林誠,陳子聰,吳一群,顏明娟
林地轉(zhuǎn)變?yōu)椴鑸@的土壤pH及養(yǎng)分變化特征
林誠,陳子聰,吳一群,顏明娟*
福建省農(nóng)業(yè)科學(xué)院土壤肥料研究所,福建 福州 350013
對鐵觀音主產(chǎn)區(qū)安溪縣10個(gè)鄉(xiāng)鎮(zhèn)38個(gè)茶園表土及相鄰的林地進(jìn)行調(diào)查,研究林地轉(zhuǎn)變?yōu)椴鑸@后土壤pH及養(yǎng)分變化特征。結(jié)果表明:林地轉(zhuǎn)變?yōu)椴鑸@后土壤pH每年平均下降0.031個(gè)單位,由林地土壤的4.81下降到茶園的4.17,達(dá)到極顯著差異水平。與林地相比,茶園土壤pH在4.0~4.5區(qū)間的樣本比例增加27.0%,pH<4.0樣本比例增加36.8%,并顯著提高交換性酸、交換性氫、交換性鋁含量。林地轉(zhuǎn)為茶園后土壤全氮、堿解氮、有效磷、速效鉀含量分別提高0.29?g·kg-1、33.39?mg·kg-1、59.06?mg·kg-1、29.75?mg·kg-1,土壤C∶N下降5.67,均達(dá)顯著差異水平。隨著茶園植茶年限增加,土壤全氮、堿解氮、有效磷含量顯著上升,土壤pH變化量與土壤堿解氮、有效磷、速效鉀變化量呈顯著負(fù)相關(guān),茶園土壤pH若下降1個(gè)單位,土壤中堿解氮、有效磷、速效鉀養(yǎng)分含量平均可累積63.92、52.45、55.84?mg·kg-1,其中茶園土壤有效磷平均含量已達(dá)到環(huán)境臨界值,存在對環(huán)境造成磷素污染的風(fēng)險(xiǎn)。調(diào)查結(jié)果表明,安溪縣茶園增加有機(jī)肥的投入,并進(jìn)行針對性配方施肥,可減緩茶園土壤酸化趨勢。
林地;茶園;土壤酸化;化學(xué)性質(zhì)
我國茶園主要分布在熱帶及亞熱帶地區(qū),大多由林地或荒地開墾而成,是我國亞熱帶丘陵山區(qū)重要的土地利用類型[1]。茶樹適宜在酸性土壤中生長,茶樹生長適宜的土壤pH范圍為4.5~6.0,其中最適宜值為5.5左右[2]。然而,由于茶樹的自身物質(zhì)循環(huán)和根系代謝作用[3]、人為施肥管理不當(dāng)以及酸雨等因素的影響[4],中國大部分茶園面臨著土壤酸化加速的危險(xiǎn)[5]。曹丹等[6]研究發(fā)現(xiàn)江蘇省有33%的茶園土壤年酸化速率大于0.2個(gè)pH單位,50%的茶園土壤pH低于4.0。茶園土壤酸化程度的加劇會(huì)提高土壤重金屬的活性,進(jìn)而促進(jìn)茶葉重金屬和氟的吸收,影響人類健康[7-9]。
安溪縣擁有茶園4萬hm2,占全縣耕地面積的80%左右[10]。目前有機(jī)茶園生產(chǎn)模式開始受到許多茶葉企業(yè)重視,但是安溪縣90%以上的茶園分布在16萬戶茶農(nóng)中[10],導(dǎo)致茶園生態(tài)建設(shè)進(jìn)程緩慢,尤其是散戶茶園的生態(tài)狀況好壞參差不齊。特別是近年來,伴隨著茶農(nóng)對茶園高產(chǎn)的盲目追求,有些地區(qū)茶園長期超量單施化肥、不施有機(jī)肥,造成茶園土壤養(yǎng)分不平衡現(xiàn)象普遍[11],引起土壤酸化、養(yǎng)分流失、環(huán)境污染等問題[12-13]。本研究以安溪縣茶園土壤及其鄰近的林地土壤為研究對象,調(diào)查林地開墾為茶園后土壤pH及養(yǎng)分含量變化特征,旨在為安溪縣乃至亞熱帶地區(qū)茶園合理施肥提供科學(xué)依據(jù)。
