趙黎 李青松 繆晚虹
[摘要] 代謝組學屬于系統(tǒng)生物學的一部分,對基因功能的闡述和生命體整體觀的認識具有重要意義,其依賴磁共振波譜、質(zhì)譜、色譜、光譜等分析化學技術來獲取數(shù)據(jù),檢查標本通常為血漿、尿液、體液或者組織,已經(jīng)廣泛應用于基礎生命科學、臨床科學、藥物研發(fā)和中醫(yī)藥等學科。眼科學方面的研究也逐漸增多,現(xiàn)就代謝組學的基本原理及在干眼癥、角膜疾病、晶體疾病、青光眼、眼底疾病和視神經(jīng)疾病等方面的成果進行系統(tǒng)綜述。
[關鍵詞] 代謝組學;眼科;質(zhì)譜;系統(tǒng)生物學
[中圖分類號] R589? ? ? ? ? [文獻標識碼] A? ? ? ? ? [文章編號] 1673-7210(2020)02(b)-0041-05
Research progress of metabolomics in ophthalmology
ZHAO Li? ?LI Qingsong? ?MIAO Wanhong
Department of Ophthalmology, Putuo Hospital, Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai? ?200062, China
[Abstract] Metabonomics is a part of system biology. It is of great significance to explain gene function and to understand the overall view of life. It relies on nuclear magnetic resonance spectroscopy, mass spectrometry, chromatography, spectroscopy and other analytical chemistry techniques to obtain data. The examination specimens are usually plasma, urine, body fluid or tissue. It has been widely used in basic life science, clinical science, drug research and development, traditional Chinese medicine and other disciplines. The research in ophthalmology is also gradually increasing. This article reviews the basic principles of metabonomics and its achievements in dry eye, corneal diseases, crystal diseases, glaucoma, fundus diseases and optic nerve diseases.
[Key words] Metabolomics; Ophthalmology; Mass spectrometers; System biology
隨著生命科學的發(fā)展,對生命體的認識逐漸轉(zhuǎn)變?yōu)檎w水平,代謝組學屬于系統(tǒng)生物學的一部分,對基因功能的闡述和生命體整體觀的認識具有重要意義[1],代謝組學經(jīng)過20多年的發(fā)展,日趨成熟[2],已經(jīng)廣泛應用于基礎生命科學、臨床科學、藥物研發(fā)和中醫(yī)藥等學科。查閱文獻發(fā)現(xiàn)代謝組學眼科學方面的研究也逐漸增多,現(xiàn)就代謝組學的基本原理和眼科方面的成果進行系統(tǒng)綜述。
