亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        含攻擊角約束的網(wǎng)絡化彈藥分布式模糊協(xié)同制導律

        2020-03-27 11:21:32田福慶孫世巖梁偉閣
        控制理論與應用 2020年1期

        姜 尚,田福慶,孫世巖,梁偉閣

        (海軍工程大學兵器工程學院,湖北武漢 430033)

        1 引言

        近年來,我海軍為適應高新技術條件下的國際熱點地區(qū)局部戰(zhàn)爭,提出了“前沿作戰(zhàn),從海到陸,由海制陸”、“垂直包圍”、“超視距登陸”等海軍戰(zhàn)略戰(zhàn)術,對艦炮武器提出了更高的要求:對海對岸具有持續(xù)火力支援能力與精確打擊能力[1].艦炮僅是彈藥的載體與發(fā)射系統(tǒng),在對戰(zhàn)場的有效性方面,至關重要的是彈藥的終點效應,應用新技術可以達到更好的作戰(zhàn)效果,借助艦炮平臺發(fā)射的艦炮制導彈藥應運而生.

        重要軍事目標配備的多層防御體系日臻完善,依靠單枚彈藥突防日益困難,將多枚制導彈藥組網(wǎng),協(xié)同進行飽和攻擊或分批次完成“偵查-打擊”任務是一種更加符合現(xiàn)代信息化戰(zhàn)爭思想的作戰(zhàn)方法,突破依托戰(zhàn)前預置的戰(zhàn)役級協(xié)同作戰(zhàn),采用靈活高效的武器級協(xié)同控制手段,借助通信鏈路組織多枚大口徑艦炮制導炮彈構成網(wǎng)絡化彈藥,在有限時間內(nèi),作戰(zhàn)單元通過共享信息協(xié)同命中時間,并以各自期望的攻擊角完成對近岸機動目標的精確打擊任務,將能有效地提高海上火力支援與突防能力[2].

        用以實施多彈協(xié)同的末制導律正逐漸成為研究多智能體協(xié)同控制中的熱點課題[3].按作戰(zhàn)單元間是否存在信息共享,可將其分為閉環(huán)式與開環(huán)式,虛擬領彈[4]、偏置比例[5]、滑??刂芠6]、動態(tài)面控制[7]等方法已成功應用于后者,但它需要在發(fā)射前預設導引時間,在末制導過程中彈藥間并沒有信息交互,不能實現(xiàn)真正意義上的協(xié)同[8].閉環(huán)式的通信拓撲結(jié)構包括集中式[9-10]與分布式[11-14,16-17],張春妍等[9]針對靜止目標,根據(jù)各導彈的剩余攻擊時間之差對偏置比例導引律中的比例系數(shù)進行調(diào)節(jié),設計得到了同時滿足命中落角和攻擊時間約束的協(xié)同偏置比例導引律,進而Zhao等[10]在傳統(tǒng)比例導引算法的基礎上,提出了多導彈齊射攻擊的協(xié)同策略,可對機動目標進行攻擊,然而集中式存在魯棒性差、通信代價高等缺陷[11].