福建省鐵觀音茶葉主產(chǎn)區(qū)位于福建省東南部的安溪縣(東經(jīng)117°35′~118°17′,北緯24°50′~25°26′),屬亞熱帶濕潤氣候區(qū),年均氣溫16~20℃,年降雨量1?800?mm左右,全年無霜期平均330?d,土壤為酸性紅壤土。樣品采集時(shí)間為2016年10月,根據(jù)茶園面積分布及種茶年限,在安溪縣感德、蓬萊、虎丘等10個(gè)鄉(xiāng)鎮(zhèn),選取38個(gè)茶園樣點(diǎn)(種茶年限在5~35?a)。每個(gè)茶園樣點(diǎn)同時(shí)采集附近同一母質(zhì)并具有相似地形地貌特征的林地土壤作為對照,共計(jì)38對樣點(diǎn),76個(gè)土壤樣品。在每個(gè)采樣區(qū)用多點(diǎn)混合法采集0~20?cm的表層土壤,將采集的土壤樣品帶回自然風(fēng)干、剔除雜物后磨碎分別過20目和100目篩待測。
茶園土壤樣品分析參照土壤農(nóng)化分析方法[14],pH測定采用電位法測定(水土比2.5∶1);土壤交換性酸(氫、鋁)用氯化鉀-中和滴定法測定;有機(jī)質(zhì)用外加熱重鉻酸鉀氧化-容量法;全氮采用半微量開氏定氮法;堿解氮采用堿解擴(kuò)散法;有效磷采用碳酸氫鈉浸提-分光光度法;速效鉀采用乙酸銨浸提-火焰光度法;土壤陽離子交換量(CEC)采用乙酸銨交換法。
采用Excel 2003進(jìn)行數(shù)據(jù)處理,利用SPSS 18.0統(tǒng)計(jì)軟件進(jìn)行配對檢驗(yàn)和相關(guān)性分析。
通過對調(diào)查的38對樣本土壤pH分析后發(fā)現(xiàn)(圖1),林地土壤pH最大值為6.21,最小值為4.12,平均值為4.81±0.44;林地開墾為茶園后,土壤pH最大值為4.88,最小值為3.66,平均值為4.17±0.35,下降0.64個(gè)單位,達(dá)極顯著差異。從pH的分布頻率變化來看(表1),林地土壤pH主要分布在4.5~5.5區(qū)間,占調(diào)查樣點(diǎn)的71.1%,4.0~4.5區(qū)間占18.4%。然而,開墾植茶后土壤pH均小于5.5,其中4.5~5.5區(qū)間占15.8%,4.0~4.5占47.4%,小于4.0占36.8%;植茶后土壤pH小于4.5樣點(diǎn)數(shù)增加65.8%。由此可見,林地改為植茶土壤呈現(xiàn)出明顯的酸化趨勢。
林地土壤交換性酸最大值、最小值、平均值分別為13.9、1.45、(4.75±0.46)?cmol·kg-1。開墾為茶園后土壤交換性總酸最大值、最小值、平均值分別為14.3、1.96、(5.80±0.37)?cmol·kg-1。植茶后土壤交換性總酸含量提高了22.1%,達(dá)極顯著差異。
隨著土壤pH的下降,林地開墾為茶園后土壤交換性H+、交換性Al3+含量均顯著提高(圖2)。其中,交換性H+由(0.36±0.03)?cmol·kg-1提高到(0.56±0.03)?cmol·kg-1,增幅55.6%,達(dá)極顯著差異;交換性Al3+含量由(4.39±0.44)?cmol·kg-1提高至(5.23±0.37)?cmol·kg-1,增幅19.1%,達(dá)顯著差異。