1 代謝組學的概念
代謝組指生命體內(nèi)源性代謝物質(zhì)的動態(tài)整體,包括核酸、蛋白質(zhì)、脂類以及其他小分子代謝物,為區(qū)別基因組、轉(zhuǎn)錄組和蛋白組,目前代謝組主要研究質(zhì)量< 1000的小分子代謝物,而檢測、量化和編錄機體內(nèi)源性代謝物,并尋找其變化規(guī)律的研究方法稱為代謝組學。
2 代謝組學的檢測分析技術
代謝組學主要依賴分析化學技術,包括磁共振波譜、質(zhì)譜、色譜、光譜等方法獲取數(shù)據(jù),當前主要分為磁共振波法(NMR)、氣象色譜質(zhì)譜聯(lián)用法(GC/MS)和液相色譜質(zhì)譜聯(lián)用法(LC/MS)。NMR原理是控制并探測原子核的運動,分析待檢物中分子內(nèi)官能團的結構,其優(yōu)點是無偏移、無損傷、所測樣品中波峰與每個氫原子相對應;缺點是靈敏度較低,若被檢樣品濃度差別較大就無法檢出。GC/MS原理是對氣相色譜掃描獲得每個峰的質(zhì)譜圖,然后通過質(zhì)譜數(shù)據(jù)庫盡心比對,進行鑒定;具有高分離性和高靈敏度的優(yōu)點,但處理前需要衍生化。LC/MS不用衍生化,但分離效率低,耗時較長。其檢測數(shù)據(jù)常用主成分分析法(PCA)和偏最小二乘法(PLS),輸出結果為scoresplot和loadingsplot圖。
3 代謝組學標本的選擇
代謝組學樣本常選取血漿、尿液、體液或者組織,但血漿和尿液只能反映全身平均綜合狀態(tài),局部情況最好選取局部體液和組織。Viant等[3]在研究腦外傷動物模型時發(fā)現(xiàn)局部腦組織中出現(xiàn)代謝紊亂而血漿中沒有改變。Kunikata等[4]對18例糖尿病視網(wǎng)膜病變研究時發(fā)現(xiàn)過硫化物和多硫化物在房水中和玻璃體液中升高,但是血漿中沒有差異,所以對于眼科代謝組學研究時樣本應盡量取眼局部組織和局部液體。
4 干眼癥(DES)
DES是最常見的眼表疾病[5-7],多見于60多歲的老年人[8-9]。直到2011年才首次采用淚液標本進行代謝組學分析,2014年Galbis-Estrada等[10]發(fā)現(xiàn)DES與正常人淚液差異性代謝物為N-乙酰氨基葡萄糖、谷氨酸、肌酸、氨基?譙-丁酸甲酯、膽堿、乙酰膽堿、精氨酸、磷酸乙醇胺、膽固醇/脂質(zhì)、葡萄糖和苯丙氨酸等。2015年進一步研究[11]發(fā)現(xiàn),正常組淚液中有豐富的糖蛋白和流動脂質(zhì),具體包括脂類/膽固醇、亮氨酸、甘油和谷氨酸,而DES中葡萄糖和乳酸含量增加,且甲酸和N-乙酰葡萄糖隨著DES的炎癥程度增加而降低,而服用抗氧化劑和ω-3脂肪酸3個月后,代謝物的差異性減小。Chen等[12]采用液相色譜和四極桿飛行時間串聯(lián)質(zhì)譜進行代謝組學分析發(fā)現(xiàn)DES和正常組淚液有34種差異性代謝物,其中1,2-二甲基-4-(6-甲基-4-庚烯基)-1,3-環(huán)己二烯含量降低,而其余33種代謝物升高,其中大部分具有抗炎作用和保護作用,例如3-羥基鄰氨基苯甲酸、焦谷氨酸、尿苷和尿酸等。而血清檢測可以反映全身綜合情況,2017年一項涉及2819名大規(guī)模橫斷面研究發(fā)現(xiàn)血清雄激素水平降低與DES密切相關[13]。
5 角膜疾病
作為全身性疾病,糖尿病可引起多種病變,如糖尿病神經(jīng)病變、糖尿病腎病、炎癥和氧化應激導致永久性器官損傷[14-15],眼科常見糖尿病視網(wǎng)膜病變、糖尿病性白內(nèi)障和糖尿病性角膜病變,造成80%糖尿病患者視力嚴重損害[16]。Priyadarsini等[17]采用糖尿病患者角膜基質(zhì)和無糖尿病患者角膜為樣本進行代謝組學分析,發(fā)現(xiàn)糖尿病性角膜較高濃度的葡萄糖胺,哌啶酸,亞精胺和甜菜堿,但作為2型糖尿病生物標志物的乙醛酸兩組間無差異,葡萄糖衍生代謝物乙醇酸和甘油酸無差異,三羧酸循環(huán)中間體琥珀酸鹽、富馬酸鹽、蘋果酸鹽和草酰乙酸鹽同樣無差異,說明糖尿病性角膜營養(yǎng)不良與葡萄糖代謝無關。
