亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        采用K均值聚類和環(huán)形結(jié)構(gòu)的狹葉錦雞兒木質(zhì)部提取算法

        2020-03-03 14:02:46王海超宗哲英張文霞殷曉飛王曉蓉張海軍劉艷秋王春光
        關(guān)鍵詞:木質(zhì)部分水嶺光照

        王海超,宗哲英,張文霞,殷曉飛,王曉蓉,張海軍,劉艷秋,石 鑫,王春光

        采用均值聚類和環(huán)形結(jié)構(gòu)的狹葉錦雞兒木質(zhì)部提取算法

        王海超,宗哲英,張文霞,殷曉飛,王曉蓉,張海軍,劉艷秋,石 鑫,王春光※

        (內(nèi)蒙古農(nóng)業(yè)大學(xué)能源與交通工程學(xué)院,呼和浩特 010018)

        針對(duì)木質(zhì)部交互統(tǒng)計(jì)誤差大、效率低、重現(xiàn)性差、勞動(dòng)強(qiáng)度高和傳統(tǒng)圖像處理算法精度不理想等問(wèn)題,該文以狹葉錦雞兒木質(zhì)部切片圖像為研究對(duì)象,根據(jù)木質(zhì)部特點(diǎn)提出基于均值聚類算法和環(huán)形結(jié)構(gòu)提取算法相結(jié)合,實(shí)現(xiàn)木質(zhì)部準(zhǔn)確提取的方法。首先通過(guò)動(dòng)態(tài)巴特沃斯同態(tài)濾波法對(duì)30幅供試圖像進(jìn)行光照不均校正,然后采用均值聚類法對(duì)光照補(bǔ)償后圖像初分割,最后采用環(huán)形結(jié)構(gòu)提取算法實(shí)現(xiàn)木質(zhì)部提取計(jì)數(shù)。試驗(yàn)結(jié)果表明:采用均值聚類算法對(duì)光照補(bǔ)償后的木質(zhì)部圖像初分割分割誤差(section error,)、過(guò)分割誤差OR(over-segmentation error, OR)和欠分割誤差UR(under-segmentation error, UR)均值分別為5.15%、1.48%和6.46%,優(yōu)于未光照補(bǔ)償和3R-G-B算法;該文提出的環(huán)形結(jié)構(gòu)提取算法對(duì)初分割后木質(zhì)部圖像檢測(cè)的平均相對(duì)誤差為2.26%,比分水嶺法低11.69個(gè)百分點(diǎn),比凹點(diǎn)匹配法低4.93個(gè)百分點(diǎn)。從速度上看,該算法平均耗時(shí)3.17 s,比分水嶺法快1.40 s,比凹點(diǎn)匹配法快4.88 s。該算法檢測(cè)的均方根誤差RMSE(root mean squared error, RMSE)為0.52%,約相當(dāng)于分水嶺法的1/3,約相當(dāng)于凹點(diǎn)匹配法的1/2,該算法優(yōu)于其他2種分割算法;在圖像結(jié)構(gòu)復(fù)雜、光照不均勻、內(nèi)部分布不均等缺陷條件下,該文算法也能很好地實(shí)現(xiàn)木質(zhì)部的分割和提取。該方法不僅能對(duì)狹葉錦雞兒木質(zhì)部自動(dòng)分割和提取,也可為其他植物木質(zhì)部分割提取提供參考。

        提?。凰惴?;木質(zhì)部;均值聚類;環(huán)形結(jié)構(gòu)提??;狹葉錦雞兒

        0 引 言

        木質(zhì)部是維管植物體內(nèi)重要的復(fù)合組織,負(fù)責(zé)水分及水分中離子運(yùn)輸和支撐作用[1-2],其深入研究對(duì)揭示維管植物抗旱機(jī)制和不同條件下耐旱植物的選育具有重要意義。目前木質(zhì)部統(tǒng)計(jì)常通過(guò)離析、切片等手段制成樣本,采用顯微鏡人工交互方式進(jìn)行計(jì)數(shù),該方式存在人為誤差大、效率低、重現(xiàn)性差和勞動(dòng)強(qiáng)度大等缺點(diǎn),制約了該領(lǐng)域的深入研究[3-5]。