通過表2可知,林地開墾為茶園后土壤有機(jī)質(zhì)含量下降3.28?g·kg-1,降幅為15.4%,但差異不顯著。土壤全氮、堿解氮、有效磷、速效鉀含量分別提高0.29?g·kg-1、33.39?mg·kg-1、59.06?mg·kg-1和29.75?mg·kg-1,增幅分別為24.4%、28.0%、1416.3%和33.5%。其中,全氮、堿解氮、有效磷差異達(dá)極顯著水平,速效鉀達(dá)顯著水平。CEC含量下降0.68?cmol·kg-1,但差異不顯著;土壤C∶N下降5.67,達(dá)極顯著差異。參照《茶葉產(chǎn)地環(huán)境技術(shù)條件》(NY/T 853—2004)中茶園土壤肥力分級(jí)指標(biāo),將林地與開墾后植茶土壤進(jìn)行等級(jí)劃分。結(jié)果發(fā)現(xiàn),林地開墾為茶園后土壤有機(jī)質(zhì)優(yōu)良等級(jí)(>15?g·kg-1)下降5.3%,中等肥力比例提高21.1%,較差等級(jí)比例下降15.8%(<10?g·kg-1)。土壤全氮、堿解氮、有效磷、速效鉀優(yōu)良等級(jí)分別提高26.3%、21.0%、76.3%和21.0%,而CEC較差等級(jí)(<15?cmol·kg-1)提高7.9%。該結(jié)果說明林地開墾為茶園后,現(xiàn)有茶園施肥管理措施可有效提高土壤氮磷鉀養(yǎng)分肥力水平,但對土壤有機(jī)質(zhì)、CEC含量沒有提升作用。
注:**,P<0.01
表1 土壤pH分布頻率
注:*,P<0.05;**,P<0.01
表2 茶園和鄰近林地土壤化學(xué)性質(zhì)含量
表3 土壤等級(jí)分布變化
注:Ⅰ、Ⅱ、Ⅲ等級(jí)分別代表優(yōu)良、尚可、較差
Note: Ⅰ, Ⅱ and Ⅲ represent excellence, acceptable and inferiority respectively
分析植茶前后土壤化學(xué)性質(zhì)的變化量與土壤pH變化量的關(guān)系發(fā)現(xiàn)(表4),土壤交換性酸、交換性H+、交換性Al3+、全氮、堿解氮、有效磷、速效鉀變化量與ΔpH(土壤pH變化量,即茶園土壤與對應(yīng)林地土壤的差值)呈顯著或極顯著負(fù)相關(guān)。從土壤化學(xué)性質(zhì)變化量與種植年限間關(guān)系來看,隨著茶園種植年限的延長,土壤pH、交換性酸、交換性H+、交換性Al3+、全氮、有效磷呈顯著上升,土壤有機(jī)質(zhì)、CEC、C∶N與ΔpH及種植年限間無顯著相關(guān)。從擬合的方程可得出,在安溪茶園立地條件及茶園管理?xiàng)l件綜合影響下,茶園土壤pH平均每年以0.031個(gè)單位下降,土壤全氮、堿解氮、有效磷含量每年分別提高0.029?g·kg-1、2.89?mg·kg-1、2.86?mg·kg-1。茶園土壤pH若下降1個(gè)單位,土壤中堿解氮、有效磷、速效鉀養(yǎng)分含量分別可累積63.92、52.45、55.84?mg·kg-1。
表4 土壤化學(xué)性質(zhì)變化量與△pH、種植年限間關(guān)系
注:Δ值=植茶土壤含量-林地土壤含量。*<0.05,**<0.01
Note: Δ is the difference between woodland and tea garden. *<0.05, **<0.01
