李一鳴,涂建坤,項(xiàng)華中,江 斌,鄭 剛*
光纖灰度分布的高斯函數(shù)擬合法測量光纖幾何參數(shù)
李一鳴1,涂建坤2,項(xiàng)華中1,江 斌2,鄭 剛1*
1上海理工大學(xué)上海市介入醫(yī)療器械工程研究中心,教育部應(yīng)用光學(xué)儀器重點(diǎn)實(shí)驗(yàn)室,上海 200093;2上海電纜研究所,上海 200093
光纖的幾何參數(shù)影響著光纖的光學(xué)傳輸和機(jī)械性能等,是衡量光纖質(zhì)量的重要指標(biāo)。近場光分布法是國標(biāo)GB 15972.20-2008中推薦的幾何參數(shù)測量方法。該方法在對光纖纖芯的測量中需對光纖通光照明,以區(qū)分纖芯和包層的邊界。通光的纖芯端面是一個(gè)邊緣并不清晰的發(fā)光亮斑,因而無法準(zhǔn)確判斷纖芯與包層的真實(shí)邊緣。本文分析了光纖內(nèi)光傳播模場的分布,理論上光纖模場電磁矢量的解滿足貝塞爾函數(shù),但在近似情況下也可以用高斯函數(shù)代表光纖模場分布。因此本文利用高斯函數(shù)擬合光纖纖芯端面灰度分布,進(jìn)而由擬合后的高斯函數(shù)得到纖芯與包層的真實(shí)邊緣。本方法是對國標(biāo)GB15972.20-2008的測量方法的進(jìn)一步完善。實(shí)驗(yàn)測量結(jié)果表明,當(dāng)光纖的切割效果不佳或成像質(zhì)量較差時(shí),模場灰度分布的高斯函數(shù)擬合法仍能保證測量的重復(fù)精度和測量數(shù)據(jù)的穩(wěn)定性。
光纖幾何參數(shù);模場分布;高斯函數(shù);邊緣提取
光纖作為現(xiàn)代通信傳輸應(yīng)用最為廣泛的媒介之一,被廣泛應(yīng)用于航空、工業(yè)制造、生物醫(yī)學(xué)等多個(gè)領(lǐng)域[1-2]。光纖的幾何參數(shù)作為最基本的性能參數(shù),除了對光纖的光學(xué)傳輸、機(jī)械性能有一定影響外,更重要的是它對于光纖的連接損耗起著決定性作用[3]。國標(biāo)GB15972.20-2008中對光纖幾何參數(shù)的定義主要包括光纖包層的直徑與不圓度,光纖纖芯的直徑與不圓度以及纖芯與包層的同心度誤差[4]。測量光纖性能參數(shù)常用的方法有遠(yuǎn)場光可變孔徑法、近場光分布法、折射近場法、俯視法、傳輸近場法等[5-7]。其中,近場光分布法常用于測量光纖的幾何參數(shù)[8],遠(yuǎn)場光可變孔徑法可以測量光纖的模場直徑[9],而折射近場法多用于測量光纖的折射率分布等[10-12]。
通常在使用近場光分布法測量光纖幾何參數(shù)時(shí),需要對光纖端面的顯微放大圖像進(jìn)行邊緣提取,然后再對邊緣點(diǎn)進(jìn)行橢圓曲線擬合以獲取光纖幾何參數(shù)。此方法的測量精度主要取決于光纖邊緣提取的準(zhǔn)確性。對于光纖包層的測量,一般通過調(diào)節(jié)光纖端面的照明來提高包層與背景的對比度,從而獲得清晰的包層邊緣。而由于纖芯與包層都是玻璃材料,他們之間并不存在明顯的灰度分界,因此只有在纖芯通光后才能得到纖芯與包層的分界面,即纖芯的邊緣。實(shí)際上光在光纖中傳播時(shí)并不完全集中在纖芯部分,會(huì)有部分能量泄漏到包層中[13],通光的纖芯在灰度圖像中是一個(gè)邊緣并不清晰的亮斑,所以較難準(zhǔn)確地直接從光纖端面的圖像中提取纖芯的邊緣。