        實戰(zhàn)中難以保證集中式通信鏈路暢通,故常采用分布式拓撲,作戰(zhàn)單元只與相鄰單元進行信息共享,通過圖論中Laplacian矩陣描述網(wǎng)絡化彈藥的通信關系.針對靜止目標,Wang等[12]以剩余時間為協(xié)調(diào)變量,設計了可實現(xiàn)落角約束的協(xié)同偏置比例導引律,并改善了可能存在的過載超限、抖振等問題,Cho等[13]為避免制導指令的奇異性,引入正連續(xù)非線性函數(shù),使Lyapunov穩(wěn)定性為負半定的,提出了一種滑模制導律.針對機動目標,現(xiàn)有文獻對其加速度的處理方法可分為兩類:1)視目標切向、法向加速度(若無特別說明,切向、法向指在速度的切向與法向)均為未知的有界擾動量,孫雪嬌等[14]運用網(wǎng)絡同步原理設計了一種多導彈攔截的分布式增廣比例協(xié)同導引律,具有通信量小、可擴展性強等特點,但由于目標加速度難以測得,對導彈的設計提出了很高的要求;2)視目標切向加速度為未知的有界擾動量,運用擴張狀態(tài)觀測器(extended state observer,ESO)估計法向加速度,ESO由韓京清[15]首次提出,在沒有對象精確模型的情況下能同時估計系統(tǒng)的內(nèi)部狀態(tài)與外部干擾,宋俊紅[16]、呂騰等[17]提出了帶有攻擊角約束的協(xié)同制導律,基于圖論運用有限時間一致性理論設計視線方向上的控制指令,并利用ESO估計目標法向加速度,采用滑模設計視線法向控制指令,但彈目接近時控制指令易產(chǎn)生終點發(fā)散與抖振現(xiàn)象,主要因素如下:1)未合適地處理目標切向加速度;2)滑模控制存在變結(jié)構項,現(xiàn)多采用連續(xù)飽和函數(shù)近似代替變結(jié)構項,由于切換增益難以確定,效果不盡如人意,為此,商巍等[18]設計了綜合視線角速率以及彈目距離的自適應模糊系統(tǒng)逼近變結(jié)構項,有效削弱了制導過程中的抖振;3)為使滑??焖仝呌诨っ?采用包含彈目距離的單一自適應趨近律.

        相較于導彈,大口徑艦炮制導炮彈有其特殊性,尤其體現(xiàn)在控制能力方面,多導彈相關研究成果并不能直接應用,需要優(yōu)化改善上述影響制導性能的因素.現(xiàn)有文獻對攻擊角的定義主要有3種[19]:炮彈航跡落角、彈目視線角、彈目碰撞時兩者速度矢量的夾角,然而,上述文獻均適用于前兩種可轉(zhuǎn)化為固定視線角約束的特殊情況,為保證研究具有較好的普適性,本文選用后者,通過零化彈目相對法向速度,可將攻擊角約束轉(zhuǎn)化為時變的視線角約束.

        綜合考慮上述因素,本文提出了一種含攻擊角約束的有限時間分布式模糊協(xié)同制導律,通過有限時間穩(wěn)定性理論與Lyapunov第二法證明了命中時刻能在有限時間內(nèi)趨于一致,同時,全系統(tǒng)狀態(tài)具有一致最終有界性與有限時間收斂性,主要創(chuàng)新點如下:1)在視線方向與視線法向上設計雙ESO,精確快速地觀測機動目標的切向、法向加速度,并分析含觀測誤差的系統(tǒng)穩(wěn)定性;2)以積分滑模與非奇異終端滑模作為輸入量,設計模糊自適應逼近器,補償系統(tǒng)的不確定干擾,有效削弱了控制指令抖振;3)在視線法向,結(jié)合彈目距離設計兩階段滑模自適應趨近律,較好地改善了控制指令終點發(fā)散現(xiàn)象.

        2 模型建立

        2.1 網(wǎng)絡化彈藥-目標相對運動模型

        建立縱平面網(wǎng)絡化彈藥-目標相對運動模型,如圖1所示,Pi(i=1,···,h)與T分別表示第i枚制導炮彈與目標,Ri為彈目距離,qi為視線角,vPi,aPvi,aP⊥i,θPi,ηPi與vT,aTv,aT⊥,θT,ηTi分別為Pi,T的速度、切向加速度、法向加速度、航向角、速度傾角.

        圖1 網(wǎng)絡化彈藥-目標相對運動Fig.1 Relative motion of networked munition and target

        為便于分析討論,做合理假設如下:

        假設1將Pi,T視為質(zhì)點,并且變量Ri,qi,θPi,θT通過現(xiàn)有技術手段容易測得,vPi可控,且始終滿足vPi>vT.