土壤有機(jī)質(zhì)是酸性土壤pH緩沖容量主要的影響因子之一[27],有機(jī)質(zhì)含有大量的羥基和酚羥基,解離會(huì)產(chǎn)生大量的負(fù)電荷,影響土壤交換性鋁含量[28],隨著土壤有機(jī)質(zhì)含量增加,可以有效緩解土壤酸化趨勢[17]。鐵觀音茶園普遍存在輕有機(jī)肥,重施化肥,偏施氮肥的情況[29],當(dāng)?shù)闯渥銜r(shí),會(huì)降低土壤中的C/N,意味著土壤中有機(jī)質(zhì)礦化或者分解速度較快[30],容易造成土壤有機(jī)質(zhì)含量下降。此外,范利超等[31]研究認(rèn)為茶園土壤代謝作用強(qiáng)于林地,茶園有機(jī)碳庫的穩(wěn)定性比林地差,不利于土壤有機(jī)碳庫的積累。林新堅(jiān)等[32]試驗(yàn)表明,單施化肥模式下,茶園土壤pH僅4年就下降0.24個(gè)單位,有機(jī)肥、無機(jī)肥合理配施模式有利于緩解茶園土壤pH下降,而配施生物基質(zhì)肥料能提高土壤有機(jī)質(zhì)、土壤鹽基離子濃度及飽和度,降低土壤交換性酸含量[33]。在本研究中植茶后土壤有機(jī)質(zhì)平均含量有下降趨勢,會(huì)造成土壤酸化的緩沖性能下降,這可能也是茶園土壤酸化的原因之一。
施肥是提升土壤肥力水平的關(guān)鍵措施,安溪林地開墾為茶園通過人為施肥管理,顯著提高土壤氮磷鉀含量,但茶園土壤堿解氮、有效磷、速效鉀增加量與ΔpH呈顯著負(fù)相關(guān)。2016年福建省化肥施用量為1985年的2.52倍,且以尿素、氯化銨、硫酸銨和過磷酸鈣等生理酸性或酸性化肥為主[34],周碧青等[35]研究認(rèn)為年均單位面積施肥量是福建省耕地土壤酸化首要外在驅(qū)動(dòng)因素,而單位面積施肥量與土壤氮磷鉀養(yǎng)分變化存在密切聯(lián)系,因此可通過土壤養(yǎng)分含量的富集間接反映出土壤酸化程度。章明清等[36]研究鐵觀音茶園氮磷鉀施肥指標(biāo)得出茶園土壤堿解氮、有效磷和速效鉀的高產(chǎn)臨界指標(biāo)分別為200、45、115?mg?kg-1,與其結(jié)果相比,安溪茶園土壤有效磷、速效鉀平均含量已達(dá)高產(chǎn)水平,而茶園土壤有效磷均值達(dá)63.23?mg·kg-1,已超過國際上認(rèn)定60?mg·kg-1的環(huán)境臨界值[37],存在對環(huán)境造成磷素污染的風(fēng)險(xiǎn)。因此在滿足茶樹氮肥需求的同時(shí),應(yīng)注意土壤磷鉀的富集。當(dāng)?shù)夭柁r(nóng)應(yīng)適時(shí)進(jìn)行測土,根據(jù)土壤養(yǎng)分含量變化情況,有針對性的進(jìn)行配方施肥,并通過有機(jī)肥施用來減緩?fù)寥浪峄厔荨?/p>
[1] 吳洵. 茶園土壤管理與施肥技術(shù)[M]. 2版. 北京: 金盾出版社, 2009: 9-18.Wu X. Tea garden soil management and fertilization technology [M]. 2nd ed. Beijing: Jindun Press, 2009: 9-18.
[2] 廖萬有. 我國茶園土壤的酸化及防治[J]. 農(nóng)業(yè)環(huán)境保護(hù), 1998, 17(4): 178-180. Liao W Y. Soil acidification in tea gardens in our country and its control [J]. Agroenvironmental Protention, 1998, 17(4): 178-180.
