亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于動(dòng)作單元的機(jī)電產(chǎn)品故障溯源診斷方法

        2020-04-17 08:54:52鞠萍華柯磊冉琰王治超張威
        關(guān)鍵詞:貝葉斯網(wǎng)絡(luò)

        鞠萍華 柯磊 冉琰 王治超 張威

        摘? ?要:針對(duì)故障在復(fù)雜機(jī)電產(chǎn)品中傳遞發(fā)展的特點(diǎn),提出了一種基于動(dòng)作單元的機(jī)電產(chǎn)品故障溯源診斷方法. 按照“功能-運(yùn)動(dòng)-動(dòng)作”對(duì)整機(jī)功能進(jìn)行結(jié)構(gòu)化分解得到基本的動(dòng)作單元,并分析動(dòng)作單元之間的傳遞過程;在此基礎(chǔ)上建立以動(dòng)作單元和故障現(xiàn)象為節(jié)點(diǎn)的貝葉斯網(wǎng)絡(luò)模型,利用貝葉斯網(wǎng)絡(luò)的推理算法,計(jì)算各個(gè)節(jié)點(diǎn)的發(fā)生概率并追溯最大概率路徑,實(shí)現(xiàn)動(dòng)作層的故障動(dòng)作單元診斷及故障動(dòng)作單元傳播過程診斷;利用故障圖對(duì)動(dòng)作單元內(nèi)部的故障模式及其傳遞發(fā)展過程進(jìn)行描述,找到引起動(dòng)作單元故障的根本原因. 通過對(duì)機(jī)電產(chǎn)品動(dòng)作層和動(dòng)作單元內(nèi)部的診斷分析,實(shí)現(xiàn)故障現(xiàn)象到故障原因的溯源診斷. 將所提出的溯源診斷方法應(yīng)用到某企業(yè)數(shù)控轉(zhuǎn)臺(tái)故障診斷中,結(jié)果表明,從運(yùn)動(dòng)的角度進(jìn)行故障溯源診斷,能夠有效地診斷出故障動(dòng)作單元及其傳播過程并反映出動(dòng)作單元內(nèi)部元件故障的傳遞發(fā)展過程,便于找到導(dǎo)致故障的根本原因,提高了對(duì)機(jī)電產(chǎn)品故障診斷的效率.

        關(guān)鍵詞:溯源診斷;結(jié)構(gòu)化分解;動(dòng)作單元;貝葉斯網(wǎng)絡(luò);故障圖

        中圖分類號(hào):TH165? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A

        Abstract:Aiming at the characteristic of the transmission and development of fault in complex electro-mechanical products,a method of fault root causes tracing analysis for electro-mechanical products based on action unit was proposed. Firstly,the transfer process between action units was analyzed after the basic action unit was obtained by structuring decomposition of the whole machine function which was “function-motion-action”. Then a Bayesian network model was established based on action unit and fault phenomenon,and combined with reasoning algorithm of Bayesian networks to calculate the occurrence rate of each node and trace the maximum probability path to diagnose the fault action unit and its propagation process at the motion level. To find out the root cause of the failure of the action unit,the fault graph was used to describe the failure model of fault action unit and its transfer and development process. The trace diagnosis from the fault phenomenon to the fault cause can be realized through the diagnosis and analysis at action layer and in the interior of action unit of complex electro-mechanical products. Finally,the method of fault root causes tracing analysis based on action unit was used to deal with the root cause of the NC rotary table of some machining center,the results show that the proposed traceability diagnosis method can effectively diagnose the fault action unit and its propagation process,and reflect the transmission and development process of the internal components of the action unit from the angle of motion,which is convenient to find out the root cause of the fault and improve the efficiency of fault diagnosis for electro-mechanical products.

        Key words:root causes tracing analysis;the structural decomposition;action unit;Bayesian networks;fault graph

        機(jī)電產(chǎn)品從投入運(yùn)行到損壞的整個(gè)過程中,由于系統(tǒng)的復(fù)雜性,其狀態(tài)變化呈現(xiàn)出模糊不確定的特點(diǎn)[1-2],這一特點(diǎn)增加了對(duì)機(jī)電產(chǎn)品故障進(jìn)行準(zhǔn)確診斷的難度. 如何在具有模糊不確定性特點(diǎn)的狀態(tài)變化過程中,準(zhǔn)確快速地診斷出機(jī)電產(chǎn)品故障的原因,盡快恢復(fù)生產(chǎn),已成為學(xué)術(shù)界和工業(yè)界關(guān)注的焦點(diǎn)[3].