6 晶體疾病
晶體的主要部分是不活躍的代謝性纖維細胞,缺乏細胞核和其他細胞器,能后分散光線,隨著機體老化,晶體內(nèi)代謝物質(zhì)濃度會隨之改變,目前晶體內(nèi)代謝物轉(zhuǎn)運機制仍知之甚少,Tsentalovich等[18]對6個老年性白內(nèi)障晶體和9個正常晶體內(nèi)代謝物進行NMR和LC-MS檢測發(fā)現(xiàn)無白內(nèi)障的晶體和白內(nèi)障晶體中大部分代謝產(chǎn)物相似,只有極少抗氧化劑和紫外線吸收劑有差異,無白內(nèi)障組核內(nèi)谷胱甘肽、抗壞血酸和煙酰胺腺嘌呤二核苷酸多于白內(nèi)障組,而皮質(zhì)內(nèi)4-(2-氨基-3-羥基苯基)-4-氧代丁酸O-b-D-葡萄糖苷、谷胱甘肽-3-羥基犬尿氨酸、谷胱甘肽-3-羥基犬尿氨酸O-b-D-葡萄糖苷和半胱氨酰-3-羥基犬尿氨酸O-b-D-葡萄糖苷低于白內(nèi)障組。Yanshole等[19]也發(fā)現(xiàn),在白內(nèi)障晶體中,最豐富的代謝物依次為肌醇、乳酸、乙酸鹽、谷氨酸、谷胱甘肽、葡萄糖、谷氨酰胺、丙氨酸和纈氨酸。玻璃體切除術后繼發(fā)白內(nèi)障患者較多,Ji等[20]對10例玻璃體切除術后繼發(fā)白內(nèi)障的房水和10例無玻璃體切除術白內(nèi)障房水進行代謝組學檢測,共鑒定出263種物質(zhì),其中8種物質(zhì)為差異性代謝物,代謝產(chǎn)物的顯著變化包括戊二酸和壬二酸,它們在調(diào)節(jié)氧化應激和炎性反應中起著關鍵作用。
7 青光眼
青光眼是一種慢性致盲性眼病[21-22],到2024年全世界將有1.11億青光眼患者[23],根據(jù)房角情況青光眼分為開角型青光眼(OAG)和閉角型青光眼(ACG),而亞洲發(fā)病率最高的還是原發(fā)閉角型青光眼(PACG)[24]。Rong等[25]分別對38例PACG患者和48名正常人志愿者進行差異性代謝物的檢測,發(fā)現(xiàn)棕櫚油酸、亞油酸、γ-亞麻酸和花生四烯酸與PACG具有密切關系,其中PACG患者棕櫚油酸和γ-亞麻酸顯著升高,而亞油酸和花生四烯酸顯著下降,根據(jù)相關性分析發(fā)現(xiàn),亞油酸和花生四烯酸與眼壓呈負相關,γ-亞麻酸與眼壓呈正相關。在POAG方面也有報道[26],POAG患者棕櫚酸肉堿、鞘脂,維生素D相關化合物和類固醇前體多于正常人。同樣Buisset等[27]也發(fā)現(xiàn)POAG患者精胺和?;撬釢舛冉档?,而肉毒堿濃度增加,且?;撬岷图◆c滲透作用有關。眼壓升高是青光眼重要的危險因素,但體內(nèi)涉及的具體機制并不清楚,Hysi等[28]對1763名志愿者進行代謝物水平和眼壓的測量,發(fā)現(xiàn)抗壞血栓代謝物O-甲基抗壞血酸,循環(huán)維生素C參與了眼壓的調(diào)控,能顯著影響眼壓的降低,減少青光眼視力喪失。剝脫綜合征性青光眼(XFG)是一種特殊類型的青光眼,主要是因為年齡相關性系統(tǒng)性纖維病造成纖維沉淀物集聚在眼前節(jié)和房水流出通道引起房水流出受阻,Leruez等[29]對16例XFG患者和對照組的18例白內(nèi)障患者血漿進行代謝組學分析發(fā)現(xiàn),XFG患者血漿中鏈?;鈮A(octanoyl-carnitine C8和癸?;鈮AC10)、酪氨酸、異亮氨酸、亮氨酸和纈氨酸濃度高于對照組。
8 眼底疾病