        彈目相對運動方程可由式(1)-(3)表示:

        2.2 近岸機動目標模型

        近岸機動目標由一階慣性環(huán)節(jié)描述

        式中:τT為時間常數(shù);為切向、法向加速度指令,做合理假設如下:

        假設2aTv,aT⊥,有界,且

        2.3 攻擊角模型

        攻擊角為命中時刻Pi,T速度矢量夾角,如圖2所示.

        圖2 碰撞航線攻擊角Fig.2 Impact angle of collision course

        碰撞航線上彈目相對法向速度為零.

        聯(lián)立式(3)(9)-(10)可知,對于給定的?Ei,存在唯一的期望視線角qEfi與之對應

        由此,攻擊角約束轉(zhuǎn)換為時變視線角約束,為使Pi平穩(wěn)地以qEfi命中T,令式(11)不僅在終點成立,而是從末制導初始就成立,其1,2階導數(shù)分別為

        2.4 系統(tǒng)狀態(tài)空間

        令tgoi為Pi的剩余飛行時間,其命中時刻為tfi=t+tgoi,對鄰彈有tfi?tfj=tgoi?tgoj,若控制tgoi在有限時間內(nèi)趨于一致,并且qi同時滿足qEi約束,即網(wǎng)絡化彈藥實現(xiàn)了含攻擊角約束的的協(xié)同攻擊任務.可采用估計tgoi,因此,定義系統(tǒng)狀態(tài)變量為

        聯(lián)立式(1)-(7),可得網(wǎng)絡化彈藥協(xié)同末制導的系統(tǒng)狀態(tài)空間為.

        基于前述,設計協(xié)同制導律的目的:設計雙ESO估計wri,wqi,設計uri使x1i,x2i各自于有限時間內(nèi)趨于一致,設計uqi使x3i,x4i各自于有限時間內(nèi)趨于零,設計模糊自適應逼近器補償系統(tǒng)的不確定干擾.

        2.5 雙ESO模型

        定義觀測變量[z1iz2iz3iz4i]=,在視線方向構建第1個ESO:

        式中:0<βi,i=1,2,非線性增益函數(shù)fal為

        式中:0<σ <1,0<η,對l1i,l2i求導:

        定義變量dri為系統(tǒng)在視線方向上受到的干擾,并令dri=l2i,當ESO(15)處于穩(wěn)態(tài)時其穩(wěn)態(tài)誤差為

        在視線法向構建第2個ESO:

        同理可得ESO(19)穩(wěn)態(tài)誤差為

        由式(18)(20)可知,無論被觀測量是否連續(xù),通過選擇合適的參數(shù),并令β2,β4足夠大于β1,β3,所設計的雙ESO模型就可以進行精確的觀測,即z1i→x2i,z2i→wri,z3i→vqi,z4i→wqi.

        3 末制導律設計

        3.1 視線方向控制指令設計

        在網(wǎng)絡化彈藥協(xié)同末制導的過程中,彈藥通過拓撲通信網(wǎng)路進行信息交互獲得其它彈藥狀態(tài)信息,以達成多彈協(xié)同,這種信息交互可以通過圖論來描述.本文用無向連通圖G=(P,ζ,A)描述網(wǎng)絡化彈藥間的通信拓撲關系,其中:P 為網(wǎng)絡化彈藥節(jié)點Pi的集合;ζ表示節(jié)點Pi間的連線;圖G中的任意邊可表示為(bi,bj),A=[aij]∈Rh×h為權系數(shù)矩陣.若Pi與Pj存在信息共享則(bi,bj)∈ζ,aij=1,否則(bi,bj)/∈ζ,aij=0,需注意aii=0.由于G是無向的,有aij=aji.若G中任意兩節(jié)點間都存在至少一條通路,則G是連通的.