        2.1.2? ?基于動(dòng)作單元的貝葉斯網(wǎng)絡(luò)建模及推理

        以動(dòng)作單元和故障現(xiàn)象為節(jié)點(diǎn),建立基于動(dòng)作單元的貝葉斯網(wǎng)絡(luò)圖. 如圖3所示,A表示動(dòng)作單元;An為Ai+n父節(jié)點(diǎn),表示為An出現(xiàn)故障時(shí),可能會(huì)導(dǎo)致Ai+n發(fā)生故障;F表示故障現(xiàn)象;Ai+n為Fn的直系父節(jié)點(diǎn),表示出現(xiàn)某一故障現(xiàn)象Fn可能由動(dòng)作單元Ai+n引起. 在圖3的動(dòng)作單元貝葉斯網(wǎng)絡(luò)結(jié)構(gòu)圖中,滿足如下假設(shè):給定節(jié)點(diǎn)Xi條件獨(dú)立于在其父節(jié)點(diǎn)給定后的任意非Xi子代任意節(jié)點(diǎn),如節(jié)點(diǎn)Ai+1,在給定其父節(jié)點(diǎn)A1時(shí),節(jié)點(diǎn)Ai+1條件獨(dú)立于除F1、F2外的其他任意節(jié)點(diǎn)[19],表示為:

        當(dāng)建立好圖3所示動(dòng)作單元的貝葉斯網(wǎng)絡(luò)之后,結(jié)合圖2,對(duì)故障動(dòng)作單元進(jìn)行推理,思路和步驟如下:

        步驟1? ?確定故障現(xiàn)象、運(yùn)行工況及統(tǒng)計(jì)數(shù)據(jù)作為診斷證據(jù),結(jié)合領(lǐng)域?qū)<抑R(shí)確定出動(dòng)作單元發(fā)生故障的先驗(yàn)條件.

        步驟2? ?計(jì)算動(dòng)作單元發(fā)生故障的后驗(yàn)概率,包括單個(gè)動(dòng)作單元的后驗(yàn)概率和多個(gè)動(dòng)作單元組合的后驗(yàn)概率情況.

        步驟3? ?確定最大后驗(yàn)概率并通過最大后驗(yàn)概率追溯最大概率路徑,診斷出導(dǎo)致故障發(fā)生的動(dòng)作單元及其傳遞影響路徑.

        2.2? ?基于動(dòng)作單元的故障圖分析

        通過2.1節(jié)的診斷分析,得到故障動(dòng)作單元及其傳遞路徑. 為了診斷出故障的根本原因,還需要對(duì)導(dǎo)致動(dòng)作單元故障的原因進(jìn)行分析. 故障圖能夠反映出節(jié)點(diǎn)之間的層次關(guān)系和傳遞關(guān)系,因此本文利用故障圖對(duì)故障動(dòng)作單元層內(nèi)部的故障傳遞發(fā)展進(jìn)行描述. 如圖4所示,Q1、Q2、Q3為故障動(dòng)作單元的故障模式;q1、q2、q3、q4、q5為故障基本事件,通過該圖可以判斷出故障模式及故障傳遞和發(fā)展的過程,從而分析出影響單元故障的基本事件,找到導(dǎo)致故障發(fā)生的根本原因,完成故障溯源診斷.

        3? ?實(shí)例分析

        以某機(jī)床的數(shù)控轉(zhuǎn)臺(tái)故障診斷為例,建立基于動(dòng)作單元的故障溯源診斷模型,對(duì)文中提出的溯源診斷方法進(jìn)行應(yīng)用說明.