本文提出一種利用高斯函數(shù)擬合光纖模場分布(光纖端面像),再用擬合后的高斯函數(shù)確定光纖纖芯邊緣的方法。通過光學(xué)顯微放大系統(tǒng)對光纖端面進(jìn)行放大,用高分辨率的CCD相機(jī)接收光纖的端面圖像。用高斯函數(shù)對光纖端面灰度分布進(jìn)行擬合,繼而由此高斯函數(shù)確定光纖纖芯與包層的分界面,并得到纖芯的準(zhǔn)確邊緣。在獲得邊緣數(shù)據(jù)點(diǎn)后,通過平面橢圓函數(shù)曲線擬合,得到所需的光纖纖芯幾何參數(shù)。對光纖包層邊緣數(shù)據(jù)也作同樣的處理和計(jì)算,最后得到所有的光纖幾何參數(shù)。
本文以近場光分布法為測量方法,對光纖的幾何參數(shù)進(jìn)行測量,將獲取的光纖端面灰度數(shù)據(jù)作為光纖模場的原始數(shù)據(jù)參與后續(xù)的擬合過程。本方法的測量數(shù)據(jù)將與FGM-5光纖幾何參數(shù)測量儀的測量數(shù)據(jù)進(jìn)行對比,以驗(yàn)證本方法的測量精度與穩(wěn)定性。FGM-5光纖幾何參數(shù)測量儀由(原國家機(jī)械工業(yè)部)上海電纜研究所研發(fā),是一種基于近場光分布法進(jìn)行測量的高精度幾何參數(shù)測量儀,在國內(nèi)外眾多光纖生產(chǎn)大廠都有應(yīng)用[14]。圖1所示為200萬像素的CCD工業(yè)相機(jī)獲取的G652光纖端面,該光纖為常用的單模通信光纖,圖中黑色區(qū)域?yàn)椴煌ü獾陌鼘硬糠郑行牧涟邽橥ü饫w芯,測量時(shí)背景使用外部光源照明,以增強(qiáng)背景與包層的對比度。
圖1 光纖端面灰度像
由于光在光纖中傳播時(shí),光的能量不能完全集中在纖芯傳播,所以在研究其分布模式時(shí),需要利用電磁場理論對光波電磁矢量進(jìn)行求解,其解要滿足均勻圓形介質(zhì)波導(dǎo)邊界條件的麥克斯韋方程組[15]。由于光在光纖中的傳播方向角幾乎為零,所以僅對光波的軸向分量求解,即可根據(jù)麥克斯韋方程得到其他的橫向分量。軸向場分量在圓柱坐標(biāo)系下的亥姆霍茲方程:
式中:為光纖的半徑,為光纖端面的方向角,為光纖的折射率,0定義為0=2p/,為光波的波長。
為簡便僅分析光波在光纖端面的分布模式。將上式變量分離,在端面上的分布規(guī)律描述如下:
對于單模階躍光纖,纖芯與包層的折射率都為常數(shù),可以發(fā)現(xiàn)上式是典型的貝塞爾方程,方程中的參數(shù)為方向上的電場變化的周期數(shù),即貝塞爾方程的階,為光纖的縱向傳播常數(shù)。考慮到光纖內(nèi)部模場分布的實(shí)際,在纖芯部分應(yīng)由第一類貝塞爾函數(shù)作為方程的解,在包層部分應(yīng)由第二類貝塞爾函數(shù)作為方程的解。
數(shù)學(xué)上,貝塞爾函數(shù)是比較復(fù)雜的特殊函數(shù),它用級(jí)數(shù)表達(dá),無法用常規(guī)的單一函數(shù)進(jìn)行描述。故在實(shí)際應(yīng)用中,常采用相對簡單的高斯函數(shù)對光纖的模場分布進(jìn)行近似描述[16-18]。高斯函數(shù)的形式為
式中:0為光纖纖芯中心的最大灰度,0為光纖的模場半徑。當(dāng)光纖的歸一化頻率較大時(shí),光纖的模場直徑與幾何半徑有如下的關(guān)系:
利用式(5)對由CCD相機(jī)獲得的灰度數(shù)據(jù)進(jìn)行(三維)擬合,由擬合后的高斯函數(shù)得出纖芯的幾何直徑及與此直徑相應(yīng)的灰度值。最后反推得到與此灰度值對應(yīng)的纖芯邊緣數(shù)據(jù)點(diǎn)。高斯函數(shù)擬合后的三維效果圖如圖2所示。
