韋玲靜 呂業(yè)堅 鄒輝 文衍紅 甘寶江 張桂姣 張盛 嚴雪瑜 葉香塵
摘要:【目的】研究影響金邊鯉皮膚色素沉著的關鍵基因及信號通路,揭示其皮膚顏色差異形成的原因,為金邊鯉良種培育提供候選基因信息。【方法】基于突變型金邊鯉黃色皮膚(Y組)和黑色皮膚(B組)及野生型金邊鯉黑色皮膚(W組)的轉錄組測序數(shù)據(jù),篩選分析獲得部分共有差異表達基因,利用實時熒光定量PCR檢測差異表達基因和黑色素合成相關基因的表達情況,并分析各基因間的相關性?!窘Y果】依據(jù)轉錄組數(shù)據(jù)篩選獲得ACT3、MYH2、TPM1、TPM2和TPM3共5個來源于心肌腎上腺素信號通路及與細胞動力相關的基因;除ACT3基因外,其余4個基因(MYH2、TPM1、TPM2和TPM3)在Y組皮膚中的相對表達量均顯著低于B組和W組(P<0.05,下同),與轉錄組分析的差異基因表達趨勢一致。MC-1R、TYR、TYRP1和TYRP2等4個黑色素合成相關基因在金邊鯉皮膚中的表達情況為:B組皮膚中MC-1R基因的相對表達量顯著高于Y組和W組;TYR、TYRP1和TYRP2基因在3組皮膚中的相對表達量排序均為W組>B組>Y組,其中W組的相對表達量顯著高于B組和Y組。相關性分析結果顯示,MC-1R和TYR基因與ACT3、MYH2、TPM1、TPM2和TPM3基因呈顯著或極顯著(P<0.01)正相關,而TYRP1和TYRP2基因與這5個差異表達基因均無顯著相關性(P>0.05)?!窘Y論】ACT3、MYH2、TPM1、TPM2和TPM3基因及其所在的心肌腎上腺素信號通路可能影響黑色素合成與運動,且與黑色素合成相關基因存在相關性,可作為金邊鯉體色變異研究中的標記基因。
關鍵詞: 金邊鯉;黑色素;差異表達基因;黑色素合成相關基因;心肌腎上腺素通路;色素沉著
中圖分類號: S965.116? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻標志碼: A 文章編號:2095-1191(2020)02-0453-08
Skin melanin synthesis of Jinbian carp and expression analysis of transport related genes
WEI Ling-jing1, LYU Ye-jian1, ZOU Hui1, WEN Yan-hong2, GAN Bao-jiang1,
Zhang Gui-jiao3, ZHANG Sheng1, YAN Xue-yu1, YE Xiang-chen1*
(1Aquatic Species Introduction and Breeding Center of Guangxi, Nanning? 530031, China; 2Liuzhou Aquaculture Technology Extending Station, Liuzhou,Guangxi? 545066, China; 3Aquaculture Technology Extension Station of Rongshui County, Rongshui, Guangxi? 545300, China)
Abstract:【Objective】The key genes and signaling pathways affecting skin pigmentation of Jinbian carp were stu-died, to reveal the causes of skin color variation mechanism and provide candidate gene information for further cultivating new varieties of Jinbian carp. 【Method】Part of differentially co-expressed genes were screened based on the transcriptome sequencing data of yellow skin(group Y) and black skin(group B) in mutant type, and black skin (group W) in wild type of Jinbian carp, thenreal-time fluorescence quantitative PCR was used to detect the expressions of co-differentially expressed genes and genes related to melanin synthesis, and the correlations among the genes were analyzed. 【Result】A total of five genes,including ACT3, MYH2, TPM1, TPM2 and TPM3, were derived from the adrenergic signaling in cardiomyocytes pathways and associated with cell power were screened according to the transcriptome data.Apart from ACT3, the mRNA expression levels of the other fourgenes(MYH2, TPM1, TPM2 and TPM3) in group Y were all significantly lower than group B and group W(P<0.05, the same below), which was consistent with the trend of the result in transcriptome analysis. The mRNA expression levels of four genesrelating to melanin synthetic, including MC-1R, TYR, TYRP1 and TYRP2 were detected,which showed that the relative expression of MC-1R gene in group B was significantly higher than group Y and group W. The expression of TYR, TYRP1 and TYRP2 in the skin of the three groups showed an order of group W>group B>group Y, in which group W was significantly higher than group B and group Y. Correlation ana-lysis showed that the mRNA expressions levels of MC-1R and TYR gene were significantor extremely(P<0.01) positively correlated with ACT3, MYH2, TPM1, TPM2 and TPM3 genes, while TYRP1 and TYRP2 had no significant correlation with the fivegenes(P>0.05). 【conclusion】ACT3, MYH2, TPM1, TPM2 and TPM3 genes and their adrenergic signaling in cardiomyocytes pathways may affect the synthesis and movement of melanin, which may be related to the skin color variation of the Jinbian carp. These genes can be used as marker genes in the study of skin color variation of Jinbian carp.