        3.1? ?動(dòng)作單元的構(gòu)建

        對(duì)某型號(hào)加工中心的數(shù)控轉(zhuǎn)臺(tái)進(jìn)行結(jié)構(gòu)分解,得到整機(jī)的最小動(dòng)作單元,分解結(jié)構(gòu)如圖5所示. 由圖5可知,轉(zhuǎn)臺(tái)分度功能和性能需要轉(zhuǎn)臺(tái)升降運(yùn)動(dòng)、轉(zhuǎn)臺(tái)回轉(zhuǎn)運(yùn)動(dòng)、托板夾緊松開運(yùn)動(dòng)正常工作來(lái)保證. 轉(zhuǎn)臺(tái)回轉(zhuǎn)運(yùn)動(dòng)要正常工作,需要蝸桿轉(zhuǎn)動(dòng)單元、渦輪轉(zhuǎn)動(dòng)單元、回轉(zhuǎn)體轉(zhuǎn)動(dòng)單元按照順序正常動(dòng)作;托板夾緊松開運(yùn)動(dòng)需要活塞移動(dòng)單元、拉爪移動(dòng)單元、頂桿移動(dòng)單元按照順序正常動(dòng)作. 任一動(dòng)作單元出現(xiàn)故障,就會(huì)導(dǎo)致轉(zhuǎn)臺(tái)分度功能和性能得不到保障,便會(huì)以某種故障現(xiàn)象表現(xiàn)出來(lái).

        3.2? ?動(dòng)作單元貝葉斯網(wǎng)絡(luò)

        根據(jù)實(shí)驗(yàn)記錄及售后記錄,得到該型號(hào)機(jī)床數(shù)控轉(zhuǎn)臺(tái)的故障模式如表1所示. 這些故障模式可能單個(gè)存在,也可能同時(shí)存在. 由于組成動(dòng)作單元的任一零件故障會(huì)導(dǎo)致動(dòng)作單元不能正常動(dòng)作,在這里將動(dòng)作單元不能正常動(dòng)作歸為動(dòng)作單元故障.

        結(jié)合分解得到的動(dòng)作單元和故障模式之間及動(dòng)作單元與動(dòng)作單元之間的相關(guān)關(guān)系,建立網(wǎng)絡(luò)結(jié)構(gòu)圖,如圖6所示.

        結(jié)合企業(yè)的數(shù)據(jù)和領(lǐng)域?qū)<掖_定出先驗(yàn)概率,并計(jì)算后驗(yàn)概率、建立貝葉斯網(wǎng)絡(luò)概率表,如表2所示.

        3.3? ?故障動(dòng)作單元推理診斷

        某次故障中,該數(shù)控轉(zhuǎn)臺(tái)的工作臺(tái)發(fā)生傾斜(F4),以此為例,對(duì)引起該現(xiàn)象可能的動(dòng)作單元進(jìn)行推理診斷. 導(dǎo)致該現(xiàn)象發(fā)生的直接動(dòng)作單元是A4、A6動(dòng)作單元. 而導(dǎo)致A4動(dòng)作單元不能正常動(dòng)作的原因是自身或A3動(dòng)作單元引起,A3動(dòng)作單元不能正常動(dòng)作的原因是由自身或A2動(dòng)作單元引起;A6動(dòng)作單元不能正常動(dòng)作的原因由自身或A5或A7動(dòng)作單元引起. 利用表2數(shù)據(jù)計(jì)算在工作臺(tái)發(fā)生傾斜情況下的相關(guān)動(dòng)作單元的后驗(yàn)概率,最大概率路徑即為診斷結(jié)果,如表3所示.

        3.4? ?動(dòng)作單元的故障圖

        由表3可以得出,導(dǎo)致F4故障發(fā)生的動(dòng)作單元為A6,而導(dǎo)致A6動(dòng)作單元不能正常動(dòng)作的是A5動(dòng)作單元. 根據(jù)分析得到動(dòng)作單元的傳遞影響路徑為A5-A6-F4 . 為了分析A5、A6動(dòng)作單元之間的故障傳遞發(fā)展過程,現(xiàn)基于A5、A6動(dòng)作單元進(jìn)行故障圖分析,分別如圖7和表4所示.