圖2 高斯函數(shù)擬合三維效果圖
由于包層與背景的對比度比較好,所以直接使用邊緣提取算子對包層進(jìn)行邊緣提取得到精確的包層邊緣點(diǎn)。分別對包層和纖芯的邊緣數(shù)據(jù)點(diǎn)進(jìn)行橢圓函數(shù)(二維)曲線擬合,就可以獲取光纖的各幾何參數(shù)[19-20]。待測光纖的幾何參數(shù)定義如式(6)~式(8)所示:
實(shí)驗(yàn)采用FGM-5幾何參數(shù)測量儀對常用通信光纖G652進(jìn)行測量。待測光纖幾何參數(shù)包括纖芯與包層的直徑,纖芯與包層的不圓度,以及纖芯與包層的同心度。該儀器的重復(fù)測量精度如下:纖芯與包層直徑小于£0.05mm,包層不圓度£0.10%,纖芯與包層的同心度誤差£0.04mm,優(yōu)于國標(biāo)GB15972. 20-2008的指標(biāo)。CCD相機(jī)的性能參數(shù)對光纖端面的成像效果有很大的影響,高像素的CCD相機(jī)在光纖端面的邊緣處有著更高的分辨率。FGM-5儀器采用了200萬像素的CCD工業(yè)相機(jī)。通常光纖端面經(jīng)過光學(xué)系統(tǒng)放大后,200萬像素的CCD相機(jī)獲取到的有效邊緣數(shù)據(jù)點(diǎn)約有1萬個(gè)像素左右,能對光纖邊緣進(jìn)行邊緣數(shù)據(jù)擬合,像素200萬以上的工業(yè)相機(jī)都能滿足本方法對光纖幾何參數(shù)的測量要求。該儀器的測量原理圖如圖3所示,光纖通過光源1進(jìn)行纖芯通光,經(jīng)背景光1照明的端面由顯微放大系統(tǒng)放大后被高分辨率CCD接收采集,端面灰度分布即可清晰反映光纖模場分布。
圖1所示是光纖切割平整且照明條件良好的情況下得到的G652光纖端面像。由儀器對該端面進(jìn)行5次測量,測量結(jié)果如表1所示(表中的平均值為5組實(shí)驗(yàn)數(shù)據(jù)的均值,最大偏差為各組實(shí)測數(shù)據(jù)與平均值之差的最大值。該實(shí)驗(yàn)用平均值衡量測量的準(zhǔn)確度,利用最大偏差衡量測量的重復(fù)測量精度)。
由表1可以看出,F(xiàn)GM-5對切割平整且照明條件良好的光纖進(jìn)行測量時(shí),測得的幾何參數(shù)可以保證很高的精度,對包層與纖芯直徑的重復(fù)測量精度£0.04mm,對包層不圓度的重復(fù)測量精度£0.02%,而同心度誤差也£0.02mm,該測量精度完全滿足國標(biāo)對光纖幾何參數(shù)的測量要求。
對同一光纖端面采用本文提出的高斯函數(shù)擬合法進(jìn)行測量。圖4為圖1中所示光纖纖芯的三維灰度剖面圖(實(shí)際擬合時(shí)是對光纖灰度的三維數(shù)據(jù)進(jìn)行擬合,此處為了簡單清晰,采用了二維剖面圖進(jìn)行說明),灰度數(shù)據(jù)的高斯函數(shù)擬合效果圖如圖5所示。通過該擬合即可確定纖芯的真實(shí)邊緣數(shù)據(jù)點(diǎn),而包層的邊緣數(shù)據(jù)則直接采用邊緣提取算子獲取,最后分別將獲得的邊緣數(shù)據(jù)通過橢圓曲線擬合求得各光纖幾何參數(shù)。
纖芯灰度分布的高斯函數(shù)擬合法得到的光纖幾何參數(shù)測量結(jié)果如表2所示。