Key words: Jinbian carp; melanin; differentially expressed genes(DEGs); melanin synthesis related genes; adrener-gic signaling in cardiomyocytes pathways; pigmentation
Foundation item: Special Project of National Staple Freshwater Fish Industry Technology System Construction(CARS-45)
0 引言
【研究意義】色素是由色素細胞合成的生物高分子化合物,在細胞骨架微管和微絲的作用下,色素顆粒通過聚集或分散作用而影響魚類體色(譚玉文等,2008)。目前已發(fā)現(xiàn)的魚類色素細胞有5種,包括黑色素細胞、紅/黃色素細胞、白色素細胞、虹彩細胞和藍色素細胞(Kelsh,2010)。其中由神經(jīng)脊細胞分化而來的黑色素細胞在魚體中分布最廣泛,能合成分泌具有抗輻射、抗氧化及免疫調節(jié)等功能的真黑素和褐黑素(Parichy et al.,2007;Geng et al.,2010;鄒宇等,2012)。魚類體色除了反映魚體的生理健康狀況外,還直接影響其市場價格。因此,研究魚類體色變異的分子機制,對提高魚類體色遺傳穩(wěn)定性及其經(jīng)濟價值具有重要意義。【前人研究進展】大量研究證實,MC-1R(Melanocortin-1 receptor,黑色素皮質1受體)、TYR(Tyrosinase,酪氨酸酶)、TYRP1(Tyrosinase-related protein 1,酪氨酸相關蛋白1)、TYRP2(Tyrosinase-related protein 2,酪氨酸相關蛋白2)、ASIP(Agouti signaling protein,刺鼠信號蛋白)、MITF(Microphthalmia-associated transcription factor,小眼輔助轉錄因子)和SOX10(SRY-related HMG-box,Y染色體性別決定基因相關轉錄因子10)等基因在黑色素合成過程中發(fā)揮重要作用(Masca-renhas et al.,2010;Miao et al.,2010;李康樂,2014;徐瑩,2014)。相對于其他脊椎動物,魚類擁有更復雜且多樣化的色素沉積方式,受多個基因及信號通路調控。目前,關于魚類機體色素沉積的研究已有較多報道。Jiang等(2014)基于轉錄組分析興國紅鯉和黃河鯉皮膚組織時發(fā)現(xiàn),鯉魚皮膚色素沉積與黑色素合成、Wnt信號通路及MAPK信號通路有關;McCauley等(2004)研究發(fā)現(xiàn)Oca2基因部分缺失及MC-1R基因突變能引起墨西哥麗脂鯉體色變異;肖穎琦(2017)認為MAPK信號通路中的dusp6、hsp27、map2k4和mef2c基因與玫瑰高原鰍體色白化有關。原肌球蛋白(Tropomyosin,TMs)被認為是肌球蛋白(Myosin)的穩(wěn)定蛋白,是一種高度保守和多樣化的肌動蛋白家族,可調節(jié)肌球蛋白的動力學和結構特性,幾乎存在于所有的動物機體內(nèi)(Lehman et al.,2009)。原肌球蛋白的編碼基因(TPM)包含TPM1、TPM2、TPM3和TPM4共4種亞型,TPM基因受損或缺失將導致細胞惡性轉化,形成腫瘤或產(chǎn)生畸形,如食管鱗癌、直腸癌和足內(nèi)翻非綜合征等(趙秀麗,2006;趙月鳴,2015;Weymouth et al.,2016)。肌球蛋白是動物肌肉的主要構成蛋白,而肌球蛋白重鏈(Myosin heavy chain,MYH)是肌球蛋白的組成單位,在非肌肉細胞中發(fā)揮細胞骨架的作用,同時參與細胞物質運輸、能量代謝及信號傳導等途徑。黑素體從黑色素細胞轉移到樹突,再傳遞給周圍角質形成細胞的過程均依賴于細胞骨架中肌動蛋白(Actin)和肌球蛋白等提供動力(Hara et al.,2000)。