吳冬雪 王雪 張咪
摘要 目的:研究一線抗結(jié)核藥物誘導小鼠肝損傷發(fā)生過程中NF-κB變化情況。方法:48只昆明小鼠隨機分為基線組和HRZ組(INH+RFP+PZA),于灌胃3d、5d、7d、10d、15d后處死。ELISA檢測血清中ALT、AST含量。ELISA和RT-PCR檢測肝組織中NF-κB、IκB mRNA及蛋白表達水平。結(jié)果:肝組織病理學及ALT、AST水平發(fā)生改變,提示肝損傷發(fā)生。與基線組相比,HRZ組NF-κB mRNA和蛋白水平呈上升趨勢,IκB mRNA和蛋白水平逐漸下降。結(jié)論:NF-κB通路在抗結(jié)核藥物性肝損傷小鼠模型中被激活。
關(guān)鍵詞 抗結(jié)核藥物;肝損傷;NF-κB;小鼠
中圖分類號? R285? ? 文獻標識碼? B? ? 文章編號? 1671-0223(2020)02-026-03
Abstract? ?Objective? To investigate the changes of NF-κB in liver injury induced by first-line antituberculosis drugs in mice. Methods Forty-eight Kunming mice were randomly divided into the baseline group and the HRZ group (INH + RFP + PZA), and were sacrificed after gavage on 3d, 5d, 7d, 10d, and 15d. The levels of ALT and AST in serum were detected by ELISA. ELISA and RT-PCR were used to detect the expression levels of NF-κB, IκB mRNA and protein in liver tissues. Results Changes in liver histopathology and ALT and AST levels suggest liver damage. Compared with the baseline group, the mRNA and protein levels of NF-κB in the HRZ group showed an increasing trend, and the mRNA and protein levels of IκB gradually decreased. Conclusions? The NF-κB pathway is activated in mouse models of first-line anti-tuberculosis drug-induced liver injury.
Key words? Anti-tuberculosis drug; Liver injury; NF-κB; Mice
異煙肼(INH)、利福平(RFP)和吡嗪酰胺(PZA)為一線抗結(jié)核藥物,但治療過程常常會發(fā)生抗結(jié)核藥物性肝損傷(ADLI)。毫無疑問,ADLI是多因子介導的疾病,其發(fā)生機制尚不明確。有研究發(fā)現(xiàn),氧化應激可顯著影響ADLI的發(fā)生[1]。抗結(jié)核治療期間會產(chǎn)生大量可與肝酶或膜受體結(jié)合致細胞代謝和功能紊亂的活性氧(ROS)[2]。核因子(NF)-κB是被證實可由ROS激活的真核細胞轉(zhuǎn)錄因子,ROS和NF-κB通過相互激活表現(xiàn)出正反饋效應[3]。靜息狀態(tài)時,胞質(zhì)中NF-κB因與IκB結(jié)合而處于非活性狀態(tài)。當細胞受到氧化劑等外界因素刺激時,IκB磷酸化,被釋放的NF-κB發(fā)生核易位,進而參與基因表達的調(diào)控[4,5]。有研究表明,在乙醇引起的肝損傷中,肝細胞內(nèi)NF-κB活性顯著增加,與肝損傷程度呈高度正相關(guān)[6]。雖然NF-κB被證明與多種肝臟疾病有關(guān),但NF-κB與ADLI之間的關(guān)系仍需要進一步研究。目前,臨床上常用INH、RFP和PZA三種藥物聯(lián)合作為抗結(jié)核化療方案,有研究表明藥物間的相互作用會增加肝毒性[7]。但是,三種藥物抗結(jié)核藥物聯(lián)合致肝損傷的機制仍不明確。