視網(wǎng)膜缺血是視力損害和盲目的原因,它與許多威脅視力的疾病有關,如年齡相關的黃斑變性疾病、糖尿病視網(wǎng)膜病變和青光眼[30-31]。D′Alessandro等[32]根據(jù)HPLC法進行代謝組學分析發(fā)現(xiàn)激動劑奧曲肽(OCT)、垂體腺苷酸環(huán)化酶激活肽(PACAP)和P物質(zhì)(SP)可以減少缺血誘導的視網(wǎng)膜細胞死亡、血管內(nèi)皮生長因子過度表達和谷氨酸釋放,可能通過抵抗缺血誘導的氧化應激并促進谷氨酸積累的減少和谷胱甘肽穩(wěn)態(tài)正?;奂摩?酮戊二酸可能會增強谷氨酸對缺血的反應,減少過脂質(zhì)氧化和炎性反應,保證糖酵解通量的正?;瑥亩乐谷樗岬倪^度積累,促進乙醛酸抗氧化系統(tǒng)的下調(diào),降低嘌呤代謝??自葱砸暰W(wǎng)膜脫離合并脈絡膜脫離(RRDCD)是一種罕見的嚴重孔源性視網(wǎng)膜脫離(RRD),西方國家發(fā)病率為2.0%~4.5%,而中國發(fā)病率為4.2%~18.1%[33-35],雖然對RRDCD治療的方法研究很多,但病因和發(fā)病機制并不是很清楚,Yu等[36]對15例RRDCD和14例RRD進行玻璃體的代謝組學檢測,發(fā)現(xiàn)RRDCD組較RRD組,L-肉堿、乙酰、琥珀酸、尿酸、丙酮酸、L-苯丙氨酸、膽堿、2-羥基乙酸、尿囊素、谷氨酰胺、尿素、乳酸、2-苯乙酰胺、甘油磷酸膽堿、丙氨酸、花生四烯酸、亞油酸、肌酸、鞘氨醇、神經(jīng)鞘氨醇等與炎性反應相關的代謝物質(zhì)降低,而4-氧代脯氨酸升高。中心性漿液性脈絡膜視網(wǎng)膜病變(CSCR)的特征改變也是網(wǎng)膜下積液造成神經(jīng)上皮的分離[37],特殊的需要手術治療[38]同樣是網(wǎng)膜下液RRD與CSCR代謝產(chǎn)物有什么不同?Kowalczuk等[39]對CSCR組和RRD組網(wǎng)膜下液進行代謝組學檢測,發(fā)現(xiàn)76種差異性代謝物,其中43種下調(diào),33種上調(diào),主要與糖酵解、糖異生、炎癥、補體途徑、細胞黏附、膽汁酸代謝以及葡萄糖代謝和鹽皮質(zhì)激素等有關。年齡相關性黃斑變性(AMD)是發(fā)達國家老年人視力喪失的主要原因,到2020年僅美國將達到300萬人[40],Laíns等[41]對90例AMD患者和30例對照組患者采用UPLC-MS檢測發(fā)現(xiàn)87種差異性代謝物,其中48種代謝物貫穿AMD各個階段。大多數(shù)代謝物參與脂質(zhì)代謝和甘油磷脂代謝,包括硬脂酰-花生四烯酰甘油、二?;视秃?-硬脂酰-2-花萼酰甘油-甘油磷脂、α磷脂酰膽堿。進一步發(fā)現(xiàn)[42]在AMD的早期,主要是甲酸鹽、s-肌醇和蔗糖等代謝物的減少,而晚期主要是檸檬酸鹽和纈氨酸等代謝物質(zhì)的減少。新生血管性年齡相關性黃斑變性(NVAMD)占大部分比例,其特征變化為血液或漿液從異常脈絡膜或視網(wǎng)膜血管中漏出造成患者視力喪失,Osborn等[43]對26例NVAMD患者和19例對照組患者血漿進行代謝組學檢測發(fā)現(xiàn),NVAMD發(fā)病過程中有二肽、三肽、共價修飾氨基酸、膽汁酸和維生素D相關的代謝物參與,與酪氨酸代謝、硫氨基酸代謝和尿素代謝等代謝通路相關。
9 視神經(jīng)疾病
顯性視神經(jīng)萎縮(DOA),主要由視神經(jīng)萎縮1(OPA1)基因突變引起,該基因編碼參與線粒體膜處理的鳥苷三磷酸(GTP)酶的一種動力蛋白。Bocca等[44]采用了一種超高壓液相色譜和高分辨率質(zhì)譜聯(lián)用的非靶向臨床代謝組學,發(fā)現(xiàn)DOA組與對照組相比主要是嘌呤代謝損傷,其中黃嘌呤、次黃嘌呤和肌苷濃度差異性顯著,而在尿酸鹽、膽堿、磷酸膽堿、甘油、1-油酸酯-rac-甘油、rac-甘油-1-肉豆蔻酸酯、天冬氨酸、谷氨酸和胱氨酸濃度的也有差異。Leber遺傳性視神經(jīng)病變是線粒體DNA相關疾病中最常見的一種,是由影響線粒體復合體Ⅰ的突變引起的。