        木質(zhì)部多存在黏連情況,黏連細(xì)胞分割和統(tǒng)計(jì)是圖像處理領(lǐng)域一項(xiàng)基本而又十分關(guān)鍵的技術(shù),一直是細(xì)胞統(tǒng)計(jì)學(xué)中研究難點(diǎn)和熱點(diǎn)問(wèn)題。常用的黏連細(xì)胞分割方法有分水嶺算法、凹點(diǎn)匹配法、形態(tài)學(xué)法、橢圓建模法、水平集法和機(jī)器學(xué)習(xí)法[6-11],其中分水嶺算法、凹點(diǎn)匹配法因其實(shí)現(xiàn)簡(jiǎn)單、高效,得到的應(yīng)用最多,目前以這2種算法為框架,并出現(xiàn)了各種改進(jìn)算法。Salim等[12]提出基于距離地形圖分水嶺變換分離黏連細(xì)胞,提高了正常白細(xì)胞和致密白血細(xì)胞病簇的分割精度;Miao等[13]提出一種標(biāo)記控制分水嶺算法自動(dòng)分割和統(tǒng)計(jì)血液中白細(xì)胞和紅細(xì)胞數(shù)量,該算法基于距離變換和邊緣梯度信息來(lái)獲取血細(xì)胞輪廓,通過(guò)分類獲得分段的白細(xì)胞和紅細(xì)胞,此法相較傳統(tǒng)分水領(lǐng)算法精度較高,但對(duì)先驗(yàn)標(biāo)記精度要求較高;Hasan等[14]提出2步驗(yàn)證分水嶺匹配算法對(duì)腦腫瘤進(jìn)行分割,其使用偽影去除、中值濾波和三邊濾波對(duì)圖像進(jìn)行預(yù)處理,首先從MR圖像中分割出腫瘤區(qū)域,然后使將分割后的部分與驗(yàn)證圖像進(jìn)行匹配,從而準(zhǔn)確分割腦腫瘤;Albayrak等[15]采用兩級(jí)超像素分割算法對(duì)腎癌細(xì)胞進(jìn)行提取,該算法首先利用簡(jiǎn)單線性迭代聚類法(simple linear iterative clustering,SLIC)將圖像分割為超像素圖像,然后采用基于密度的聚類算法(density-based spatial clustering of applications with noise,DBSCAN)對(duì)獲得的超像素進(jìn)行聚類,找到組成細(xì)胞核的相似超像素,從而實(shí)現(xiàn)腎癌細(xì)胞準(zhǔn)確分割;閆沫[16]結(jié)合梯度修正和區(qū)域歸并策略對(duì)傳統(tǒng)分水嶺算法進(jìn)行改進(jìn),改善了分水嶺算法過(guò)分割現(xiàn)象;趙紅英等[17]采用基于水平集主動(dòng)輪廓(active contour model,ACM)算法對(duì)宮頸癌細(xì)胞初分割,然后將歸一化后圖像與感興趣區(qū)域(region of interest,ROI)梯度圖像點(diǎn)乘來(lái)抑制無(wú)用梯度信息,最后運(yùn)用標(biāo)記分水嶺算法對(duì)感興趣區(qū)域細(xì)胞進(jìn)行分割;廖慧司等[18]提出一種結(jié)合距離變換利用邊緣梯度的分水嶺血細(xì)胞顯微圖像分割算法,該算法由距離圖提取前景標(biāo)記,將距離分水嶺變換所得的脊線作為梯度分水嶺變換的背景標(biāo)記,能有效地分離黏連目標(biāo),但該方法魯棒性較差,對(duì)切片質(zhì)量要求較高;張建華等[19]在H-minima分水嶺分割基礎(chǔ)上,結(jié)合最小二乘圓法誤差理論,提出了自適應(yīng)H-minima分水嶺分割方法,實(shí)現(xiàn)了棉花葉部黏連病斑的準(zhǔn)確分割,但當(dāng)病斑黏連較緊密和大小病斑重疊在一起時(shí)會(huì)存在欠分割情況。Yao等[20]采用邊緣中心模態(tài)比例(edge center mode proportion,ECMP)法對(duì)水稻粒進(jìn)行凹點(diǎn)匹配,在協(xié)同約束條件下進(jìn)行分割,然后再用最小外接矩形計(jì)算其長(zhǎng)度,從而精確識(shí)別出稻米粒,但該算法容易出現(xiàn)過(guò)分割情況;Zhang等[21]采用canny邊緣檢測(cè)和改進(jìn)的凹點(diǎn)匹配算法對(duì)接觸種子進(jìn)行分離,有效地提取了種子的位置和方向信息,有效地實(shí)現(xiàn)了種子自動(dòng)挑選,Zhang等[22]利用凹點(diǎn)檢測(cè)和線性分組技術(shù)對(duì)重疊細(xì)胞進(jìn)行自動(dòng)分割,該算法主要包括輪廓提取、凹點(diǎn)檢測(cè)、輪廓段分組好橢圓擬合四個(gè)步驟,但模糊圖像凹點(diǎn)和邊界的準(zhǔn)確定位仍是難點(diǎn);楊輝華等[23]提出一種結(jié)合水平集輪廓提取的凹點(diǎn)區(qū)域檢測(cè)的黏連細(xì)胞分割方法,準(zhǔn)確地分割了黏連細(xì)胞,但對(duì)于黏連嚴(yán)重情況分割精度不高,常出現(xiàn)過(guò)分割;王曉鵬等[24]提出一種基于形態(tài)學(xué)多尺度重建結(jié)合凹點(diǎn)匹配的枸杞圖像分割方法,結(jié)合枸杞顆粒的大小和形狀特點(diǎn),實(shí)現(xiàn)黏連枸杞顆粒的分割和計(jì)數(shù);李毅念等[25]通過(guò)顏色空間轉(zhuǎn)換、去除細(xì)窄黏連、黏連判斷、凹點(diǎn)檢測(cè)等算法過(guò)程,實(shí)現(xiàn)了圖像中黏連麥穗的有效分割,依據(jù)麥穗和麥粒間關(guān)系,構(gòu)建了產(chǎn)量預(yù)測(cè)模型,進(jìn)一步得到了單位面積內(nèi)的小麥麥穗數(shù)量、總籽粒數(shù)及產(chǎn)量信息,但對(duì)于黏連麥穗存在部分過(guò)分割。