本研究在INH、RFP和PZA聯(lián)合致小鼠肝損傷模型中觀察肝組織中的NF-κB和IκB的mRNA和蛋白表達水平變化情況,進而探討NF-κB在ADLI發(fā)生過程中的作用,為揭示ADLI的發(fā)生機制提供參考。
1 材料方法
1.1 動物模型
在中國阜康生物技術(shù)有限公司購買48只SPF級昆明小鼠(動物許可證號:SCXK(北京)2009-0004),雌雄各半,隨機分為基線組和藥物組(INH+RFP+PZA 90mg/Kg.d+135mg/Kg.d+315mg/Kg.d),于灌胃3d、5d、7d、10d、15d后處死。基線組8只小鼠,在開始灌胃之前一天處死。實驗獲得了動物倫理委員會的批準(批準號:14-016)。
1.2 檢測指標
1.2.1 組織病理學改變
取肝組織,用福爾馬林固定,脫水后包埋、切片,進行HE染色。使用光學顯微鏡觀察肝組織病理變化。
1.2.2 檢測小鼠血清ALT、AST水平
ELISA試劑盒(南京建成生物工程研究所)檢測血清ALT、AST水平。
1.2.3 檢測肝組織中NF-κB和IκB mRNA表達水平
TRIzol法提取總RNA,逆轉(zhuǎn)錄和RT-PCR使用試劑盒(Invitrogen公司),RT-PCR條件為94℃ 30s,63℃ 30s,72℃ 30s,35個循環(huán)。
1.2.4檢測肝組織中NF-κB和IκB蛋白含量
肝組織和鹽水按照1:4制成勻漿,離心并收集上清液。ELISA試劑盒(南京建成生物工程研究所)檢測NF-κB和IκB蛋白含量。
1.3 統(tǒng)計分析
SPSS22.0處理數(shù)據(jù),計量資料采用“均數(shù)±標準差”表示,多組間均數(shù)比較采用方差分析,兩兩比較采用LSD法,P<0.05為差異有統(tǒng)計學意義。
2 結(jié)果
2.1 肝組織病理改變
基線組肝細胞無明顯形態(tài)變化。HRZ組在3d開始表現(xiàn)出明顯的形態(tài)學變化,肝細胞腫脹,炎性細胞增多,胞質(zhì)空泡化,核皺縮,到15d損傷程度最為嚴重(圖1)。
2.2 小鼠血清ALT、AST水平
與基線組相比,HRZ組的ALT和AST指標在第5天出現(xiàn)顯著變化(均P <0.05),并且隨著給藥時間的延長,ALT和AST水平呈先升高后降低趨勢(均P <0.05)(圖2)。
2.3 小鼠肝組織NF-κB 和IκB mRNA及蛋白表達
與基線組相比,HRZ組NF-κB的mRNA及蛋白表達在第5天出現(xiàn)顯著變化,呈現(xiàn)先升高后略降低趨勢(均P <0.05)。IκB的mRNA和蛋白水平從第1天至第15天逐漸下降(均P <0.05),且在第7天出現(xiàn)顯著變化(均P <0.05)(圖3)。
3 討論
靜息狀態(tài)時,胞質(zhì)中NF-κB因與IκB結(jié)合而處于非活性狀態(tài)[8,9]。當細胞受到氧化應激刺激時,氧化應激可導致IκB降解并與NF-κB分離[10]?;罨腘F-κB易位入核與炎癥介質(zhì)靶基因啟動子區(qū)域的κB位點結(jié)合,導致炎癥介質(zhì)基因的過表達[11,12]。本研究中,NF-κB和IκB的基因表達水平發(fā)生顯著變化,表明NF-κB通路被激活。此外,我們發(fā)現(xiàn)HRZ組中NF-κB的表達水平先升高后略有下降。有研究表明,RFP的免疫調(diào)節(jié)作用可抑制NF-κB活化并減少促炎因子的產(chǎn)生[13,14]。此外,用PZA處理的人單核細胞和小鼠可抑制NF-κB的活化[15,16]。因此,我們可以推測HRZ組中INH通過誘導氧化應激然后激活NF-κB途徑來誘導肝損傷。而RFP和PZA可以引起肝毒性并誘導氧化應激誘導NF-κB活化,但同時也可能發(fā)揮免疫調(diào)節(jié)作用來抑制NF-κB活化,但具體機制有待進一步探索。
總之,我們的結(jié)果表明,NF-κB通路在一線抗結(jié)核藥物INH、RFP和PZA誘導的小鼠肝損傷中被激活。盡管現(xiàn)代醫(yī)學迅速發(fā)展,但是幾乎沒有可靠的藥物可以保護肝臟不受損害或促進肝細胞再生。因此,終止活化的NF-κB信號通路可能成為未來的研究重點。
參考文獻
[1] Li S, Tan HY, Wang N, et al. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci. 2015; 16: 26087-26124.