        3.5? ?基于動(dòng)作單元的故障溯源推理

        通過前文的分析,結(jié)合圖5、6、7和表4的分析,得出:該數(shù)控轉(zhuǎn)臺(tái)出現(xiàn)工作臺(tái)傾斜這一故障現(xiàn)象的直接原因是動(dòng)作單元A6出現(xiàn)故障不能正常動(dòng)作,而動(dòng)作單元A6出現(xiàn)不能正常動(dòng)作的原因除了自身外,還來(lái)自于A5動(dòng)作單元的影響,因此需要重點(diǎn)對(duì)A5、A6動(dòng)作單元進(jìn)行檢查. 經(jīng)檢查發(fā)現(xiàn)A6動(dòng)作單元出現(xiàn)無(wú)動(dòng)作(M9)的情況(正常狀況下應(yīng)該有松開動(dòng)作),但是拉爪并未損壞;根據(jù)圖7對(duì)動(dòng)作單元內(nèi)部故障傳遞發(fā)展的描述進(jìn)行相關(guān)排查,發(fā)現(xiàn)活塞無(wú)動(dòng)作(M2)并且活塞外部有液壓油滲出(M4),因此對(duì)活塞進(jìn)行拆解,發(fā)現(xiàn)其密封圈已經(jīng)損壞(f2),和實(shí)際情況相符.

        4? ?結(jié)? ?論

        根據(jù)故障在復(fù)雜機(jī)電產(chǎn)品中的傳遞發(fā)展特點(diǎn),對(duì)整機(jī)進(jìn)行結(jié)構(gòu)化分解得到最基本的動(dòng)作單元. 在此基礎(chǔ)上,先建立以動(dòng)作單元為節(jié)點(diǎn)的貝葉斯診斷模型在動(dòng)作層對(duì)故障動(dòng)作單元及其傳遞影響過程進(jìn)行診斷;接著建立故障圖對(duì)動(dòng)作單元內(nèi)部的故障傳遞發(fā)展進(jìn)行描述,通過對(duì)動(dòng)作層和動(dòng)作單元內(nèi)部故障發(fā)展過程的刻畫和推理診斷,為找出故障的根本原因提供了方向,能夠較快地實(shí)現(xiàn)故障現(xiàn)象到故障根本原因的溯源,對(duì)消除產(chǎn)品故障,提高產(chǎn)品運(yùn)行效率具有重要意義.

        參考文獻(xiàn)

        [1]? ? 孫秋冬,郭維芹,周政新. 發(fā)電機(jī)絕緣故障模糊診斷專家系統(tǒng)的設(shè)計(jì)[J]. 電力系統(tǒng)自動(dòng)化,2006,30(23):94—96.

        SUN Q D,GUO W Q,ZHOU Z X. Fuzzy expert system design for insulation fault diagnosis in generator[J]. Automation of Electric Power Systems,2006,30(23):94—96.(In Chinese)

        [2]? ? 楊蘋,吳捷,馮永新. 200 MW汽輪發(fā)電機(jī)組振動(dòng)故障的模糊診斷系統(tǒng)[J]. 電力系統(tǒng)自動(dòng)化,2001(1):45—49.

        YANG P,WU J,F(xiàn)ENG Y X. Fuzzy fault diagnosis system for a 200 MW turbo-generator set[J]. Automation of Electric Power Systems,2001(1):45—49.(In Chinese)

        [3]? ? 雷亞國(guó),賈峰,孔德同,等. 大數(shù)據(jù)下機(jī)械智能故障診斷的機(jī)遇與挑戰(zhàn)[J]. 機(jī)械工程學(xué)報(bào),2018,54(5):94—104.

        LEI Y G,JIA F,KONG D T,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering,2018,54(5):94—104.(In Chinese)

        [4]? ? 張家良,曹建福,高峰,等. 基于非線性頻譜數(shù)據(jù)驅(qū)動(dòng)的動(dòng)態(tài)系統(tǒng)故障診斷方法[J]. 控制與決策,2014,29(1):168—171.

        ZHANG J L,CAO J F,GAO F,et al. Fault diagnosis approach of dynamic system based on data driven of nonlinear spectrum[J]. Control and Decision,2014,29(1):168—171.(In Chinese)

        [5]? ? BOUCHACHIA A. Adaptive computational intelligence for dynamical system[C]//Intelligence for Nonlinear Dynamics and Synchronization. France,Atlantis:Atlantis Press,2010:3—20.