        木質(zhì)部存在多個(gè)不黏連和黏連形式,其顯微圖像具有紋理多、結(jié)構(gòu)復(fù)雜、形狀不規(guī)則等特征,常存在低對(duì)比度、邊界模糊、內(nèi)部分布不均等缺陷,限制了細(xì)胞分割和統(tǒng)計(jì)的準(zhǔn)確性,也對(duì)算法魯棒性提出了挑戰(zhàn),目前國(guó)內(nèi)外對(duì)其分割提取的研究鮮有報(bào)道。因此,本文以狹葉錦雞兒木質(zhì)部圖像為研究對(duì)象,在分析總結(jié)前人算法和木質(zhì)部圖像特點(diǎn)基礎(chǔ)上,首先對(duì)采集的木質(zhì)部圖像采用動(dòng)態(tài)巴特沃斯濾波器進(jìn)行濾波,消除顯微圖像光照不均現(xiàn)象;然后采用均值聚類算法將木質(zhì)部從原圖像中分離出來(lái);最后采用本文提出的環(huán)形結(jié)構(gòu)提取算法實(shí)現(xiàn)木質(zhì)部提取和計(jì)數(shù)。

        1 材料與方法

        1.1 圖像獲取

        a. 第一組木質(zhì)部圖像a. First set of xylem imageb. 第二組木質(zhì)部圖像b. Second set of xylem imagec. 第三組木質(zhì)部圖像c. Third set of xylem image

        1.2 木質(zhì)部初分割方法

        1.2.1 光照不均校正

        顯微圖像常存在光照不均和光照不足現(xiàn)象,這會(huì)對(duì)后續(xù)圖像分割和特征提取準(zhǔn)性造成較大影響,改善圖像分辨率和視覺(jué)效果是圖像處理中不可缺少的環(huán)節(jié)。本文采用HSV變換和動(dòng)態(tài)巴特沃斯同態(tài)濾波算法對(duì)木質(zhì)部圖像進(jìn)行光線補(bǔ)償,該算法在不改變?cè)瓐D色調(diào)和飽和度不變的前提下對(duì)亮度分量進(jìn)行增強(qiáng),圖像細(xì)節(jié)增強(qiáng)同時(shí)削弱低頻分量,改善圖像質(zhì)量[27-29]。

        1.2.2均值聚類

        均值聚類算法是典型的無(wú)監(jiān)督硬聚類算法,其以歐式距離、漢明距離、閔可夫斯基距離和街區(qū)距離等作為相似度度量(默認(rèn)采用歐式距離),以誤差平方和作為聚類準(zhǔn)則,可實(shí)現(xiàn)類間相似度最低和類內(nèi)相似度最高,且局部最優(yōu),十分適合彩色圖像分割[30]。采用均值聚類算法對(duì)彩色圖像進(jìn)行分割時(shí),往往選用Lab顏色空間,Lab模型可近似使用球體結(jié)構(gòu)表示,顏色空間是均勻的,過(guò)球心的笛卡爾三坐標(biāo)對(duì)應(yīng)各顏色分量,各任意色彩均可由以上亮度()、色度(,+表示紅色,-表示綠色)和色度(,+表示黃色,-表示藍(lán)色)3個(gè)分量疊加而成[31]。由于木質(zhì)部圖像主要由紅色的木質(zhì)部、白色液體膜和綠色韌皮部部分構(gòu)成,故聚類中心數(shù)目為3,聚類后紅色區(qū)域?yàn)榉指畹哪繕?biāo)區(qū)域。

        1.2.3 初分割質(zhì)量評(píng)價(jià)

        為定量評(píng)價(jià)算法分割效果,本文在總結(jié)分析已有圖像分割評(píng)價(jià)法基礎(chǔ)上,選用分割誤差R(section error,R)、過(guò)分割誤差OR(over-segmentation error,OR)和欠分割誤差UR(under-segmentation error,UR)對(duì)分割結(jié)果進(jìn)行評(píng)價(jià)。這3種評(píng)價(jià)指標(biāo)值越低,表明圖像分割效果越好,目標(biāo)提取精度越高。這3種評(píng)價(jià)指標(biāo)均需要分割目標(biāo)真實(shí)面積作為基準(zhǔn),目標(biāo)真實(shí)面積采用Photoshop進(jìn)行手動(dòng)分割,擦除背景區(qū)域后剩余像素?cái)?shù)作為目標(biāo)真實(shí)尺寸。3種評(píng)價(jià)指標(biāo)計(jì)算公式為

        1.3 木質(zhì)部提取算法

        由木質(zhì)部結(jié)構(gòu)特點(diǎn)可知,其經(jīng)初分割后存在獨(dú)立、黏連和不閉合現(xiàn)象,且木質(zhì)部呈環(huán)狀。從分割目標(biāo)考慮,對(duì)木質(zhì)部個(gè)數(shù)統(tǒng)計(jì)時(shí),不必保證木質(zhì)部結(jié)構(gòu)完整性,只需保證個(gè)數(shù)準(zhǔn)確即可。故本文在充分分析木質(zhì)部細(xì)胞結(jié)構(gòu)特點(diǎn)和前人算法基礎(chǔ)上,提出一種環(huán)形結(jié)構(gòu)提取算法,從而實(shí)現(xiàn)木質(zhì)部準(zhǔn)確提取計(jì)數(shù)。該算法首先確定木質(zhì)部圖像連通域,并對(duì)聯(lián)通域進(jìn)行標(biāo)記,剔除較小的雜質(zhì)區(qū)域;然后采用定步長(zhǎng)窗口掃描方式粗略估計(jì)出環(huán)形結(jié)構(gòu)中心位置;最后通過(guò)圓心位置對(duì)其對(duì)應(yīng)上、下、左、右4個(gè)進(jìn)行檢測(cè),若檢測(cè)出不少于2個(gè)方向上存在環(huán)形部分結(jié)構(gòu),則該圓心對(duì)應(yīng)的環(huán)形結(jié)構(gòu)即為1個(gè)木質(zhì)部,具體過(guò)程如下:

