3] Lu X F, Zhang T X, Hong H Y. Image correction method with pixel deviation caused by aero-optics effects[J]., 2007, 36(5): 758–761.
盧曉芬, 張?zhí)煨? 洪漢玉. 氣動光學(xué)效應(yīng)像素偏移圖像校正方法研究[J]. 紅外與激光工程, 2007, 36(5): 758–761.
[4] Yang F R, Chen L, Yan B,. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]., 2018, 32(3): 82–86.
楊富榮, 陳力, 閆博, 等. 干涉瑞利散射測速技術(shù)在跨超聲速風(fēng)洞的湍流度測試應(yīng)用研究[J]. 實(shí)驗(yàn)流體力學(xué), 2018, 32(3): 82–86.
[5] Ling T, Liu D, Yang Y Y,. Off-axis cyclic radial shearing interferometer for measurement of centrally blocked transient wavefront[J]., 2013, 38(14): 2493–2495.
[6] Luo J J, Hou S X, Xu J,. Study of measuring laser beam wave-front based on cyclic radial shearing interferometer[C]//. Beijing: Chinese Society of Astronautics, Chinese Society of Aeronautics and Astronautics, China Ordnance Society, Chinese Optical Society, Chinese Institute of Electronics, 2010.
羅積軍, 侯素霞, 徐軍, 等. 環(huán)路徑向剪切干涉測量激光束波前畸變的研究[C]//第九屆全國光電技術(shù)學(xué)術(shù)交流會論文集. 北京: 中國宇航學(xué)會, 中國航空學(xué)會, 中國兵工學(xué)會, 中國光學(xué)學(xué)會, 中國電子學(xué)會, 2010.
[7] Couch L L, Kalin D A, McNeal T. Experimental investigation of image degradation created by a high-velocity flow field[J]., 1991, 1486: 417–423.
[8] Griffin D W. Phase-shifting shearing interferometer[J]., 2001, 26(3): 140–141.
[9] Lam B, Guo C L. Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer[J]., 2018, 7: 30.
[10] Yang Y Y, Liu D, Wang D D,. Real-time interferometry with high speed and precision for transient flow field and its applications[J]., 2008, 37(5): 757–760.
楊甬英, 劉東, 王道檔, 等. 動態(tài)變化場的高速高精度實(shí)時干涉檢測[J]. 紅外與激光工程, 2008, 37(5): 757–760.
[11] Ling T. Reconstruction of three-dimensional refractive index field based on multi-wave shearing interferometry and optical tomography[D]. Hangzhou: Zhejiang University, 2016.
凌曈. 基于多波前剪切干涉與光學(xué)層析技術(shù)三維折射率場重構(gòu)研究[D]. 杭州: 浙江大學(xué), 2016.
[12] Gu L Y, Liu L, Hu S Y,. Polarization phase-shifting lateral shearing interferometer with two polarization beam splitter plates[J]., 2017, 24(4): 600–604.
[13] Medhi B, Hegde G M, Gorthi S S. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings[J]., 2016, 55(22): 6060–6071.
[14] Zhang C. A study of polarization phase shifting radial shearing interferometry and dynamic measurement in flow field[D]. Chengdu: Sichuan University, 2018.
章辰. 偏振相移徑向剪切干涉儀及流場動態(tài)測量研究[D]. 成都: 四川大學(xué), 2018.
[15] Thornton D E, Spencer M F, Perram G P. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry with comparisons to the self-referencing interferometer[J]., 2019, 58(5): A179–A189.
[16] Tian C, Chen X F, Liu S C. Modal wavefront reconstruction in radial shearing interferometry with general aperture shapes[J]., 2016, 24(4): 3572–3583.
[17] Zhang C, Li D H, Li M M,. Wavefront reconstruction algorithm based on interpolation coefficients for radial shearing interferometry[J]., 2016, 10155: 1015539.
[18] Wang Z Y, Wang S, Yang P,. Multiple-wave radial shearing interferometer based on a Fresnel zone plate[J]., 2018, 26(26): 34928–34939.
[19] Padghan P P, Alti K M. Quantification of nanoscale deformations using electronic speckle pattern interferometer[J]., 2018, 107: 72–79.
[20] Dai F Z, Zheng Y Z, Bu Y,. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry[J]., 2017, 56(1): 61–68.
[21] Sessa V, Xie Z T, Herring S. Turbulence and dispersion below and above the interface of the internal and the external boundary layers[J]., 2018, 182: 189–201.