        定理1針對系統(tǒng)(14)的視線方向子系統(tǒng),當其通信拓撲圖G保持無向連通時,采用ESO(15)并使用積分滑模設計視線方向控制指令如下,能使x1i,x2i各自于有限時間內(nèi)趨于一致:

        現(xiàn)對定理1進行證明,為保證積分滑模在趨近過程中有良好的動態(tài)品質(zhì),選取自適應指數(shù)趨近律為

        對式(22)求導,并結(jié)合式(21)(23)-(24)得

        選取Lyapunov函數(shù)Vri=,求導得

        引理1考慮如下系統(tǒng)[20]:

        假定存在一個定義在原點鄰域上的連續(xù)可微正定函數(shù)V(x),存在實數(shù)c>0,α∈(0,1)使(x)≥?cVα(x),則系統(tǒng)(27)的原點是有限時間穩(wěn)定的,且穩(wěn)定時間滿足Tr≥.

        由引理1可知,積分滑膜sri可在有限時間Tri內(nèi)收斂至0,取Tr=max{Tr1,···,Trh},則有

        對式(28)求導,并結(jié)合式(21)-(23)可得

        為便于定理1的分析與證明,給出有關二階多智能體有限時間一致性收斂的引理:

        引理2考慮如下二階多智能體系統(tǒng)[21]:

        式中:i=1,···,N,qi∈Rn,pi∈Rn,ui∈Rn為智能體i的位移、速度與控制輸入,當其通信拓撲結(jié)構圖G無向連通時,采用控制輸入為

        式中:ψ1,ψ2是連續(xù)的奇函數(shù),并且參數(shù)滿足0<α1<1,α2=,那么在上述控制輸入的作用下,系統(tǒng)狀態(tài)qi,pi能各自達到有限時間一致性收斂,即在有限時間內(nèi)qi→qj,pi→pj,?i,j=1,···,N.

        根據(jù)引理2,可知對于系統(tǒng)(14),狀態(tài)變量x1i,x2i能在有限時間內(nèi)趨于一致,定理1證畢.

        3.2 視線法向控制指令設計

        在網(wǎng)絡化彈藥協(xié)同末制導的過程中,在視線法向為避免終端滑模奇異,選用一種非奇異終端滑模

        式中:0<β,1<γ <2,求導并結(jié)合式(14)得

        選取滑模自適應趨近律

        定理2針對系統(tǒng)(14)的視線法向子系統(tǒng),采用ESO(19)與視線法向控制指令(34),系統(tǒng)狀態(tài)變量x3i,x4i將在有限時間內(nèi)收斂至0.

        現(xiàn)對定理2進行證明,選取Lyapunov函數(shù)Vqi=,求導化簡

        定義變量dqi系統(tǒng)在視線法向上受到的干擾,令dqi,由前述可知,其有界且滿足|dqi|≥Dqi,取max{Dq1,···,Dqh}+εq≥k5,εq為充分小的正實數(shù),則有

        由引理1可知,非奇異終端滑膜sqi可在有限時間Tqi內(nèi)收斂至0,取Tq=max{Tq1,···,Tqh},即有

        聯(lián)立式(31)(37)進行分析可得

        選取Lyapunov函數(shù)Vx3i=,求導得

        根據(jù)引理1可知,系統(tǒng)狀態(tài)變量x3i,x4i能在有限時間內(nèi)收斂至0,定理2證畢.

        為使制導律連續(xù),常采用含消顫因子的連續(xù)飽和函數(shù)sat(x)=代替變結(jié)構項sgn x[17],0<δ,此時uri,uqi為

        3.3 模糊自適應逼近器

        目標機動導致k3,k5難以確定,取值偏小則難以滿足穩(wěn)定條件,取值偏大則會產(chǎn)生較嚴重的抖振,故設計模糊自適應逼近器,以削弱控制指令抖振.

        模糊自適應逼近器Ξij(si|κij)(i=1,···,h; j=3,5)采用乘積推理機、單值模糊器和中心解模糊器,其本質(zhì)上是從? ?R2到Y(jié) ?R的映射,第m條規(guī)則為

        式中:si=[srisqi]T∈?為模糊自適應逼近器的輸入量;輸出量Ξij(si|κij)∈Y 為

        式中:κij=[κij1··· κijM]T為M維的自適應模糊參數(shù)向量,(x)為輸入量的模糊隸屬度函數(shù),ξij(si)=[ξij1(si)··· ξijM(si)]T為M維的模糊基向量.