肌動蛋白在黑色素細胞樹突的遠端聚集,作為黑素體運輸馬達,其中肌球蛋白5a(MYO5A)可與黑素親和素(MLPH)及GTP結合蛋白(Rab27a)結合形成黑色素轉運復合體,將黑素體轉運至樹突末端,終止黑素體在樹突中的雙向長距離運動(Matesic et al.,2001;Fontanesi et al.,2014)。Wu等(1998)研究發(fā)現(xiàn),肌球蛋白基因突變會導致小鼠毛發(fā)顏色變淺,究其原因是黑素體運輸受損而聚集在細胞核周區(qū)。Hara等(2000)研究表明,細胞骨架成分和微管相關動力蛋白參與黑色素在角質形成細胞內(nèi)的分布及運動,且動力蛋白與黑素體存在共區(qū)域化。【本研究切入點】金邊鯉是針對稻田養(yǎng)殖而選育出的鯉魚新選系,其外形特點為背鰭兩側有能穩(wěn)定遺傳的金色條帶。本課題組前期在金邊鯉皮膚轉錄組的研究中富集到與肌球蛋白和肌動蛋白有關的差異表達基因(Yan et al.,2019),但目前金邊鯉皮膚變異的分子機制尚未清楚?!緮M解決的關鍵問題】測定肌動蛋白3基因(ACT3)、肌球蛋白重鏈2基因(MYH2)、原肌球蛋白3個亞型基因(TPM1、TPM2和TPM3)及黑色素合成相關基因(MC-1R、TYR、TYRP1和TYRP2)在金邊鯉不同皮膚中的表達情況,并分析其相關性,旨在探究金邊鯉皮膚顏色差異形成的原因,為其良種培育提供候選基因信息。
1 材料與方法
1. 1 試驗材料
供試鯉魚取自廣西融水縣融榮水產(chǎn)繁殖場(同一養(yǎng)殖池塘),分為有金邊和無金邊的鯉魚,6月齡,體質量65.17±12.90 g/尾,體長14.35±0.91 cm。采集8尾突變型金邊鯉魚背部的黃色皮膚和黑色皮膚,分別記為Y組和B組;同時采集8尾野生型金邊鯉魚背部的黑色皮膚,記為W組(圖1)。樣品存于2 mL的凍存管中,以液氮速凍后轉入-80 ℃冰箱保存?zhèn)溆谩?/p>
1. 2 總RNA提取及cDNA合成
3. 2 腎上腺素信號通路在色素沉著中的作用
色素細胞膜上通常分布有細小的肌纖維和神經(jīng)末梢。色素細胞在肌纖維的收縮牽引下改變形態(tài),促使色素顆粒在驅力蛋白的作用下運動,進而分散或聚集在機體各部位,是魚類體色變化的主要原因。多巴(Levodopa)是黑色素合成的中間產(chǎn)物,其常見代謝途徑是被TYR多次催化形成多巴醌(Dopaquinone),最終氧化形成黑色素(Hearing,2011)。多巴的另一代謝途徑是形成兒茶酚胺,兒茶酚胺在相應的轉移酶作用下可轉化為多巴胺(Dopamine)、去甲腎上腺素(Noradrenaline,NE)和腎上腺素(Adrena-line,AD)(余鵬程,2017)。已有研究證明,黑色素細胞上存在β腎上腺素受體,且AD負責黑色素顆粒的擴散,使動物體色變深;NE負責黑色素團內(nèi)色素聚集而使動物體色變淺,均屬于神經(jīng)調控體色變化范疇(Fujii,2000;Sivamani et al.,2009)。腎上腺素能受體(Adrenergic receptor,AR)屬于G蛋白偶聯(lián)受體,是兒茶酚胺類物質作用的受體蛋白,可分為α1、α2、β1和β2等4個亞型(Gillbro et al.,2004;Li et al.,2004)。β1-AR能增加細胞內(nèi)的Ca2+濃度,β2-AR可刺激腺苷酸環(huán)化酶(cAMP),與黑色素合成的關鍵步驟相似。β1-AR拮抗劑會抑制白色素細胞色素顆粒擴散,但對黑色素細胞無影響;β2-AR介導AD抑制黑色素聚集;α2-AR激動劑能調控黑色素細胞和紅色素細胞的色素合成,同時通過介導NE引起黑色素顆粒聚集,且對黑色素細胞凋亡有影響(Fujii,2000)。Chou等(1989)認為AD誘導黑色素聚集的信號轉導系統(tǒng)第二信使并不是cGMP和cAMP,也不是通過Ca2+信號通路,而是存在一個未知的第二信使。余鵬程(2017)認為β2-AR通過G蛋白—腺苷酸環(huán)化酶—蛋白激酶A(GS-AC-PKA)信號通路調節(jié)TYR活性或增加其相關基因(TYR、TYRP和TYRP2等)的表達量,從而影響黑色素生成。