對比表1、表2可看出,高斯函數(shù)擬合法測得的幾何參數(shù)在均值上與儀器測得的數(shù)據(jù)基本相同,即表明本方法的測量結(jié)果具有較高的準(zhǔn)確性。而對比最大偏差則可以發(fā)現(xiàn),本方法測量結(jié)果的最大偏差更小一點(diǎn),表明本方法有很好的重復(fù)測量穩(wěn)定性。
圖3 光纖測量系統(tǒng)原理圖
表1 正常條件下FGM-5幾何參數(shù)測試儀的測量結(jié)果
圖4 正常光纖二維灰度剖面圖
圖5 正常光纖高斯函數(shù)擬合效果圖
表2 正常條件的高斯函數(shù)擬合法測量結(jié)果
光纖在切割時(shí)可能由于切割刀的老化出現(xiàn)邊緣破損或由于照明(纖芯通光光源調(diào)節(jié)或背景照明)不佳出現(xiàn)較差的成像效果,當(dāng)出現(xiàn)此類問題時(shí),常用的測量方法經(jīng)常會(huì)出現(xiàn)測量數(shù)據(jù)的波動(dòng)或偏離真值[21]。圖6所示的光纖端面不僅成像效果較差,且在纖芯亮斑部分由于入射的通光光源調(diào)節(jié)不佳還出現(xiàn)了圓環(huán)狀的亮斑[22]。
使用FGM-5對該光纖端面進(jìn)行5次測量,測量結(jié)果如表3所示。
對圖6的光纖端面采用高斯函數(shù)擬合,擬合前后的光纖灰度分布圖如圖7圖8所示。
高斯函數(shù)擬合法測得的光纖幾何參數(shù)如表4所示。
對比表1、表3及表2、表4可以發(fā)現(xiàn),當(dāng)光纖端面的成像不佳時(shí),儀器測量數(shù)據(jù)的均值較正常成像下的均值偏離較大,其重復(fù)測量精度也有所下降。特別是在纖芯部分,由于纖芯處的環(huán)狀亮斑導(dǎo)致在測量纖芯幾何參數(shù)時(shí),準(zhǔn)確性和穩(wěn)定性都受到很大的影響。而本文提出的高斯函數(shù)擬合法在各個(gè)幾何參數(shù)的測量中都保持了較高的準(zhǔn)確性和穩(wěn)定性。尤其是在纖芯部分,并沒有因?yàn)榄h(huán)狀亮斑而影響數(shù)據(jù)的測量準(zhǔn)確性和穩(wěn)定性,說明本方法相較傳統(tǒng)方法放寬了對成像質(zhì)量的要求,使測量結(jié)果具有更高的可靠性。
圖6 非正常成像的光纖端面
表3 非正常成像條件下FGM-5儀的測量數(shù)據(jù)
圖7 非正常條件下的光纖灰度剖面圖
圖8 非正常條件下光纖灰度的高斯函數(shù)擬合圖
表4 非正常成像條件下高斯函數(shù)擬合法的測量結(jié)果
本文提出了一種利用高斯函數(shù)擬合光纖纖芯端面灰度(模場)分布,實(shí)現(xiàn)對光纖幾何參數(shù)進(jìn)行測量的方法。通過高斯函數(shù)對光纖模場分布的擬合從而得到纖芯與包層分界面的邊緣數(shù)據(jù),這種方法具有可靠的理論依據(jù),因此也是對國標(biāo)GB 15972.20-2008測量方法的一個(gè)有意義的完善和補(bǔ)充。同時(shí)實(shí)驗(yàn)也表明,本方法與常規(guī)的近場光分布法測量相比,在保證測量準(zhǔn)確性和穩(wěn)定性的基礎(chǔ)上,對測量條件與成像質(zhì)量有更高的抗干擾能力。
[1] Ekici C, Dinleyici M S. A practical approach for optical
characterization of a film coated on the optical fiber[J]., 2017, 36: 382–386.