        引理3函數(shù)Γ為定義在緊集? ?Rn上的實函數(shù),?ε>0,則一定存在由式(42)-(43)所建立的模糊自適應逼近器[23],使|Γ?κTξ(s)|≥ε成立.

        定義最優(yōu)逼近向量為

        由引理3可知,對給定的任意小正常數(shù)εr,εq有如下不等式成立:

        4 系統(tǒng)穩(wěn)定性分析

        引理4如果有常數(shù)10,對于任意兩個維度相同的向量a,b 來說,有不等式(52)恒成立:

        式(52)在p=q=2且ε=1的情況下,簡化成

        定理3對于系統(tǒng)(14),采用雙ESO式(15)(19),模糊參數(shù)向量的自適應律如式(48)-(49),末制導律采用式(50)-(51),并選擇合適參數(shù),則全系統(tǒng)Lyaounov函數(shù)V 與滑模面sri,sqi一致最終有界,且在有限時間內(nèi)x1i,x2i各自趨于一致,x3i,x4i能收斂至0.

        現(xiàn)對定理3進行證明,對于任意s∈R,如下不等式恒成立:

        聯(lián)立式(44)-(45)(53),化簡可得

        聯(lián)立式(25)(32)(40)-(41)(54)-(55),得

        選取全系統(tǒng)Lyapunov函數(shù)

        對式(58)求導,并結(jié)合引理4與式(56)-(57)可得

        令φ=min{k4,βγ|x4i|γ?1},并取正常數(shù)

        則式(59)可化為如下形式:

        引理5對任意給定的一階線性非齊次微分方程

        其通解形式如式(61)[24],C為任意常數(shù).

        由引理5可得式(60)的解為

        聯(lián)立式(59),進一步可得

        則V,sri,sqi最終一致有界,需要指出的是,雖然在上述證明過程中當t→∞時V,sri,sqi才能收斂至零點的充分小鄰域內(nèi),但由于V 主要呈指數(shù)型衰減,在實際仿真實驗中,可以通過增大衰減系數(shù)與降低系統(tǒng)初值的辦法提高收斂速度,以保證V,sri,sqi能在有限時間內(nèi)收斂,具體方法為選取k4,k6,β,γ為較大的合適值,使得指數(shù)衰減系數(shù)為φ=0.5,并選取λ3,λ5足夠大,δ足夠小,使得μ任意小,具體參數(shù)取值還需通過仿真實驗確定.進一步結(jié)合定理1-2,可知定理3證畢.

        為改善控制指令的終點發(fā)散現(xiàn)象,針對式(33)結(jié)合x1i設計兩階段滑模自適應趨近律

        可得模糊參數(shù)自適應律與視線方向控制指令為

        受篇幅所限,本文中僅對x1i>R0的情況進行證明,x1i≥R0時同理可證.

        5 仿真實驗

        為驗證協(xié)同制導律(50)(66)(簡稱律1)的有效性,現(xiàn)由3枚制導炮彈組網(wǎng),在通信拓撲(如圖3)、網(wǎng)絡化彈藥初始參數(shù)(見表1)、目標初始參數(shù)(見表2)、制導律參數(shù)(見表3)相同的情況下,現(xiàn)與含變結(jié)構項的制導律式(23)(34)(簡稱律2)對比,對機動形式不同的目標分別進行協(xié)同攻擊仿真實驗.

        圖3 網(wǎng)絡化彈藥通信拓撲Fig.3 Communication topology of network projectiles

        表1 網(wǎng)絡化彈藥初始參數(shù)Table 1 Initial parameters of network projectiles

        表2 目標初始參數(shù)Table 2 Initial parameters of target

        表3 制導律參數(shù)Table 3 Parameters of guidance law

        為使定理3成立,經(jīng)過多次仿真實驗,確定控制參數(shù)

        可以使指數(shù)衰減系數(shù)φ=0.5,且μ保持很小的值,同時令κi3,κi5初始值均為零,模糊隸屬度函數(shù)采用下式,式中m=1,···,5.