        [6]? ? 任巖,畢亞雄,王德寬,等. 風(fēng)電機(jī)組傳動(dòng)鏈的故障樹智能診斷技術(shù)[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(4):328—331.

        REN Y,BI Y X,WANG D K,et al. Fault tree intelligent diagnosis technology for wind turbine drivetrain[J]. Journal of Drainage and Irrigation Machinery Engineering,2016,34(4):328—331.(In Chinese)

        [7]? ? 姜萬(wàn)錄,劉思遠(yuǎn). 多特征信息融合的貝葉斯網(wǎng)絡(luò)故障診斷方法研究[J]. 中國(guó)機(jī)械工程,2010,21(8):940—945.

        JIANG W L,LIU S Y. Fault diagnosis approach study of Bayesian networks based on multi-characteristic information fusion[J]. Chinese Mechanical Engineering,2010,21(8):940—945.(In Chinese)

        [8]? ? 李宏梅,佟為明,程樹康. 基于貝葉斯網(wǎng)絡(luò)的信息融合汽車網(wǎng)絡(luò)故障診斷方法[J]. 汽車工程,2015,37(10):1190—1194.

        LI H M,TONG W M,CHEN S K. Fault diagnosis method of automotive Network with Bayesian network-based Information Fusion [J]. Automotive Engineering,2015,37(10):1190—1194. (In Chinese)

        [9]? ? 李金艷,余忠華,徐宣國(guó). 信息不完備情況下多因素工序質(zhì)量診斷方法[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),2016,48(7):88—93.

        LI J Y,YU Z H,XU X G. Diagnosis method of multi-cause process quality under incomplete information[J]. Journal of Harbin Institute of Technology,2016,48(7):88—93. (In Chinese)

        [10]? 王瑛,李菲. 基于集成權(quán)重和貝葉斯模型的科技獎(jiǎng)勵(lì)評(píng)價(jià)[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2016,43(7):151—156.

        WANG Y,LI F. Evaluation of science and technological achievements based on integrated weight and Bayesian network[J]. Journal of Hunan University(Natural Sciences),2016,43(7):151—156.(In Chinese)

        [11]? 陳東寧,姚成玉. 基于模糊貝葉斯網(wǎng)絡(luò)的多態(tài)系統(tǒng)可靠性分析及在液壓系統(tǒng)中的應(yīng)用[J]. 機(jī)械工程學(xué)報(bào),2012,48(16):175—183.

        CHEN D N,YAO C Y. Reliability analysis of multi-state system based on fuzzy Bayesian networks and application in hydraulic system[J]. Journal of Mechanical Engineering,2012,48(16):175-183.(In Chinese)

        [12]? 宋志平,李應(yīng)紅,屈裕安. 描述復(fù)雜系統(tǒng)故障關(guān)系的條件故障圖[J]. 系統(tǒng)工程與電子技術(shù),2003,25(1):116—118.

        SONG Z P,LI Y H,QU Y A. Conditional trouble graph for describing fault relation of a complex system[J]. Systems Engineering and Electronics,2003,25(1):116—118.(In Chinese)

        [13]? 劉勇,蒲樹禎,曹澤翰,等. 基于故障圖模型的故障診斷方法研究[J]. 小型微型計(jì)算機(jī)系統(tǒng),2006,27(9):1741—1745.

        LIU Y,PU S Z,CAO Z H,et al. Research on fault diagnostic method based the fault graph model[J]. MiNi-Micro Systems,2006,27(9):1741—1745.(In Chinese)

        [14]? 韓光臣,孫樹棟,王軍強(qiáng),等. 復(fù)雜系統(tǒng)模糊概率故障圖模型研究[J]. 中國(guó)機(jī)械工程,2005,16(9):801—804.

        HAN G C,SUN S D,WANG J Q,et al. Research on fault graph model of complex system based on fuzzy probability[J]. Chinese Mechanical Engineering,2005,16(9):801—804.(In Chinese)

        [15]? RAN Y,ZHANG G B,ZHANG L. Quality characteristic association analysis of computer numerical control machine tool based on meta-action assembly unit [J]. Advances in Mechanical Engineering,2016,8(1):1—10.