[2] Zhang H, Kuschmierz R, Czarske J. Miniaturized interferometric 3-D shape sensor using coherent fiber bundles[J]., 2018, 107: 364–369.
[3] Zhang X J, Zhao J L, Hou J P. A novel photonic crystal fiber with high birefringence[J]., 2007, 56(8): 4668–4676.
張曉娟, 趙建林, 侯建平. 一種新型高雙折射光子晶體光纖[J]. 物理學(xué)報(bào), 2007, 56(8): 4668–4676.
[4] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Management Committee. Specifications for optical fibre test methods-Part 20: measurement methods and test procedures for dimensions-fiber geometry: GB/T 15972.20–2008[S]. Beijing: China Standard Press, 2008.
中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 中國國家標(biāo)準(zhǔn)化管理委員會(huì). 光纖試驗(yàn)方法規(guī)范第20部分: 尺寸參數(shù)的測量方法和試驗(yàn)程序光纖幾何參數(shù): GB/T 15972.20–2008[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 2008.
[5] Chen L, Chen J B, Lu R H. Automatic measurement of optical fiber geometric parameters[J]., 2001, 21(10): 1245–1248.
陳磊, 陳進(jìn)榜, 陸潤華. 光纖幾何參數(shù)的自動(dòng)檢測儀[J]. 光學(xué)學(xué)報(bào), 2001, 21(10): 1245–1248.
[6] Zhao X Y, Chen T, Ding Z X. Research on automatic measurement system for fiber end-face parameters[J]., 2009, 31(4): 1–6.
趙新彥, 陳陶, 丁志雄. 光纖端面參數(shù)自動(dòng)化測量系統(tǒng)的研究[J]. 光學(xué)儀器, 2009, 31(4): 1–6.
[7] Chang Y Y, Wang L A. Silicon cored fiber diameter measurement[C]//, 2015: 1–2.
[8] Lin Y D, Li P, Li X. Data processing method for MFD measurement by means of continuous variable aperture far field[J]., 1999(5): 29–31, 36.
林延?xùn)|, 李平, 李熙. 連續(xù)變孔徑法單模光纖模場直徑(MFD)測量的數(shù)據(jù)處理[J]. 現(xiàn)代計(jì)量測試, 1999(5): 29–31, 36.
[9] Gander W, Golub G H, Strebel R. Least–squares fitting of circles and ellipses[J]., 1994, 34(4): 558–578.
[10] Yin A E, Jiang Z X, Zhang Y L. Refracted near-field technique for the measurement of optical fiber refractive index profiles[J]., 1989, 9(2): 181–185.
殷愛娥, 姜仲玄, 張一龍. 光纖折射率剖面的折射近場法測量的研究[J]. 光學(xué)學(xué)報(bào), 1989, 9(2): 181–185.
[11] Gao Y C. Simulation of measuring the optical fiber refractive index profiles by refraction near-field method[D]. Harbin: Harbin Engineering University, 2012.
高迎春. 基于折射近場法測量光纖折射率分布的仿真研究[D]. 哈爾濱: 哈爾濱工程大學(xué), 2012.
[12] Sun H G, Chu J R, Zhong L S,. Measurement of refractive-index profile of plastic optical fibers[J]., 2001(4): 12–16.
孫會(huì)剛, 儲(chǔ)九榮, 鐘力生, 等. 塑料光纖折射率分布的測量方法[J]. 光纖與電纜及其應(yīng)用技術(shù), 2001(4): 12–16.
[13] Li C X, Li L Y, Yang S X,. Study on mode field diameter standard of single-mode optical fiber[J]., 2013(2): 72–76.
李春生, 李琳瑩, 楊世信, 等. 單模光纖模場直徑標(biāo)準(zhǔn)研究[J]. 現(xiàn)代傳輸, 2013(2): 72–76.
[14] Shen N L, Tu J K, Wang J C,. Research and design of optical fiber geometry testing instrument[J]., 2008, 34(6): 51–54.
沈奶連, 涂建坤, 王建財(cái), 等. 光纖幾何參數(shù)測試儀的研究與設(shè)計(jì)[J]. 現(xiàn)代傳輸, 2008, 34(6): 51–54.