該病的臨床表現(xiàn)通常發(fā)生在年輕人身上,其典型特征是亞急性、通常是連續(xù)的雙側視力喪失,由視網(wǎng)膜神經(jīng)節(jié)細胞變性引起。由于線粒體DNA突變對遺傳性視神經(jīng)病變整體細胞代謝的確切作用尚不清楚,Chao de la Barca等[45]利用高效液相色譜-串聯(lián)質(zhì)譜聯(lián)用技術,對16例Leber遺傳性視神經(jīng)病變患者和8例健康對照組成纖維細胞中的188種代謝產(chǎn)物進行了定量分析,發(fā)現(xiàn)124種精確定量的代謝物,其中所有蛋白源氨基酸、亞精胺、腐胺、異戊酰肉堿、丙酰肉堿和五種鞘磷脂物種的濃度降低,同時10種磷脂酰膽堿濃度增加。
10 展望
代謝組學在眼科學研究中仍處于探索階段,現(xiàn)在各亞學科當中只局限于病因?qū)W的研究,并未真正應用到眼科臨床,在各種眼科疾病的診斷和機制的研究方面具有巨大的潛力。我們設想,未來各組學聯(lián)合的方法將越來越多地應用于與眼科疾病的研究,包括鑒別診斷、風險預測功能的生物標志物、評估藥物和手術的療效,為未來精準醫(yī)學的發(fā)展提供動力。
[參考文獻]
[1]? Kitano H. Systems biology:a brief overview [J]. Science,2002,295(5560):1662-1664.
[2]? Fiehn O. Metabolomics—the link between genotypes and phenotypes [J]. Plant Mol Biol,2002,48(1-2):155-171.
[3]? Viant MR,Lyeth BG,Miller MG,et al. An NMR metabolomic investigation of early metabolic disturbances following traumatic brain injury in a mammalian model [J]. NMR Biomed,2005,18(8):507-516.
[4]? Kunikata H,Ida T,Sato K,et al. Metabolomic profiling of reactive persulfides and polysulfides in the aqueous and vitreous humors [J]. Sci Rep,2017,7:41984.
[5]? International Dry Eye Workshop (DEWS). The definition and classification of dry eye disease:report of the Definition and Classification Subcommittee of the International Dry Eye Workshop [J]. Ocul Surf,2007,5:75-92.
[6]? Murube J. Andrew de Roetth (1893-1981):dacryologist who introduced the term dry eye [J]. Ocul Surf,2004,2:225-227.
[7]? Perry HD. Dry eye disease:pathophysiology,classification,and diagnosis [J]. Am J Manag Care,2008,14:S79-S87.
[8]? Moss SE,Klein R,Klein BE. Long-term incidence of dry eye in an older population [J]. Optom Vis Sci,2008,85:668-674.