[3] 彭萍, 楊水平, 李品武, 等. 植茶對土壤環(huán)境效應(yīng)分析研究[J]. 茶葉科學(xué), 2007, 27(3): 265-270.Peng P, Yang S P, Li P W, et al. Effect of tea planting on the yellow soil properties in tea garden [J]. Journal of Tea Science, 2007, 27(3): 265-270.
[4] 張倩, 宗良綱, 曹丹, 等. 江蘇省典型茶園土壤酸化趨勢及其制約因素研究[J]. 土壤, 2011, 43(5): 751-757. Zhang Q, Zong L G, Cao D, et al. Study on soil acidification and its restrictive factors of typical tea garden in Jiangsu Province [J]. Soils, 2011, 43(5): 751-757.
[5] Guo H J, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands [J]. Science, 2010, 327: 1008-1010.
[6] 曹丹, 張倩, 肖峻, 等. 江蘇省典型茶園土壤酸化速率定位研究[J]. 茶葉科學(xué), 2009, 29(6): 443-448.Cao D, Zhang Q, Xiao J, et al. Localized monitoring of soil acidification rate of tea garden in Jiangsu province [J]. Journal of Tea Science, 2009, 29(6): 443-448.
[7] 章明奎, 方利平, 張履勤. 酸化和有機(jī)質(zhì)積累對茶園土壤鉛生物有效性的影響[J]. 茶葉科學(xué), 2005, 25(3): 159-164.Zhang M K, Fang L P, Zhang L Q. Effects of acidification and organic matter accumulation on lead bio-availability in tea garden soils [J]. Journal of Tea Science, 2005, 25(3): 159-164.
[8] Han W Y, Zhao F J, Shi Y Z, et al. Scale and causes of lead contamination in Chinese tea [J]. Environmental Pollution, 2006, 139(1): 125-132.
[9] 宗良綱, 陸麗君, 羅敏, 等. 茶園土壤酸化對氟的影響及茶葉氟安全限量的探討[J]. 安全與環(huán)境學(xué)報(bào), 2006, 6(1): 100-103. Zong L G, Lu L J, Luo M, et al. Effects of soil acidification by tea plantation on fluoride and discussion of safety level of tea fluoride [J]. Journal of Safety and Environment, 2006, 6(1): 100-103
[10] 高水練, 雷鄭延, 戶彬彬, 等. 農(nóng)戶茶園生態(tài)建設(shè)行為驅(qū)動(dòng)因素及其作用路徑研究——基于安溪縣樣本數(shù)據(jù)的SEM實(shí)證[J]. 茶葉科學(xué), 2018, 38(4): 372-384. Gao S L, Lei Z Y, Hu B B, et al. Drive factors and their acting path of farmers’ ecological construction behavior in tea garden-analyzed on sample data of anxi county by sem [J]. Journal of Tea Science, 2018, 38(4): 372-384.
[11] 王峰, 吳志丹, 陳玉真, 等. 提高福建茶園土壤肥力質(zhì)量的技術(shù)途徑[J]. 福建農(nóng)業(yè)學(xué)報(bào), 2012, 27(10): 1139-1145.Wang F, Wu Z D, Chen Y Z, et al. Means to improve soil fertility of tea plantations in Fujian [J]. Fujian Journal of Agricultural Sciences, 2012, 27(10): 1139-1145.
[12] 林生, 莊家強(qiáng), 陳婷, 等. 福建安溪不同年限茶樹土壤養(yǎng)分與微生物Biolog功能多樣性的差異分析[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(11): 1471-1477. Lin S, Zhuang J Q, Chen T, et al. Analysis of nutrient and microbial Biolog function diversity in tea soils with different planting years in Fujian Anxi [J]. Chinese Journal of Eco-Agriculture, 2012, 20(11): 1471-1477.