        1)連通域標(biāo)記

        2)環(huán)形結(jié)構(gòu)圓心位置估計(jì)

        注:圖中各個(gè)變量為點(diǎn)的坐標(biāo),1m為組數(shù),為圖像寬度。

        Note: Variables in the graph are the coordinates of points,1mis the number of group,is the width of image.

        圖2 環(huán)形結(jié)構(gòu)圓心位置示意圖

        Fig.2 Schematic diagram of circular structure’s center position

        3)環(huán)形結(jié)構(gòu)判定

        ①采用Sobel算子提取木質(zhì)部邊緣,對(duì)木質(zhì)部上、下、左、右4個(gè)方向進(jìn)行檢測(cè),若距圓心(,)>min和

        ②當(dāng)上、下、左、右4個(gè)方向上無(wú)法檢測(cè)出2個(gè)及以上環(huán)形結(jié)構(gòu)時(shí),可能木質(zhì)部存在缺口,此時(shí)需將原檢測(cè)方向左右偏移45°,若有2個(gè)以上方向上存在環(huán)形結(jié)構(gòu),則認(rèn)為存在1個(gè)木質(zhì)部,如圖3b所示。

        注:Rmax為最大外徑,rmin為最小內(nèi)徑,(a,b)為圓心,r為實(shí)際檢測(cè)半徑。

        4)環(huán)形結(jié)構(gòu)提取

        以(,)為中心,用矩形框?qū)h(huán)形結(jié)構(gòu)標(biāo)出并計(jì)數(shù),實(shí)現(xiàn)環(huán)形結(jié)構(gòu)提取。

        上述木質(zhì)部提取流程如圖4所示。

        圖4 算法流程

        2 試驗(yàn)與結(jié)果分析

        2.1 試驗(yàn)方法

        為驗(yàn)證算法精度、穩(wěn)定性和速度等有效性,從已拍攝的木質(zhì)部圖像中隨機(jī)選取木質(zhì)部黏連程度各異的圖像30幅進(jìn)行木質(zhì)部分割提取。試驗(yàn)采用Window7旗艦版64位系統(tǒng)、主頻2.40 GHz、8 G內(nèi)存Asus筆記本電腦,軟件采用MatlabR2014a,具體試驗(yàn)分為4部分:

        1)為驗(yàn)證光照補(bǔ)償?shù)挠行?,從已拍攝的木質(zhì)部圖像中選取木質(zhì)部黏連程度各異的圖像30幅進(jìn)行試驗(yàn),采用均值聚類算法分別對(duì)原始圖像和同態(tài)濾波后圖像ab分量進(jìn)行聚類,分別采用分割誤差、過(guò)分割誤差OR和欠分割誤差UR對(duì)算法進(jìn)行定量評(píng)價(jià);

        2)為驗(yàn)證分割算法有效性,采用均值聚類算法和3R-G-B閾值分割算法[32]對(duì)同態(tài)濾波后木質(zhì)部圖像進(jìn)行分割,并對(duì)分割效果進(jìn)行比較;

        3)為檢驗(yàn)本文環(huán)形提取算法性能,對(duì)初分割后的30幅木質(zhì)部圖像進(jìn)行提取,試驗(yàn)軟件和硬件與木質(zhì)部初分割使用相同。分別采用分水嶺法[33]、凹點(diǎn)匹配法[34]和本文算法對(duì)木質(zhì)部進(jìn)行提取,最后將各算法提取結(jié)果與實(shí)際木質(zhì)部數(shù)量進(jìn)行對(duì)比,從而對(duì)各算法性能進(jìn)行評(píng)價(jià)。

        2.2 結(jié)果與分析

        1)采用聚類中心數(shù)目為3的均值聚類算法對(duì)30幅供試圖像處理,結(jié)果如圖5所示,聚類后紅色區(qū)域?yàn)槟繕?biāo)區(qū)域,分割效果如表1所示。其中,圖5a為動(dòng)態(tài)巴特沃斯同態(tài)濾波后圖像,可以看出,濾波后木質(zhì)部圖像細(xì)節(jié)、紋理、對(duì)比度和視覺(jué)效果得到明顯改善,光照均勻度增強(qiáng);圖5b是未進(jìn)行光照補(bǔ)償直接采用均值聚類算法分割后效果,由于受光照不足和不均影響,存在較嚴(yán)重的過(guò)分割現(xiàn)象;圖5c為同態(tài)濾波光照補(bǔ)償后均值聚類算法分割后效果,可以發(fā)現(xiàn)分割效果得到明顯改善,木質(zhì)部分割的更為完整。由表1知,采用均值聚類算法對(duì)未進(jìn)行光照補(bǔ)償處理的木質(zhì)部圖像分割誤差、過(guò)分割誤差OR和欠分割誤差UR均值分別為28.75%、9.23%和19.47%,同態(tài)濾波光照補(bǔ)償后,均值聚類算法分割誤差、過(guò)分割誤差OR和欠分割誤差UR均值分別為5.15%、1.48%和6.46%,較未進(jìn)行光照補(bǔ)償分別降低了23.60、7.75和13.01個(gè)百分點(diǎn)。由此可以發(fā)現(xiàn),采用動(dòng)態(tài)巴特沃斯同態(tài)濾波算法對(duì)木質(zhì)部圖像光照補(bǔ)償后,不但能改善圖像質(zhì)量和分割效果,而且還能夠提高分割算法分割精度;