        [16]? 姜洪權(quán),王金宇,高建民,等. 面向復(fù)雜系統(tǒng)故障溯源的SDG-FG模型建模方法[J]. 計(jì)算機(jī)集成制造系統(tǒng),2015,21(3) :749—757.

        JIANG H Q,WANG J Y,GAO J M,et al. Modeling method for SDG-FG model oriented to fault root causes tracing analysis of complex electromechanical system[J]. Computer Integrated Manufacturing Systems,2015,21(3):749—757.(In Chinese)

        [17]? WEBER P,MEDINA O G,SIMON C,et al. Overview on Bayesian networks applications for dependability,risk analysis and maintenance area[J]. Engineering Applications of Artificial Intelligence,2012,25(4):671—682.

        [18]? ZHAO S Q. Power distribution system reliability evaluation by D-S evidence inference and Bayesian network method[C]//Proceedings of the IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems. Singapore:IEEE,2010:654—658.

        [19]? MAHADEVAN S,ZHANG R,SMITH N. Bayesian network for system reliability reassessment[J]. Structural Safety,2001,23:231—251.

        猜你喜歡
        貝葉斯網(wǎng)絡(luò)
        貝葉斯網(wǎng)絡(luò)在用戶畫像構(gòu)建中的研究
        基于貝葉斯網(wǎng)絡(luò)的分類器研究
        商情(2016年46期)2017-03-06 04:14:12
        基于分布式貝葉斯網(wǎng)絡(luò)的多故障診斷方法研究
        無(wú)人機(jī)數(shù)據(jù)鏈測(cè)試與評(píng)估研究
        科技資訊(2016年25期)2016-12-27 16:22:32
        基于貝葉斯網(wǎng)絡(luò)的流域內(nèi)水文事件豐枯遭遇研究
        基于CHAID算法和貝葉斯網(wǎng)絡(luò)的基金風(fēng)險(xiǎn)預(yù)警研究
        基于興趣預(yù)測(cè)和熱點(diǎn)分析的聯(lián)合推薦算法研究 
        基于貝葉斯網(wǎng)絡(luò)的企業(yè)財(cái)務(wù)風(fēng)險(xiǎn)研究
        基于貝葉斯網(wǎng)絡(luò)的城市居民出行方式研究
        基于故障樹貝葉斯網(wǎng)絡(luò)的數(shù)控刀架故障研究
        科技資訊(2015年20期)2015-10-15 19:08:14
        亚洲精品国产国语| 欧美 日韩 人妻 高清 中文| 女人和拘做受全程看视频| 欧美性猛交xxxx乱大交丰满| 男女视频在线一区二区| 久久国产女同一区二区| 亚洲av久播在线一区二区| 少妇仑乱a毛片| 亚洲欧美另类自拍| 亚洲免费不卡av网站| 国产91极品身材白皙| 欧美国产亚洲日韩在线二区| 日韩内射美女人妻一区二区三区| 国产系列丝袜熟女精品视频| 视频福利一区二区三区| 国产日产在线视频一区| 天天躁日日躁狠狠躁欧美老妇| 亚洲欧美国产日韩天堂在线视| 产精品无码久久_亚洲国产精| 国产女人av一级一区二区三区 | 色二av手机版在线| 久久国产精品国语对白 | 欧美xxxx做受欧美| 久久人妻公开中文字幕| 亚洲双色视频在线观看| 国产av天堂亚洲av刚刚碰| 我爱我色成人网| 中文毛片无遮挡高潮| 美女人妻中文字幕av| 免费成人电影在线观看| 国产专区国产av| 亚洲va欧美va人人爽夜夜嗨| 国产高潮迭起久久av| 少妇人妻综合久久中文字幕| 秋霞午夜无码鲁丝片午夜精品 | 国精无码欧精品亚洲一区| 一区二区三区内射视频在线观看 | 欧美做受视频播放| 91蜜桃国产成人精品区在线| 蜜桃一区二区在线视频| 久久aⅴ人妻少妇嫩草影院|