[13] 何志龍, 周維, 田亞男, 等. 中亞熱帶丘陵區(qū)茶園和林地土壤春季N2O排放及其影響因素[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2016, 35(6): 1210-1217. He Z L, Zhou W, Tian Y N, et al. Nitrous oxide emission and its impact factors in tea garden and woodland soils in subtropical hilly region of china during spring season [J]. Journal of Agro-Environment Science, 2016, 35(6): 1210-1217.
[14] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國農(nóng)業(yè)科學(xué)技術(shù)出版社, 1999.Lu R K. The analytical methods for soil and agrochemistry [M]. Beijing: China Agricultural Science Technology Press, 1999.
[15] 張秀, 張黎明, 龍軍, 等. 亞熱帶耕地土壤酸化程度差異及影響因素[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2017, 25(3): 441-450. Zhang X, Zhang L M, Long J, et al. Soil acidification degree difference and impact factors of subtropical cropland [J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 441-450.
[16] 袁珍貴, 楊晶, 郭莉莉, 等. 酸化對土壤質(zhì)量的影響及酸化土壤的主要改良措施研究進(jìn)展[J]. 農(nóng)學(xué)學(xué)報(bào), 2015, 5(7): 51-55. Yuan Z G, Yang J, Guo L L, et al. Research progress on effect of acidification on soil quality and main improving measures for acidified soil [J]. Journal of Agriculture, 2015, 5(7): 51-55.
[17] 蘇有健, 王燁軍, 張永利, 等. 不同植茶年限茶園土壤pH緩沖容量[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2014, 25(10): 2914-2918.Su Y J, Wang Y J, Zhang Y L, et al. Soil pH buffer capacity of tea garden with different planting years [J]. Chinese Journal of Applied Ecology, 2014, 25(10): 2914-2918.
[18] 張秀. 省域耕地土壤酸化空間分異及驅(qū)動(dòng)因素研究[D]. 福州: 福建農(nóng)林大學(xué), 2017. Zhang X. Study on spatial acidification variation and its impacting factors of cropland soil [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
[19] 宋木蘭, 劉友林. 茶園——土壤系統(tǒng)的物質(zhì)循環(huán)對土壤酸化的影響[J]. 茶葉科學(xué), 1990, 10(2): 19-26. Song M L, Liu Y L. Effect of biogeochemical cycle in tea garden on the soil acidification [J]. Journal of Tea Science, 1990, 10(2): 19-26.
[20] Zhu T, Zhang J, Meng T, et al. Tea plantation destroys soil retention of NO3-and increases N2O emissions in subtropical China [J]. Soil Biology & Biochemistry, 2014, 73: 106-114.
[21] Xue D, Huang X, Yao H, et al. Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils [J]. Journal of Environmental Sciences, 2010, 22(8): 1253-1260.
[22] Xue D, Gao Y, Yao H, et al. Nitrification potentials of Chinese tea orchard soils and their adjacent wasteland and forest soils [J]. Journal of Environmental Sciences, 2009, 21(9): 1225-1229.
[23] 喬春連, 布仁巴音. 合成氮肥對中國茶園土壤養(yǎng)分供應(yīng)和活性氮流失的影響[J]. 土壤學(xué)報(bào), 2018, 55(1): 174-181. Qiao C L, Bu R B Y. Effect of application of synthetic nitrogen fertilizers on soil nutrient supply and loss of reactive nitrogen in tea (L. Kuntze) gardens in China [J]. Acta Pedologica Sinica, 2018, 55(1): 174-181.
[24] 王峰, 陳玉真, 尤志明, 等. 不同施氮量對兩種茶園土壤硝化作用和pH值的影響[J]. 茶葉科學(xué), 2015, 35(1): 82-90. Wang F, Chen Y Z, You Z M, et al. Effect of different nitrogen application rates on nitrification and pH of two tea garden soil [J]. Journal of Tea Science, 2015, 35(1): 82-90.