        圖5 光照補(bǔ)償前后不同分割算法分割結(jié)果示例

        2)采用3R-G-B閾值分割算法對(duì)光照補(bǔ)償木質(zhì)部細(xì)胞圖像分割結(jié)果如圖5d所示,分割效果客觀評(píng)價(jià)如表1所示??梢园l(fā)現(xiàn),雖然部分分割效果優(yōu)于均值聚類算法,但大部分分割存在較大誤分割,整體分割效果不如均值聚類算法。由表1知,3R-G-B閾值分割算法對(duì)光照補(bǔ)償后木質(zhì)部細(xì)胞分割誤差、過(guò)分割誤差OR和欠分割誤差UR均值分別為15.58、6.06和11.42個(gè)百分點(diǎn),較光照補(bǔ)償后均值聚類算法分別增加了10.43、4.58和4.96個(gè)百分點(diǎn)。由上述結(jié)果可以發(fā)現(xiàn),針對(duì)木質(zhì)部細(xì)胞圖像,均值聚類算法分割效果優(yōu)于3R-G-B閾值分割算法,分割誤差、過(guò)分割誤差OR和欠分割誤差UR更低。

        表1 本文算法與3R-G-B算法對(duì)測(cè)試圖像分割效果

        注:、OR、UR分別為分割誤差、過(guò)分割誤差和欠分割誤差。

        Note:stands for segmentation error; OR stands for over-segmentation error; UR stands for under-segmentation error.

        圖6 本文算法與其他算法對(duì)測(cè)試圖像木質(zhì)部分割結(jié)果

        表2 不同算法對(duì)測(cè)試圖像木質(zhì)部檢測(cè)結(jié)果對(duì)比

        由圖6a和6b可以看出,當(dāng)木質(zhì)部黏連較簡(jiǎn)單時(shí),分水嶺法和凹點(diǎn)匹配法分割較準(zhǔn)確,但當(dāng)木質(zhì)部黏連程度復(fù)雜時(shí),分割效果較差,出現(xiàn)了較多誤分割。由圖6c可知,相較上述2種算法,本文提出的環(huán)形結(jié)構(gòu)提取算法分割較準(zhǔn)確。由表2可以看出,本文算法檢測(cè)木質(zhì)部數(shù)目平均相對(duì)誤差為2.26%,比分水嶺法低11.69個(gè)百分點(diǎn),比凹點(diǎn)匹配法低4.93個(gè)百分點(diǎn);從速度上看,本文算法平均耗時(shí)3.17 s,比分水嶺法快1.40 s,比凹點(diǎn)匹配法快4.88 s,但本文算法與凹點(diǎn)匹配法耗時(shí)均隨木質(zhì)部數(shù)目增多、黏連復(fù)雜度增高呈上升趨勢(shì),分水嶺法耗時(shí)相對(duì)穩(wěn)定;本文算法檢測(cè)的均方根誤差RMSE(root mean squared error,RMSE)為0.52%,約相當(dāng)于分水嶺法的1/3,約相當(dāng)于凹點(diǎn)匹配法的1/2。綜合衡量,本文算法較好。

        3 結(jié) 論

        本文以狹葉錦雞兒木質(zhì)部圖像為研究對(duì)象,針對(duì)黏連細(xì)胞分割問(wèn)題,通過(guò)光照不均校正、K均值聚類初分割和木質(zhì)部環(huán)形提取等算法,實(shí)現(xiàn)了圖像中木質(zhì)部的有效分割和提取。通過(guò)試驗(yàn)得出以下結(jié)論:

        1)采用均值聚類算法對(duì)光照補(bǔ)償后的木質(zhì)部圖像初分割誤差(section error,)、過(guò)分割誤差OR(over-segmentation error,OR)和欠分割誤差UR(under-segmentation error,UR)均值分別為5.15%、1.48%和6.46%,優(yōu)于3R-G-B閾值分割算法;

        2)本文提出的環(huán)形結(jié)構(gòu)提取算法能夠?qū)崿F(xiàn)木質(zhì)部準(zhǔn)確提取計(jì)數(shù),對(duì)初分割后木質(zhì)部圖像檢測(cè)的平均相對(duì)誤差為2.26%,比分水嶺法低11.69個(gè)百分點(diǎn),比凹點(diǎn)匹配法低4.93個(gè)百分點(diǎn)。從速度上看,本文算法平均耗時(shí)3.17 s,比分水嶺法快1.40 s,比凹點(diǎn)匹配法快4.88 s,但本文算法與凹點(diǎn)匹配法耗時(shí)均隨著木質(zhì)部數(shù)目增多、黏連復(fù)雜度增高呈上升趨勢(shì),分水嶺法耗時(shí)相對(duì)穩(wěn)定。本文算法檢測(cè)的均方根誤差RMSE(root mean squared error,RMSE)為0.52,約相當(dāng)于分水嶺法的1/3,約相當(dāng)于凹點(diǎn)匹配法的1/2。綜合衡量,本文算法優(yōu)于上述2種算法。