本研究在金邊鯉皮膚轉錄組富集到的ACT3、MYH2、TPM1、TPM2和TPM3等5個差異表達基因均來源于腎上腺素信號通路(Adrenergic signaling in cardiomyocytes)。在心肌腎上腺素信號通路中,AD與β1-AR或β2-AR受體結合活化Gs蛋白,激活腺苷酸環(huán)化酶(AC),影響第二信使cAMP濃度,隨后激活蛋白激酶A系統(tǒng)(PKA)和Ca2+信號通路,最終影響ACT3、TPM和MYH2基因的表達,與余鵬程(2017)認為β2-AR通過GS-AC-PKA通路調節(jié)黑色素生成的結論一致。孫福亮(2016)在新吉細毛羊和小尾寒羊皮膚轉錄分析中同樣富集到TPM1、TPM2等與心肌收縮和心肌腎上腺素信號通路相關的差異表達基因。本研究富集到的ACT3、MYH和TPM等基因家族均與黑色素運動的驅動蛋白有關,且除了ACT3基因外,其余4個基因在金邊鯉黃色皮膚中的表達量均顯著低于黑色皮膚,且與MC-1R和TYR基因表達呈顯著或極顯著相關,推測這些基因是通過心肌腎上腺素信號通路影響金邊鯉皮膚黑色素合成或轉運途徑,最終影響金邊鯉皮膚色素沉著。但究竟是TPM、MYH2、Actins等基因表達差異影響黑色素顆粒運動而導致金邊鯉皮膚顏色差異,還是金邊鯉金色皮膚中黑色素合成途徑受阻才影響這些基因的表達,尚有待進一步探究。
4 結論
MC-1R、TYR、TYRP1和TYRP2基因及其所在信號通路可能影響金邊鯉金色皮膚形成,但并非主要因素;ACT3、MYH2、TPM1、TPM2和TPM3基因及其所在的心肌腎上腺素信號通路可能通過影響黑色素合成和運動,是金邊鯉體色變異的主要影響因素。ACT3、MYH2、TPM1、TPM2和TPM3基因與黑色素合成相關基因存在相關性,可作為金邊鯉體色變異研究中的標記基因。
參考文獻:
陳興婷. 2016. 三種不同品系紅羅非魚耐寒性能比較以及體色相關基因表達分析[D]. 南京:南京農(nóng)業(yè)大學.[Chen X T. 2016. Low temperature resistant performance and six body color relevant genes expression analysis in three red tilapia strain[D]. Nanjing:Nanjing Agriculture University.]
丁穎,邢婭,王倩倩,李文博,劉龍,龔道清,耿拓宇. 2018. TYRP1和MLANA影響朗德鵝羽色形成的機制研究[J]. 中國家禽,40(9):6-10. [Ding Y,Xing Y,Wang Q Q,Li W B,Liu L,Gong D Q,Geng T Y. 2018. Involvement of TYRP1 and MLANA in formation of feather color of Landes goose[J]. China Poultry,40(9):6-10.]
黃睿宇. 2015. 大菱鲆白花斑體色形成生理機制的初步研究[D]. 青島:中國海洋大學. [Huang R Y. 2015. Preliminary studies of turbot (Scophthalmus maximus) white spotted body color formation physiological mechanism[D]. Qingdao:Ocean University of China.]
李康樂. 2014. 甌江彩鯉體色相關基因Sox10、Agouti、Tyrp1、Dct的分子克隆與表達分析[D]. 上海:上海海洋大學.[Li K L. 2014. Molecular cloning and expression analysis of pigmentation-related genes,Sox10,Agouti,Tyrp1 and Dct,in Oujiang color common carp,Cyprinus carpio var. Color[D]. Shanghai:Shanghai Ocean University.]