[25] 龐鑫, 王玉花, 王偉東, 等. 修剪物與茶多酚對茶樹礦質(zhì)吸收及根系有機(jī)酸分泌的影響[J]. 茶葉科學(xué), 2014, 34(6): 591-600. Pang X, Wang Y H, Wang W D, et al. Effect of tea pruning materials and tea polyphenols on organic acids secretion and mineral uptake in tea plant [J]. Journal of Tea Science, 2014, 34(6): 591-600.
[26] 母媛, 袁大剛, 蘭永生, 等. 植茶年限對土壤pH值、有機(jī)質(zhì)與酚酸含量的影響[J]. 中國土壤與肥料, 2016(4): 44-48. Mu Y, Yuan D G, Lan Y S, et al. Effect of tea planting age on soil pH value, content of organic matter and phenolic acids [J]. Soil and Fertilizer Sciences in China, 2016(4): 44-48.
[27] 汪吉東, 戚冰潔, 張永春, 等. 長期施肥對砂壤質(zhì)石灰性潮土土壤酸堿緩沖體系的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(4): 1031-1036.Wang J D, Qi B J, Zhang Y C, et al. Effects of long-term fertilization on pH buffer system of sandy loam calcareous fluvor-aquic soil [J]. Chinese Journal of Applied Ecology, 2012, 23(4): 1031-1036.
[28] 王小兵, 駱永明, 李振高, 等. 長期定位施肥對亞熱帶丘陵地區(qū)紅壤旱地質(zhì)量的影響Ⅰ酸度[J]. 土壤學(xué)報(bào), 2011, 48(1): 98-102.Wang X B, Luo Y M, Li Z G, et al. Effect of long-term stationary fertilization on upland red soil quality in subtropical hilly regions I. Acidity [J]. Acta Pedologica Sinica, 2011, 48(1): 98-102.
[29] 鄭麗燕, 侯玲利, 陳炎輝, 等. 福建鐵觀音茶園土壤氮素狀況研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2009, 17(2): 225-229. Zheng L Y, Hou L L, Chen Y H, et al. Soil nitrogen status in tieguanyin tea plantation of fujian province [J]. Chinese Journal of Eco-Agriculture, 2009, 17(2): 225-229.
[30] Schipper L A, Sparling G P. Accumulation of soil organic C and change in C:N ratio after establishment of pastures on reverted scrubland in New Zealand [J]. Biogeochemistry, 2011, 104(1/3): 49-58.
[31] 范利超, 韓文炎, 李鑫, 等. 茶園與相鄰林地土壤有機(jī)碳及基礎(chǔ)呼吸的垂直分布特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2015, 34(6): 1149-1157. Fan L C, Han W Y, Li X, et al. Vertical distribution of soil organic carbon and soil basal respiration in tea soil and adjacent woodland soil [J]. Journal of Agro-Environment Science, 2015, 34(6): 1149-1157.
[32] 林新堅(jiān), 黃東風(fēng), 李衛(wèi)華, 等. 施肥模式對茶葉產(chǎn)量、營養(yǎng)累積及土壤肥力的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2012, 20(2): 151-157.Lin X J, Huang D F, Li W H, et al. Effects of fertilization regime on yield,nutrition accumulation of tea and soil fertility [J]. Chinese Journal of Eco-Agriculture, 2012, 20(2): 151-157.
[33] 吳志丹, 江福英, 尤志明, 等. 配施生物基質(zhì)肥料對茶園土壤酸度的改良效應(yīng)[J]. 茶葉科學(xué), 2015, 35(2): 196-202. Wu Z D, Jiang F Y, You Z M, et al. Effect of biological manure fertilizer application on ameliorating acidity of tea garden soil [J]. Journal of Tea Science, 2015, 35(2): 196-202.