[9]? Chen L,Zhou L,Chan EC,et al. Characterization of the human tear metabolome by LC-MS/MS [J]. J Proteome Res,2011,10(10):4876-4882.
[10]? Galbis-Estrada C,Martinez-Castillo S,Morales JM,et al. Differential effects of dry eye disorders on metabolomic profile by 1H nuclear magnetic resonance spectroscopy [J]. Biomed Res Int,2014,2014:542549.
[11]? Galbis-Estrada C,Pinazo-Durán MD,Martínez-Castillo S,et al. A metabolomic approach to dry eye disorders. The role of oral supplements with antioxidants and omega 3 fatty acids [J]. Mol Vis,2015,21:555-567.
[12]? Chen X,Rao J,Zheng Z,et al. Integrated tear proteome and metabolome reveal panels of inflammatory-related molecules via key regulatory pathways in dry eye syndrome [J]. J Proteome Res,2019,18(5):2321-2330.
[13] Vehof J,Hysi PG,Hammond CJ,et al. A metabolome-wide study of dry eye disease reveals serum androgens as biomarkers [J]. Ophthalmology,2017,124(4):505-511.
[14]? Leppin K,Behrendt AK,Reichard M,et al. Diabetes mellitus leads to accumulation of dendritic cells and nerve fiber damage of the subbasal nerve plexus in the cornea [J]. Invest Ophthalmol Vis Sci,2014,55(6):3603-3615.
[15]? Liu H,Sheng M,Liu Y,et al. Expression of SIRT1 and oxidative stress in diabetic dry eye [J]. Int J Clin Exp Pathol,2015,8(6):7644-7653.
[16]? Kieselbach GF. Diabetes:can severe vision disorders be prevented? [J]. Ther Umsch,1996,53(1):68-73.
[17]? Priyadarsini S,McKay TB,Sarker-Nag A,et al. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma [J]. Exp Eye Res,2016,153:90-100.
[18]? Tsentalovich YP,Verkhovod TD,Yanshole VV,et al. Meta-bolomic composition of normal aged and cataractous human lenses [J]. Exp Eye Res,2015,134:15-23.
[19]? Yanshole VV,Yanshole LV,Snytnikova OA. Quantitative metabolomic analysis of changes in the lens and aqueous humor under development of age-related nuclear cataract [J]. Metabolomics,2019,15(3):29.
[20]? Ji Y,Rong X,Lu Y. Metabolic characterization of human aqueous humor in the cataract progression after pars plana vitrectomy [J]. BMC Ophthalmol,2018,18(1):63.
[21]? Kang JH,Pasquale LR,Willett WC. Dietary fat consumption and primary open-angle glaucoma [J]. Am J Clin Nutr,2006,79:755-764.
[22]? Quigley HA,Broman AT. The number of people with glaucoma worldwide in 2010 and 2020 [J]. Br J Ophthalmol,2004,90:262-267.
[23]? Tham YC,Li X,Wong TY. Global prevalence of glaucoma and projections of glaucoma burden through 2040:a systematic review and meta-analysis [J]. Ophthalmology,2014,121:2081-2090.
[24]? Yip JL,F(xiàn)oster PJ. Ethnic differences in primary angle-closure glaucoma [J]. Curr Opin Ophthalmol,2006,17:175-180.
[25]? Rong S,Li Y,Guan Y,et al. Long-chain unsaturated fatty acids as possible important metabolites for primary angle-closure glaucoma based on targeted metabolomic analysis [J]. Biomed Chromatogr,2017,31(9):e3963.
[26]? Burgess LG,Uppal K,Walker DI,et al. Metabolome-Wide Association Study of primary open angle glaucoma [J]. Invest Ophthalmol Vis Sci,2015,56(8):5020-5028.
[27]? Buisset A,Gohier P,Leruez S,et al. Metabolomic profiling of aqueous humor in glaucoma points to taurine and spermine deficiency:findings from the eye-D study [J]. J Proteome Res,2019,18(3):1307-1315.