        當(dāng)木質(zhì)部黏連特別緊密和缺失嚴(yán)重時(shí),本文方法存在部分欠分割現(xiàn)象,在今后進(jìn)一步研究中,將結(jié)合深度學(xué)習(xí)中的語(yǔ)義分割和實(shí)例分割,提高黏連木質(zhì)部分割精度,改善本文算法不足。

        [1]董星光,曹玉芬,王昆,等. 中國(guó)3個(gè)主要梨砧木資源木質(zhì)部導(dǎo)管分子結(jié)構(gòu)及分布比較[J]. 植物學(xué)報(bào),2015,50(2):227-233.

        Dong Xingguang, Cao Yufen, Wang Kun, et al. Comparison of the characters and distribution of vessel elements in xylem among three main pear rootstocks in China[J]. Bulletin of Botany, 2015, 50(2): 227-233. (in Chinese with English abstract)

        [2]Tombesi S, Johnson R S, Day K R, et al. Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks[J]. Annals of Botany, 2010, 105(2): 327-331.

        [3]王明浩,張曉瑋,王婧如,等. 一種簡(jiǎn)易準(zhǔn)確測(cè)定木質(zhì)部導(dǎo)水率的新方法[J]. 植物生理學(xué)報(bào),2013,49(3):297-300.

        Wang Minghao, Zhang Xiaowei, Wang Jingru, et al. A simple and accurate method for measuring hydraulic conductivity in xylem[J]. Plant Physiology Journal, 2013, 49(3): 297-300. (in Chinese with English abstract)

        [4]Morris H, Plavcová L, Gorai M, et al. Vessel-associated cells in angiosperm xylem: Highly specialized living cells at the symplast-apoplast boundary[J]. American Journal of Botany, 2018, 105(2): 151-160.

        [5]Savi T, Petruzzellis F, Martellos S, et al. Vineyard water relations in a karstic area: deep roots and irrigation management[J]. Agriculture Ecosystems & Environment, 2018, 263(5): 53-59.

        [6]李葉舟,胡靜,朱少彰,等. 基于光照方向不一致的圖像盲取證技術(shù)[J]. 北京郵電大學(xué)學(xué)報(bào),2011,34(3):26-30.

        Li Yezhou, Hu Jing, Zhu Shaozhang, et al. Exposing digital image forgeries by detecting inconsistence in light source direction[J]. Journal of Beijing University of Posts and Telecommunications, 2011, 34(3): 26-30. (in Chinese with English abstract)

        [7]Felix B, Carsten M, Michael S, et al. An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy[J]. BMC Bioinformatic, 2013, 14(1): 297-310.

        [8]Chitade A Z, Katiyar S K. Colour based image segmentation using-means clustering[J]. International Journal of Engineering Science and Technology, 2010, 2(10): 5319-5325.

        [9]Dzyubachyk O, Van Cappellen W, Essers J, et al. Advanced level set-based cell tracking in time-lapse fluorescence microscopy[J]. IEEE Transactions on Medical Imaging, 2010, 29(3): 852-867.

        [10]Duartea M, Alvarenga A, Azevedo C, et al. Evaluating geodesic active contours in microcalcifications segmentation on mammograms[J]. Computer Methods Programs Biomedical, 2015, 122(3): 304-315.

        [11]宋懷波,張傳棟,潘景朋,等. 基于凸殼的重疊蘋果目標(biāo)分割與重建算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(3):163-168.

        Song Huaibo, Zhang Chuandong, Pan Jingpeng, et al. Segmentation and reconstruction of overlapped apple images based on convex hull[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 163-168. (in Chinese with English abstract)

        [12]Salim A, Emel O, Cigdem G D. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images[J]. International Society for Advancement of Cytometry, 2014, 85(1): 480-490.

        [13]Miao H, Xiao C. Simultaneous segmentation of leukocyte and erythrocyte in microscopic images using a marker-controlled watershed algorithm [J]. Computational and Mathematical Methods in Medicine, 2018, 2018(9): 1-9.

        [14]Hasan S M K, Ahmad M. Two-step verification of brain tumor segmentation using watershed-matching algorithm[J]. Brain Informatics, 2018, 5(2): 1-11.

        [15]Albayrak A, Bilgin G. Automatic cell segmentation in histopathological images via two-staged superpixel-based algorithms[J]. Medical and Biological Engineering and Computing, 2019, 57(3): 653-665.

        [16]閆沫. 基于組件樹(shù)濾波及快速區(qū)域合并的分水嶺分割算法[J]. 計(jì)算機(jī)科學(xué),2013,40(1):282-285.

        Yan Mo. Watershed algorithm based on image filtering by using component tree and fast region merging[J]. Computer Science, 2013, 40(1): 282-285. (in Chinese with English abstract)

        [17]趙紅英,周中順,孫存杰,等. 一種新的用于宮頸癌粘連細(xì)胞圖像分割的分水嶺算法[J]. 軍事醫(yī)學(xué),2014,32(12):972-975.