孫福亮. 2016. 新吉細毛羊和小尾寒羊的毛品質性狀及皮膚轉錄組學研究[D]. 延邊:延邊大學. [Sun F L. 2016. Transcriptomics analysis of skin from XJ and SH by analyzing qualitative character of wool[D]. Yanbian:Yan-bian University.]
譚玉文,孫守榮,朱學農(nóng),王鑫玉,曹繡娟,毛華明,鄧衛(wèi)東. 2008. 神經(jīng)黑色素的研究進展[J]. 中國畜牧獸醫(yī),35(7):52-55. [Tan Y W,Sun S R,Zhu X N,Wang X Y,Cao X J,Mao H M,Deng W D. 2008. Research progress of the neuromelanin[J]. China Animal Husbandry and Veterinary Medicine,35(7):52-55.]
肖穎琦. 2017. 玫瑰高原鰍體色白化的遺傳學基礎研究[D]. 重慶:西南大學. [Xiao Y Q. 2017. Genetic basis of the albinism in the cavefish Triplophysa rosa[D]. Chongqing:Southwest University.]
徐瑩. 2014. TYR、TYRP1基因與朝鮮鵪鶉羽色相關性研究[D]. 洛陽:河南科技大學. [Xu Y. 2014. Study on the association of TYR and TYRP1 with plumage color in Ko-rean quails[D]. Luoyang:Henan University of Science and Technology.]
楊竹青,王自蕊,熊六鳳,阮記明,隗黎麗. 2014. MC1R基因在中國草金魚中的遺傳變異及其進化分析[J]. 江西農(nóng)業(yè)大學學報,36(5):1122-1126. [Yang Z Q,Wang Z R,Xiong L F,Ruan J M,Wei L L. 2014. A study of genetic variation and evolutional of MC1R gene in Chinese Goldfish[J]. Acta Agriculturae Universitati Jiangxiensis,36(5):1122-1126.]
余鵬程. 2017. β2腎上腺素受體介導酪氨酸促泰和烏骨雞十二指腸黑色素生成研究[D]. 南昌:江西農(nóng)業(yè)大學. [Yu P C. 2017. β2 adrenergic receptor mediates tyrosine to promote melanin formation in duodenum of Taihe sink fowl[D]. Nanchang:Jiangxi Agriculture University.]
趙秀麗. 2006. 不同肢端畸形中HOXD13、TNNI2和TPM2基因的突變鑒定[D]. 北京:中國協(xié)和醫(yī)科大學. [Zhao X L. 2006. Molecular genetics of limb malformations:Mutation identification in HOXD13,TNNI2 and TPM2[D]. Beijing:Peking Union Medical College.]
趙月鳴. 2015. TPM4在結直腸癌中的表達及其生物學意義[D]. 吉林:吉林大學. [Zhao Y M. 2015. TPM4 expression and biological effect in colorectal cancer[D]. Jilin:Jilin University.]
鄒宇,尹冬梅,胡文忠,姜愛麗,陳晨,顧振新. 2012. 天然黑色素理化性質與功能特性研究進展[J]. 食品工業(yè)科技,33(24):445-447. [Zou Y,Yin D M,Hu W Z,Jiang A L,Chen C,Gu Z X. 2012. Research progress in physicochemical and functional properties of the natural melanin[J]. Science and Technology of Food Industry,33(24):445-447.]
Chou S C,Taylor J D,Tchen T T. 1989. Epinephrine-induced pigment aggregation in goldfish melanophoroma cells:Apparent involvement of an unknown second messenger[J]. Pigment Cell Research,2(5):414-420.
Cone R D. 2006. Studies on the physiological functions of the melanocortin system[J]. Endocrine Reviews,27(7):736-749.
Fontanesi L,Scotti E,Allain D,Dall'Olio S. 2014. A frameshift mutation in the melanophilin gene causes the dilute coat colour in rabbit (Oryctolagus cuniculus) breeds[J].Animal Genetics,45(2):248-255.
Fujii R. 2000. The regulation of motile activity in fish chromatophores[J]. Pigment Cell Research,13(5):300-319.
Geng J,Tang W,Wan X,Zhou Q,Wang X J,Shen P,Lei T C,Chen X D. 2010. Photoprotection of bacterial-derived melanin against ultraviolet A-induced cell death and its potential application as an active sunscreen[J]. Journal of the European Academy of Dermatology & Venereology,22(7):852-858.