[28]? Hysi PG,Khawaja AP,Menni C,et al. Ascorbic acid metabolites are involved in intraocular pressure control in the general population [J]. Redox Biol,2019,20:349-353.
[29]? Leruez S,Bresson T,Chao de la Barca JM,et al. A Plasma metabolomic signature of the exfoliation syndrome involves amino acids,acylcarnitines,and polyamines [J]. Invest Ophthalmol Vis Sci,2018,59(2):1025-1032.
[30]? Minhas G,Morishita R,Anand A. Preclinical models to investigate retinal ischemia:advances and drawbacks [J]. Front Neurol,2012,3:75.
[31]? Osborne NN,Casson RJ,Wood JP,et al. Retinal ischemia:mechanisms of damage and potential therapeutic strategies [J]. Prog Retinal Eye Res,2004,23:91-147.
[32]? D′Alessandro A,Cervia D,Catalani E,et al. Protective effects of the neuropeptides PACAP,substance P and the somatostatin analogue octreotide in retinal ischemia:a metabolomic analysis [J]. Mol Biosyst,2014,10(6):1290-1304.
[33]? Gottlieb F. Combined choroidal and retinal detachment [J]. Arch Ophthalmol,1972,88:481-486.
[34]? Zhu J,Xu X,Zhang X. Surgical therapeutic results of rhegmatogenous retinal detachment associated with cho-roidal detachment [J]. Zhonghua Yan Ke Za Zhi,2002, 38:135-139.
[35]? Li Z,Li Y,Huang X,et al. Quantitative analysis of rhegmatogenous retinal detachment associated with choroidal detachment in Chinese using UBM [J]. Retina,2012,32:2020-2025.
[36]? Yu M,Wu Z,Zhang Z,et al. Metabolomic analysis of human vitreous in rhegmatogenous retinal detachment associated with choroidal detachment [J]. Invest Ophthalmol Vis Sci,2015,56(9):5706-5713.
[37]? Balaratnasingam C,F(xiàn)reund KB,Tan AM,et al. Bullous variant of central serous chorioretinopathy:expansion of phenotypic features using multimethod imaging [J]. Ophthalmology,2016,123:1541-1552.
[38]? Bondalapati S,Pathengay A,Chhablani J. External drainage for exudative retinal detachment secondary to central serous chorioretinopathy [J]. Eye Sci,2015,30:204-208.
[39]? Kowalczuk L,Matet A,Dor M,et al. Proteome and metabolome of subretinal fluid in central serous chorioretinopathy and rhegmatogenous retinal detachment:a pilot case study [J]. Transl Vis Sci Technol,2018,7(1):3.
[40]? Friedman DS,O′Colmain BJ,Munoz B,et al. Prevalence of age-related macular degeneration in the United States [J]. Arch Ophthalmol,2004,122:564-572.
[41]? Laíns I,Kelly RS,Miller JB,et al. Human plasma meta-bolomics study across all stages of age-related macular degeneration identifies potential lipid biomarkers [J]. Ophthalmology,2018,125(2):245-254.
[42]? Laíns I,Duarte D,Barros AS,et al. Urine Nuclear Magnetic Resonance (NMR) metabolomics in age-related macular degeneration [J]. J Proteome Res,2019,18(3):1278-1288.
[43]? Osborn MP,Park Y,Parks MB,et al. Metabolome-wide association study of neovascular age-related macular degeneration [J]. PLoS One,2013,27(8):72737.
[44]? Bocca C,Kouassi Nzoughet J,et al. A plasma metabolomic signature involving purine metabolism in human optic atrophy 1 (OPA1)-related disorders [J]. Invest Ophthalmol Vis Sci,2018,59(1):185-195.
[45]? Chao de la Barca JM,Simard G,Amati-Bonneau P,et al. The metabolomic signature of Leber′s hereditary optic neuropathy reveals endoplasmic reticulum stress [J]. Brain,2016,139(11):2864-2876.
(收稿日期:2019-08-20? 本文編輯:李亞聰)