        5.1 工況1:目標方波機動

        此時,設定

        仿真結(jié)果如表4與圖4.

        表4 工況1仿真結(jié)果Table 4 Simulated result under condition 1

        圖4 工況1協(xié)同攻擊仿真實驗結(jié)果Fig.4 Simulated results of cooperative attack under condition 1

        圖4(a)為彈目運動軌跡,律1和律2均可用于網(wǎng)絡化彈藥協(xié)同攻擊方波機動目標的末制導段,結(jié)合表4可知,律1優(yōu)化了脫靶量與命中時間,且其彈道較為平直,有利于制導炮彈在制導過程中進行精細調(diào)節(jié).由圖4(b)可知,在律1和律2的作用下,網(wǎng)絡化彈藥的tgoi均能夠自不同的初值在8 s左右逐漸趨于一致,并最終收斂至0,且律1收斂速度更優(yōu).圖4(c)-4(d)分別為視線方向、法向的控制指令曲線,相較于律1和律2的uri,uqi的初始值、震蕩幅度以及終點抖振幅度均較大,且隨著彈目距離接近在終點處發(fā)散,外加其切換增益系數(shù)固定,易導致系統(tǒng)失穩(wěn),而律1通過模糊自適應逼近器的調(diào)節(jié)補償,控制指令在整個制導過程中幅值較小、相對平滑,并在兩階段滑模自適應趨近律的作用下于終點處收斂,這滿足了制導炮彈的控制性能要求.圖4(e)-4(f)表明所設計的雙ESO具有良好的觀測性能,能夠快速準確地觀測出機動目標的切向、法向加速度真值,使制導律可以提供足夠的可用過載補償外界干擾,有效降低了制導炮彈的需用過載,同時有利于減小脫靶量與命中時間.圖4(g)為視線角與期望視線角的變化情況,由于目標做方波機動導致期望視線角時變,律2視線角在跟蹤過程中存在較大的超調(diào)震蕩,這是由切換增益系數(shù)取值固定引起的,而律1通過模糊自適應調(diào)整參數(shù)取值,在6 s后能夠穩(wěn)定地保持視線角的收斂狀態(tài),表明視線角跟蹤誤差、視線角速率能在有限時間內(nèi)收斂至零,驗證了“第2.2節(jié)”中對系統(tǒng)狀態(tài)有限收斂性分析的正確性.干擾項dri,dqi與對應的變結(jié)構項、模糊自適應逼近器補償項如圖4(h)-4(i)所示,目標機動給逼近補償帶來了較大困難,切換增益系數(shù)固定顯然容易導致控制指令發(fā)散甚至系統(tǒng)失穩(wěn),模糊自適應逼近器其通過所設計的自適應律對模糊參數(shù)向量進行快速調(diào)整,較好地解決了變結(jié)構項帶來的控制指令抖振問題,并從整體上逼近補償了干擾,但其逼近能力有限,未能補償局部跳變干擾.

        5.2 工況2:目標正弦機動

        此時,設定

        仿真結(jié)果如表5與圖5.

        表5 工況2仿真結(jié)果Table 5 Simulated result under condition 2

        圖5 工況2協(xié)同攻擊仿真實驗結(jié)果Fig.5 Simulated results of cooperative attack under Condition 2