[15] Ou P.()-,[M]. 2nd ed. Beijing: Beihang University Press, 2014.
歐攀. 高等光學(xué)仿真(MATLAB版)--光波導(dǎo), 激光[M]. 2版. 北京: 北京航空航天大學(xué)出版社, 2014.
[16] Guo F Y, Li L H, Wang M H. Gaussian approximation for mode field distribution of dielectric planar waveguide TE0 mode[J]., 2008, 35(2): 235–239.
郭福源, 李連煌, 王明華. 介質(zhì)平面光波導(dǎo)TE0模模場分布的高斯近似[J]. 中國激光, 2008, 35(2): 235–239.
[17] Song X L, Li B B, Wang S Y,. A new measurement of light intensity distribution with divergence[J]., 2007, 28(4): 572–575.
宋小鹿, 李兵斌, 王石語, 等. 一種測量激光光強(qiáng)按角度分布的新方法[J]. 半導(dǎo)體光電, 2007, 28(4): 572–575.
[18] Marcuse D. Gaussian approximation of the fundamental modes of graded-index fibers[J]., 1978, 68(1): 103–109.
[19] Li Y M, Tu J K, Xiang H Z,. Measurement of optical fiber geometric parameters with Canny operator and binaryzation filtering[J]., 2018, 44(5): 513–518.
李一鳴, 涂建坤, 項(xiàng)華中, 等. 用Canny算子和二值化濾波的光纖幾何參數(shù)測量[J]. 光學(xué)技術(shù), 2018, 44(5): 513–518.
[20] Li Y M, Zheng G, Tu J K,. Measurement of optical fiber geometry with arbitrary ellipse curve fitting[J]., 2019, 46(5): 180319.
李一鳴, 鄭剛, 涂建坤, 等. 任意橢圓函數(shù)擬合法測量光纖幾何參數(shù)[J]. 光電工程, 2019, 46(5): 180319.
[21] Liu W, Tang C H, Ma X M,. Measurement of geometric parameters of defective fiber ends[J]., 2013(6): 35–38.
劉為, 唐春暉, 馬秀梅, 等. 缺陷光纖端面幾何參數(shù)的測量[J]. 光通信研究, 2013(6): 35–38.
[22] Mu D D, Zhu Y T, Zhang K. Modulation of annular light distribution by mechanical fiber scrambler[J]., 2012, 33(5): 996–1001.
穆丹丹, 朱永田, 張凱. 天文光纖機(jī)械擾模器調(diào)制環(huán)形光場的實(shí)驗(yàn)研究[J]. 應(yīng)用光學(xué), 2012, 33(5): 996–1001.
Measurement of optical fiber geometry parameters by gray distribution fitting withGaussian function
LiYiming1, TuJiankun2, Xiang Huazhong1, Jiang Bin2, Zheng Gang1*
1Shanghai Engineering Research Center of Interventional Medical Device, Key Laboratory of Ministry of Education for Applied Optical Instruments, University of Shanghai for Science and Technology,Shanghai 200093, China;2Shanghai Cable Research Institute, Shanghai 200093, China
2D Gaussian function fitting rendering of normal fiber
Overview:The geometry parameters of optical fiber affect the optical transmission and mechanical properties of optical fiber. The near-field optical distribution method is a measurement method recommended in GB15972.20-2008. The main parameters to be measured include the diameter of cladding and core, the roundness of cladding and core, and the concentricity of cladding and core. In order to distinguish the boundary between fiber core and cladding, the fiber core should be illuminated during the measurement of the geometry parameters. Actually, the end face of fiber core is a bright spot with unclear edges, so it is impossible to accurately judge the true edges of fiber core, which will bring errors to the measurement of geometry parameters of fiber core. In this paper, the distribution of optical mode field in fiber was analyzed. Theoretically, the solution of electromagnetic vector of optical fiber mode field satisfies Bessel function, but Gaussian function can also be used to approximately describe the distribution of optical fiber mode field.