        Zhao Hongying, Zhou Zhongshun, Sun Cunjie, et al. A new modified watershed algorithm for image segmentation in cervical cancer cell adhesion[J]. Military Medical Sciences, 2014, 32(12): 972-975. (in Chinese with English abstract)

        [18]繆慧司,梁光明,劉任任,等. 結(jié)合距離變換與邊緣梯度的分水嶺血細(xì)胞分割[J]. 中國(guó)圖象圖形學(xué)報(bào),2016,21(2):192-198.

        Liao Huisi, Liang Guangming, Liu Renren, et al. Watershed algorithm using edge gradient combined with distance transformation for segmentation of blood cells[J]. Journal of Image and Graphics, 2016, 21(2): 192-198. (in Chinese with English abstract)

        [19]張建華,韓書(shū)慶,翟治芬,等. 改進(jìn)自適應(yīng)分水嶺方法分割棉花葉部粘連病斑[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):165-174.

        Zhang Jianhua, Han Shuqing, Zhai Zhifen, et al. Improved adaptive watershed method for segmentation of cotton leaf adhesion lesions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 165-174. (in Chinese with English abstract)

        [20]Yao Y, Wu W, Yang T, et al. Head rice rate measurement based on concave point matching[J]. Scientific Reports, 2017, 7: 41353.

        [21]Zhang G, Sun Q, Jiang S, et al. Automatic seed picking for brachytherapy postimplant validation with 3D CT images[J]. International Journal of Computer Assisted Radiology and Surgery, 2017, 12(4): 1-9.

        [22]Zhang W, Li H. Automated segmentation of overlapped nuclei using concave point detection and segment grouping[J]. Pattern Recognition, 2017, 71: 349-360.

        [23]楊輝華,趙玲玲,潘細(xì)朋,等. 基于水平集和凹點(diǎn)區(qū)域檢測(cè)的粘連細(xì)胞分割方法[J]. 北京郵電大學(xué)學(xué)報(bào),2016,39(6):11-16.

        Yang Huihua, Zhao Lingling, Pan Xipeng, et al. Overlapping cell segmentation based on level set and concave area detection[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(6): 11-16. (in Chinese with English abstract)

        [24]王小鵬,姚麗娟,文昊天,等. 形態(tài)學(xué)多尺度重建結(jié)合凹點(diǎn)匹配分割枸杞圖像[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(2):212-218.

        Wang Xiaopeng, Yao Lijuan, Wen Haotian, et al. Wolfberry image segmentation based on morphological multi-scale reconstruction and concave points matching[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(2): 212-218. (in Chinese with English abstract)

        [25]李毅念,杜世偉,姚敏,等. 基于小麥群體圖像的田間麥穗計(jì)數(shù)及產(chǎn)量預(yù)測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(21):185-194.

        Li Yinian, Du Shiwei, Yao Min, et al. Method for wheatear counting and yield predicting based on image of wheatear population in field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(21): 185-194. (in Chinese with English abstract)

        [26]王海超,王春光,宗哲英,等. 基于噪聲類型及強(qiáng)度估計(jì)的狹葉錦雞兒葉切片圖像盲去噪[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):229-238.

        Wang Haichao, Wang Chunguang, Zong Zheying, et al. Blind image denoising of microscopic slices image of Caragana stenophylla Pojark based on noise type and intensity estimation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 229-238. (in Chinese with English abstract)

        [27]焦竹青,徐保國(guó). HSV變換和同態(tài)濾波的彩色圖像光照補(bǔ)償[J]. 計(jì)算機(jī)工程與應(yīng)用,2010,46(30):142-144.

        Jiao Zhuqing, Xu Baoguo. Color image illumination compensation based on HSV transform and homomorphic filtering[J]. Computer Engineering and Applications, 2010, 46(30): 142-144. (in Chinese with English abstract)

        [28]張亞飛,謝明鴻. 基于HSI和局部同態(tài)濾波的彩色圖像增強(qiáng)算法[J]. 計(jì)算機(jī)應(yīng)用與軟件,2013,30(12):303-307.

        Zhang Yafei, Xie Minghong. Colour image enhancement algorithm based on HIS and local homomorphic filtering[J]. Computer Applications and Software, 2013, 30(12): 303-307. (in Chinese with English abstract)

        [29]焦竹青,徐保國(guó). 基于同態(tài)濾波的彩色圖像光照補(bǔ)償方法[J]. 光電子,激光,2010,21(4):602-605.

        Jiao Zhuqing, Xu Baoguo. Color image illumination compensation based on homomorphic filtering[J]. Journal of Optoelectronics. Laser, 2010, 21(4): 602-605. (in Chinese with English abstract)

        [30]徐黎明,呂繼東. 基于同態(tài)濾波和均值聚類算法的楊梅圖像分割[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):202-208.

        Xu Liming, Lü Jidong. Bayberry image segmentation based on homomorphic filtering and-means clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 202-20. (in Chinese with English abstract)

        [31]Azetsu T, Suetake N. Hue-preserving image enhancement in CIELAB color space considering color gamut[J]. Optical Review, 2019, 26(12): 1-12.

        [32]宋懷波,屈衛(wèi)鋒,王丹丹,等. 基于光照無(wú)關(guān)圖理論的蘋果表面陰影去除方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):168-176.

        Song Huaibo, Qu Weifeng, Wang Dandan, et al. Shadow removal method of apples based on illumination invariant image[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 168-176. (in Chinese with English abstract)

        [33]張紅民,王一博. 一種改進(jìn)的細(xì)胞圖像分水嶺分割方法[J]. 重慶理工大學(xué)學(xué)報(bào),2012,26(11):59-62.