Measurement of flow density field by cyclic radial shearing interferometer
Pu Hongyu1,2, Li Dahai1*, Luo Peng1, Zhang Chen1
1School of Electronics and Information, Sichuan University, Chengdu, Sichuan 610065, China;2High Speed Institute, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China
Principle diagram of cyclic radial shearing interferometry
Overview:"Boundary layer" refers to a thin flow layer with a non-negligible viscous force close to the aircraft surface. Its thickness is only a few millimeters of the model surface in the wind tunnel test. It shows typical characteristics of small scale random disturbance, small size and fast change.
The current methods of boundary layer flow display include particle tracer method, oil flow display method and optical measurement method, but they all have their own shortcomings. Particle tracer method is to add smoke generator into the air and show the flow track by observing the density of smoke particles in the flow field. As the size of the smoke particles is much larger than that of the gas molecules, this method will change the composition of the gas. Oil flow display technology is the reaction of the flowing air in the boundary layer to the friction stress on the wall surface. The optical measurement method has no contact and can directly reflect the integral of density difference along the optical path, but the schlieren and shadow methods can only display and cannot calculate the density field quantitatively.
Based on phase difference, the density field of flow field can be calculated quantitatively. However, the traditional interferometry method based on time phase modulation cannot detect a transient change field the interference image is easily interfered due to the influence of vibration generated by high-speed airflow, which is difficult to solve, so it cannot be applied in the boundary layer measurement.
This paper proposed a measurement system based on loop radial shear interference, with high wavefront detection accuracy, good anti-noise and anti-interference performance, and suitable for use in boundary layer measurement. The system adopts the fast transform method based on spatial phase modulation, which loads the information of shear wave surface onto the carrier, and an image can quickly recover the wavefront by using the fast Fourier transform method, avoiding the influence of dynamic changes of measured wavefront and realizing real-time dynamic detection. For the complex wavefront of the boundary layer, the iterative method is used to improve the wavefront reconstruction accuracy. The simulation results show that the residual root mean square (RMS) value is better than 1/20. This paper introduces the realization of hardware system and software process in detail. The principle of the algorithm is also presented. The experimental results in a 0.6 m wind tunnel show that the system can restrain the vibration interference and distinguish the disturbance signal and the vibration noise remarkably. The proposed method has broad application prospects in real-time boundary layer measuring.
Citation: Pu H Y, Li D H, Luo P,. Measurement of flow density field by cyclic radial shearing interferometer[J]., 2020,47(4): 190390
Measurement of flow density field by cyclic radial shearing interferometer
Pu Hongyu1,2, Li Dahai1*, Luo Peng1, Zhang Chen1
1School of Electronics and Information, Sichuan University, Chengdu, Sichuan 610065, China;2High Speed Institute, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China
Transient measurements of high-speed airflow field are needed in the measurement of boundary layer. Digital interferometry can measure flow field quantitatively to obtain density information, which is very necessary in flow field measurement. In this paper, a common-path shearing interferometry method is introduced. It is insensitive to vibration and does not need a reference plane. It is suitable for flow field measurement. A fast algorithm based on spatial phase modulation, coupled with a pulse laser and a synchronous control system, is used to measure the disturbance density field quantitatively in real time. The acquisition resolution of the system is 200 pixels × 200 pixels, and the acquisition frequency can reach more than 1000 frames per second. The wavefront reconstruction method of the system has been simulated by computer, and the detection result is better than 1/20. The experimental results in a 0.6 m wind tunnel show that the system can restrain the vibration interference and distinguish the disturbance signal and the vibration noise remarkably. It has good application prospects.
radial shear interferometry; density field; flow field; dynamic measurement
National Natural Science Foundation of China (11732016, 11402286)
* E-mail: lidahai@scu.edu.cn
TN247;TB82
A
蒲泓宇,李大海,羅鵬,等. 環(huán)路剪切干涉術(shù)測量附面層密度場[J]. 光電工程,2020,47(4): 190390
: Pu H Y, Li D H, Luo P,Measurement of flow density field by cyclic radial shearing interferometer[J]., 2020, 47(4): 190390
10.12086/oee.2020.190390
2019-07-08;
2019-11-04基金項(xiàng)目:國家自然科學(xué)基金資助項(xiàng)目(11732016,11402286)
蒲泓宇(1986-),男,碩士研究生,工程師,主要從事波前檢測方面的研究。E-mail:115395674@qq.com
李大海(1968-),男,教授,博士生導(dǎo)師,主要從事光學(xué)信息處理?波前傳感?三維立體顯示等方面的研究?E-mail:lidahai@scu.edu.cn
版權(quán)所有?2020中國科學(xué)院光電技術(shù)研究所