        圖5(a)為彈目運動軌跡,律1和律2均可使網(wǎng)絡化彈藥協(xié)同命中正弦機動目標,結(jié)合表5可看出較律2,律1彈道更為平直,進一步改善了命中精度與命中時間.由圖5(b)可知,在律1和律2的作用下,網(wǎng)絡化彈藥的tgoi均能夠由不同的初值在7 s左右逐漸趨于一致,并最終收斂至0,驗證了“第2.1節(jié)”中對系統(tǒng)狀態(tài)有限收斂性分析的正確性,并且律1收斂速度更優(yōu).圖5(c)-5(d)描述了網(wǎng)絡化彈藥視線方向、法向控制指令的變化情況,律2的uri,uqi在整個制導過程中較大,由于切換增益系數(shù)固定導致不同程度的震蕩,而律1通過自適應調(diào)節(jié)模糊參數(shù),法控制指令的變化較為平滑,并在終點附近有收斂趨勢,這更加符合實際作戰(zhàn)需求.圖5(e)-5(f)表明所設計的雙ESO觀測性能良好,能快速準確地觀測出目標加速度的真實值,為有效命中正弦機動目標提供了重要信息,使得網(wǎng)絡化彈藥可以提供足夠的可用控制指令補償外界干擾,有助于降低制導炮彈在制導過程中的對飛行控制性能的要求.視線角與期望視線角的變化情況如圖5(g),由于切換增益系數(shù)取值固定,導致律2視線角難以穩(wěn)定地收斂至期望視線角,而律1的模糊參數(shù)可自適應調(diào)整取值,保證在整個制導過程中視線角跟蹤誤差與視線角速率較快地跟蹤正弦機動目標,在7 s后能夠穩(wěn)定地保持收斂狀態(tài),表明系統(tǒng)狀態(tài)變量x3i,x4i能在有限時間內(nèi)收斂至0.圖5(h)-5(i)分別為干擾項dri,dqi與對應的變結(jié)構項、模糊自適應逼近器補償項,由于律2含變結(jié)構項難以確定切換增益系數(shù),在制導過程中難免產(chǎn)生抖振,難以實時補償干擾,而律1的模糊自適應逼近器可以有效地削弱抖振,并較好地補償了不確定干擾對制導性能的負面影響.

        6 結(jié)論

        針對大口徑艦炮網(wǎng)絡化制導彈藥打擊近岸機動目標的末制導段,設計了一種含攻擊角約束的有限時間分布式模糊協(xié)同制導律,經(jīng)模型建立、理論證明與仿真實驗,現(xiàn)總結(jié)全文如下:1)雙ESO模型精確快速地觀測了機動目標切向、法向加速度;2)模糊自適應逼近器有效削弱了控制指令抖振,并對不確定干擾取得了較好的補償效果,兩階段滑模自適應趨近律較好地改善了終點控制指令發(fā)散現(xiàn)象;3)嚴格證明了系統(tǒng)狀態(tài)一致最終有界性與有限時間收斂性,在打擊機動形式不同的目標時,均具備較好的協(xié)同制導性能,并且所需的其他外界信息均易通過現(xiàn)有成熟技術測得,具有一定的工程應用價值.

        免费观看又色又爽又湿的视频| 中文字幕亚洲乱码熟女1区2区 | 日韩国产成人无码av毛片蜜柚| 91av小视频| 蜜桃av噜噜一区二区三区香| 国产无套一区二区三区久久| 国产精品无码久久综合网| 天码av无码一区二区三区四区| 九九久久精品大片| 国产av天堂一区二区二区| 少妇被粗大的猛进出69影院| 国产va免费精品观看| 国产一区二区三区国产精品| 久久久大少妇免费高潮特黄| 亚洲av无码乱码国产精品久久| 国产肉体ⅹxxx137大胆| 国产美女被遭强高潮露开双腿| 一区二区三区四区亚洲免费 | 国产精品熟女一区二区| 亚洲欧美日韩国产精品一区| 日本av一区二区三区四区| 亚洲精品一区二区三区麻豆| 中出内射颜射骚妇| 国产精品国三级国产av| 亚洲丰满熟女乱一区二区三区| 潮喷失禁大喷水aⅴ无码| 国产一级农村无码| 伊人亚洲综合影院首页| 新中文字幕一区二区三区| 日本老熟妇毛茸茸| 高清国产美女av一区二区| 国产一区二区三区口爆在线| 九九久久99综合一区二区| 日韩在线看片免费人成视频| 蜜臀av一区二区三区精品| 四虎影在永久在线观看| 台湾佬娱乐中文22vvvv | 91日本精品国产免| 一区二区三区国产亚洲网站| 伦伦影院午夜理论片| 超碰97人人做人人爱少妇|