Gillbro J M,Marles L K,Hibberts N A,Schallreuter K U. 2004. Autocrine catecholamine biosynthesis and the beta-adrenoceptor signal promote pigmentation in human epidermal melanocytes[J]. The Journal of Investigative Dermatology,123(2):346-353.
Gross J B,Borowsky R,Tabin C J. 2009. A novel role for MCLR in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus[J]. PLoS Genetics,5(1):e1000326.
Hara M,Yaar M,Byers H R,Goukassian D,F(xiàn)ine R E,Gonsalves J,Gilchrest B A. 2000. Kinesin participates in melanosomal movement along melanocyte dendrites[J]. Journal of Investigative Dermatology,114(3):438-443.
Hearing V J. 2011. Determination of melanin synthetic pathways[J]. Journal of Investigative Dermatology,131(S3):E8-E11.
Jiang Y,Zhang S,Xu J,F(xiàn)eng J,Mahboob S,Al-Ghanim K A,Sun X,Xu P. 2014. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp[J]. PLoS One,9(9):e108200.
Kelsh R N. 2010. Genetics and evolution of pigment patterns in fish[J]. Pigment Cell Research,17(4):326-336.
Lehman W,Galińska-Rakoczy A,Hatch V,Tobacman L S,Craig R. 2009. Structural basis for the activation of muscle contraction by troponin and tropomyosin[J]. Journal of Molecular Biology,388(4):673-681.
Li F,De Godoy M,Rattan S. 2004. Role of adenylate and guanylate cyclases in beta1-,beta2-,and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle[J]. The Journal of Pharmacology and Experimental Therapeutics,308(3):1111-1120.
Mascarenhas J B,Littlejohn E L,Wolsky R J,Young K P,Nelson M,Salgia R,Lang D. 2010. PAX3 and SOX10 activate MET receptor expression in melanoma[J]. Pigment Cell & Melanoma Research,23(2):225-237.
Matesic L E,Yip R,Reuss A E,Swing D A,O'Sullivan T N,F(xiàn)letcher C F,Copeland N G,Jenkins N A. 2001. Mutations in Mlph,encoding a member of the Rab effector family,cause the melanosome transport defects observed in leaden mice[J]. Proceedings of the National Academy of Sciences of the United States of America,98(18):10238-10243.
McCauley D W,Hixon E,Jeffery W R. 2004. Evolution of pigment cell regression in the cavefish Astyanax:A late step in melanogenesis[J].Evolution & Development,6(4):209-218.
Miao Y,Wu G,Wang L,Li D,Tang S,Liang J,Mao H,Luo H,Zhang Y. 2010. The role of MC1R gene in buffalo coat color[J]. Science China. Life Sciences,53(2):267-272.
Parichy D M,Reedy M V,Erickson C A. 2007. Regulation of melanoblast migration and differentiation[M]. The 2nd Edition. The Pigmentary System:Physiology and Pathophy-siology.
Richardson J,Lundegaard P R,Reynolds N L,Dorin J R,Porteous D J,Jackson I J,Patton E E. 2008. MC1R pathway regulation of zebrafish melanosome dispersion[J]. Zebra-fish,5(4):289-295.
Sivamani R K,Pullar C E,Manabat-Hidalgo C G,Rocke D M,Carlsen R C,Greenhalgh D G,Isseroff R R. 2009. Stress-mediated increases in systemic and local epinephrine impair skin wound healing:Potential new indication for beta blockers[J]. PLoS Medicine,6(1):e12.
Vavricka C J,Christensen B M,Li J Y. 2010. Melanization in living organisms:A perspective of species evolution[J]. Protein & Cell,1(9):830-841.
Weymouth K S,Blanton S H,Powell T,Patel C V,Savill S A,Hecht J T. 2016. Functional assessment of clubfoot associated HOXA9,TPM1,and TPM2 variants suggests a potential gene regulation mechanism[J].Clinical Orthopaedics and Related Research,474(7):1726-1735.
Wu X,Bowers B,Rao K,Wei Q,Hammer J A. 1998. Visuali-zation of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo[J]. The Journal of Cell Biology,143(7):1899-1918.
Yan X Y,Wei L J,Huang J,Wang J B,Yang Z S,Gan B J,Liu K,Teng Z Z,Zhang S,Ye X C. 2019. Comparative skin transcriptome between common carp and the variety Jinbian carp(Cyprinus carpio v. Jinbian)[J]. Aquaculture Research,51(1):187-196.