[34] 福建省統(tǒng)計(jì)局. 福建統(tǒng)計(jì)年鑒[M]. 北京: 中國統(tǒng)計(jì)出版社, 2017. Fujian Statistical Bureau. Statistical yearbook of Fujian [M]. Beijing: China Statistics Press, 2017.
[35] 周碧青, 邱龍霞, 張黎明, 等. 基于灰色關(guān)聯(lián)-結(jié)構(gòu)方程模型的土壤酸化驅(qū)動(dòng)因子研究[J]. 土壤學(xué)報(bào), 2018, 55(5): 1233-1242. Zhou B Q, Qiu L X, Zhang L M, et al. Study on driving factors of soil acidification based on grey correlation-structure equation model [J]. Acta Pedologica Sinica, 2018, 55(5): 1233-1242.
[36] 章明清, 李娟, 尤志明, 等. 投產(chǎn)鐵觀音茶園氮磷鉀施肥指標(biāo)研究[J]. 茶葉學(xué)報(bào), 2015, 56(3): 151-158.Zhang M Q, Li J, You Z M, et al. A fertilization index of nitrogen, phosphorus and potassium for tieguanyin () tea garden production in Fujian [J]. Acta Tea Sinica, 2015, 56(3): 151-158.
[37] 張福鎖. 協(xié)調(diào)作物高產(chǎn)與環(huán)境保護(hù)的養(yǎng)分資源綜合管理技術(shù)研究與應(yīng)用[M]. 北京: 中國農(nóng)業(yè)大學(xué)出版社, 2008. Zhang F S. Study and application of integrated nutrient management synchronizing high yield and environment protection [M]. Beijing: China Agricultural University Press, 2008.
Acidification Characteristics and Nutrient Contents in Soils of Tea Plantation and Adjacent Woodland in Subtropical Region
LIN Cheng, CHEN Zicong, WU Yiqun, YAN Mingjuan*
Institute of Soil and Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
In this study, 38 tea garden and adjacent woodland were chosen in An’xi county to investigate soil pH and nutrient changes. The results show that, soil pH was decreased by 0.031 units per year from 4.81 in woodland to 4.17 in tea garden. Contrast to woodland, the ratio of tea-grown soils with pH 4.0-4.5 and pH<4.0 were increased by 27% and 36.8%, which significantly increased the contents of total exchangeable acid, exchangeable H+and exchangeable aluminum Al3+. After the conversion of forest land to tea garden, the contents of soil total nitrogen,hydrolysable nitrogen, available phosphorus and available potassium were increased by 0.29?g·kg-1, 33.39?mg·kg-1, 59.06?mg·kg-1and 29.75?mg·kg-1, respectively. Furthermore, the C/N ratio was significantly decreased by 5.67. With the increase of tea planting years in tea garden, the contents of total nitrogen, hydrolysable nitrogen, available phosphorus were increased significantly. The change of soil pH was significantly and negatively correlated with those of soil hydrolysable nitrogen, available phosphorus and available potassium. The average contents of hydrolysable nitrogen, available phosphorus and available potassium would be increased by 63.92?mg·kg-1, 52.45?mg·kg-1and 55.84?mg·kg-1when soil pH was decreased by 1 unit. When the environmental threshold is reached, there is a risk of phosphorus pollution to the environment. The survey results show that the tea garden in Anxi County needs to increase the input of organic fertilizer and carry out targeted formula fertilization to slow down the acidification trend of soil.
woodland, tea garden, soil acidification, chemical properties
S571.1;S154.1
A
1000-369X(2020)02-186-08
2019-05-31
2019-09-07
福建省公益類科研院所專項(xiàng)(2015R1022-6)、福建現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)(茶葉)技術(shù)體系、福建省自然科學(xué)基金(2019J01105)
林誠,男,助理研究員,主要從事土壤養(yǎng)分循環(huán)方面的研究。*通信作者:yanmj163@163.com
投稿平臺(tái):http://cykk.cbpt.cnki.net