Therefore, Gaussian function was used to fit the gray distribution of fiber core, and the true edge of fiber core was obtained from the Gaussian function. Gaussian function fitting method mainly includes the following three steps. The first step is to obtain the image of the end face of the optical fiber by CCD and conduct appropriate image preprocessing. The image contrast is stronger and more conducive to subsequent gray data extraction by image preprocessing. The second step is to find the best Gaussian function by the fitting with gray data of the image. 3D fitting with all the gray data of fiber core end face can effectively filter out error data and reflect the true mode field distribution of fiber core. The third step is to find the true edge of the fiber core through the best-fitting Gaussian function, and fit the edge data with elliptical curves. Finally, the geometry parameters of the fiber core will be obtained. For the measurement of cladding geometry parameters, because of the high contrast of the edge, Canny operator can be directly used to extract the edge of the cladding. The cladding geometry parameters with high precision can be obtained by elliptical curves fitting.
The real edge of optical fiber core can be accurately obtained by Gaussian function fitting, and the error points in the image can be effectively filtered through fitting, so as to improve the measurement accuracy of optical fiber geometry parameters. Taking fiber core data as an example, the data of diameter and roundness measured by the standard instrument are 8.420 μm and 0.670%, respectively. When cutting effect of fiber end face or lighting condition is poor, the instrument data change to 9.044 μm and 1.457%, while the data measured in this paper are 8.425 μm and 0.480%, respectively.
Citation: LiY M, TuJ K, Xiang H Z,. Measurement of optical fiber geometry parameters by gray distribution fitting withGaussian function[J]., 2020,47(4): 190247
Measurement of optical fiber geometry parameters by gray distribution fitting withGaussian function
LiYiming1, TuJiankun2, Xiang Huazhong1, Jiang Bin2, Zheng Gang1*
1Shanghai Engineering Research Center of Interventional Medical Device, Key Laboratory of Ministry of Education for Applied Optical Instruments, University of Shanghai for Science and Technology,Shanghai 200093, China;2Shanghai Cable Research Institute, Shanghai 200093, China
The geometry parameters of optical fiber affect the optical transmission and mechanical properties, which are the important indexes to measure the quality of fiber. Near-field light distribution method is recommended in GB15972.20-2008 for the measurement of geometry parameters. In order to distinguish the boundary between fiber core and cladding, the method needs to illuminate the fiber. The end face of the fiber core is a bright spot with unclear edge, so the true edge of the core and cladding cannot be accurately judged. In this paper, the distribution of mode field in optical fiber is analyzed. Theoretically, the solution of electromagnetic vector of mode field satisfies Bessel function, but Gaussian function can also be used under approximate conditions. Therefore, Gaussian function is used to fit the distribution of the fiber core in this paper, and the real edge of the fiber core and cladding can be obtained from the Gaussian function after fitting. This method is a further improvement on the measurement method of GB15972.20-2008. The experimental results show that when the cutting effect of the fiber is not good or the imaging quality is poor, the Gaussian function method fitting with mode distribution can still ensure the repeatability of the measurement and the stability of the measured data.
optical fiber geometry parameters; mode distribution; Gaussian function; edge detect
National Natural Science Foundation for Young Scientists of China (61605114)
* E-mail: gangzheng@usst.edu.cn
TN818
A
李一鳴,涂建坤,項(xiàng)華中,等. 光纖灰度分布的高斯函數(shù)擬合法測量光纖幾何參數(shù)[J]. 光電工程,2020,47(4): 190247
10.12086/oee.2020.190247
: LiY M, TuJ K, Xiang H Z,Measurement of optical fiber geometry parameters by gray distribution fitting withGaussian function[J]., 2020, 47(4): 190247
2019-05-15;
2019-08-26基金項(xiàng)目:國家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(61605114)
李一鳴(1995-),男,碩士研究生,主要從事光電測試技術(shù)和生物醫(yī)學(xué)光子學(xué)方面的研究。E-mail: 276087885@qq.com
鄭剛(1962-),男,博士,教授,主要從事光電測試技術(shù)和生物醫(yī)學(xué)光子學(xué)方面的研究。E-mail:gangzheng@usst.edu.cn
版權(quán)所有?2020中國科學(xué)院光電技術(shù)研究所