[2] Gupta SC, Sundaram C, Reuter S, Aggarwal BB. Inhibiting NF-kappaB activation by small molecules as a therapeutic strategy. Biochim Biophys Acta. 2010; 1799: 775-787.
[3] Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res. 2011; 21: 103-115.
[4] Bakkar N, Guttridge DC. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev. 2010; 90: 495-511.
[5] Liu B, Sun L, Liu Q, et al. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015; 27: 370-381.
[6] Wang M, Shen G, Xu L, et al. IL-1 receptor like 1 protects against alcoholic liver injury by limiting NF-kappaB activation in hepatic macrophages. J Hepatol. 2017.
[7] Miglani S, Patyar RR, Patyar S, Reshi MR. Effect of goat milk on hepatotoxicity induced by antitubercular drugs in rats. J Food Drug Anal. 2016; 24: 716-721.
[8] Rao P, Hayden MS, Long M, et al. IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature. 2010; 466: 1115-1119.
[9] Chen S, Maini R, Bai X, Nangreave RC, Dedkova LM, Hecht SM. Incorporation of Phosphorylated Tyrosine into Proteins: In Vitro Translation and Study of Phosphorylated IkappaB-alpha and Its Interaction with NF-kappaB. J Am Chem Soc. 2017; 139: 14098-14108.
[10] Zuo T, Zhu M, Xu W, Wang Z, Song H. Iridoids with Genipin Stem Nucleus Inhibit Lipopolysaccharide-Induced Inflammation and Oxidative Stress by Blocking the NF-kappaB Pathway in Polycystic Ovary Syndrome. Cell Physiol Biochem. 2017; 43: 1855-1865.
[11] Kastl L, Sauer SW, Ruppert T, et al. TNF-alpha mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-kappaB activation in liver cells. FEBS Lett. 2014; 588: 175-183.
[12] Lian YH, Fang J, Zhou HD, Jiang HF, Xie KJ. Sufentanil Preconditioning Protects Against Hepatic Ischemia-Reperfusion Injury by Suppressing Inflammation. Med Sci Monit. 2019; 25: 2265-2273.
[13] Wang X, Grace PM, Pham MN, et al. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J. 2013; 27: 2713-2722.
[14] Zhu L, Kang H, Guo CA, et al. Rifampin suppresses osteoclastogenesis and titanium particle-induced osteolysis via modulating RANKL signaling pathways. Biochem Biophys Res Commun. 2017; 484: 64-70.
[15] Manca C, Koo MS, Peixoto B, Fallows D, Kaplan G, Subbian S. Host targeted activity of pyrazinamide in Mycobacterium tuberculosis infection. PLoS One. 2013; 8: e74082.
[16] Sakala IG, Eickhoff CS, Blazevic A, Moheno P, Silver RF, Hoft DF. Dipterinyl calcium pentahydrate inhibits intracellular mycobacterial growth in human monocytes via the C-C chemokine MIP-1beta and nitric oxide. Infect Immun. 2013; 81: 1974-1983.
[2020-01-07收稿]