        Zhang Hongmin, Wang Yibo. An improved method of cell images segmentation based on watershed[J]. Journal of Chongqing University of Technology, 2012, 26(11): 59-62. (in Chinese with English abstract)

        [34]陶德威. 基于凹點(diǎn)匹配和分水嶺變換的車輛圖像分割算法研究[D]. 南昌:南昌大學(xué),2016.

        Tao Dewei. Research on the Vehicle Image Segmentation Algorithm Based on Concave Points Matching and Watershed Transformation[D]. Nanchang: Nanchang University, 2016. (in Chinese with English abstract)

        An extraction xylem images ofPojark based on-means clustering and circle structure extraction algorithm

        Wang Haichao, Zong Zheying, Zhang Wenxia, Yin Xiaofei, Wang Xiaorong, Zhang Haijun, Liu Yanqiu, Shi Xin, Wang Chunguang※

        (,010018,)

        In the slice images of the xylem ofPojarkthis paper proposed a novel algorithm that combined the-means clustering and circle structure extraction algorithm, to achieve much more accurate information data of the xylem than that from the traditional image processing algorithms. Firstly, the dynamic Butterworth homomorphic filtering can be used to compensate for illumination variations on V components in the 30 imagesofPojark xylem in a HSV color space; then the-means clustering can be used to initially segment theandcomponents of the pre-processed xylem images under the Lab color space with a cluster of 3,finally, the circle structure extraction algorithm can be used to accurately cluster and extract the specific feature of the xylem images. The processing results showed that the Butterworth homomorphic filtering have a good effect on the illumination compensation for the various illumination variations in a series of different images, indicating some high resolution information in detail, texture, contrast and visual effect of the images. After being initially segmented by-means clustering, the illumination compensated xylem images had an average section error () of 5.15%, over-segmentation error (OR) of 1.48% and under-segmentation error (UR) of 6.46%, respectively, which decreased by 23.60, 7.75 and 13.01 percentage points, respectively compared to the xylem images before the illumination compensation. The segmentation accuracy was enhanced significantly, which decreased 10.43 percentage points in, 4.58 percentage points in OR and 4.96 percentage points in UR to 3R-G-B threshold value clustering algorithm after the illumination compensation. The average mean error of the circle structure extraction for the xylem images after the initial segment reached 2.26%, which was 11.69 percentage points lower than that of the watershed method, and 4.93 percentage points lower than that of pit matching method. The average duration of the algorithm in this case was 3.66 s on each image, saving 0.95 and 4.78 s compared to that of the watershed and pit matching method, respectively. The root mean squared error (RMSE) of the algorithm was 0.52%, one third of that from the watershed and half of that from the pit matching. The proposed combined algorithm can automatically segment and extract the xylem information data fromPojark, particularly on some images with the complex xylem structure, uneven illumination and uneven internal distribution, indicating better than the other two types of segmentation algorithms. These findings can provide fundamental reference for the promising extraction algorithm and the image processing of the xylem from other plants.

        extract; algorithm; xylem;-means clustering; circle structure extraction;Pojark

        王海超,宗哲英,張文霞,殷曉飛,王曉蓉,張海軍,劉艷秋,石 鑫,王春光. 采用均值聚類和環(huán)形結(jié)構(gòu)的狹葉錦雞兒木質(zhì)部提取算法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):193-199.doi:10.11975/j.issn.1002-6819.2020.01.022 http://www.tcsae.org

        Wang Haichao, Zong Zheying, Zhang Wenxia, Yin Xiaofei, Wang Xiaorong, Zhang Haijun, Liu Yanqiu, Shi Xin, Wang Chunguang. An extraction xylem images ofPojark based on-means clustering and circle structure extraction algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 193-199. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.022 http://www.tcsae.org

        2019-08-22

        2019-12-26

        內(nèi)蒙古農(nóng)業(yè)大學(xué)高層次人才科研啟動(dòng)項(xiàng)目(NDYB201857);內(nèi)蒙古自治區(qū)自然科學(xué)基金項(xiàng)目(2019BS06003,2017MS0514,2017MS0361);教育部“云數(shù)融合科教創(chuàng)新”基金項(xiàng)目(2017A10019);內(nèi)蒙古自治區(qū)博士研究生科研創(chuàng)新項(xiàng)目(B20151012902Z);實(shí)驗(yàn)室開(kāi)放項(xiàng)目(20180104)

        王海超,博士,講師,研究方向:荒漠草原典型植物切片圖像特征與草原早期退化相關(guān)性研究。Email:wanghaichao1129@163.com

        王春光,教授,博士生導(dǎo)師,研究方向:圖像與數(shù)字化研究。Email:jdwcg@imau.edu.cn

        10.11975/j.issn.1002-6819.2020.01.022

        TP391.41

        A

        1002-6819(2020)-01-0193-07

        猜你喜歡
        木質(zhì)部分水嶺光照
        節(jié)能環(huán)保 光照萬(wàn)家(公益宣傳)
        節(jié)能環(huán)保光照萬(wàn)家(公益宣傳)
        不同品種吊蘭根初生木質(zhì)部原型的觀察與比較
        植物研究(2021年2期)2021-02-26 08:40:10
        春光照瑤鄉(xiāng)
        2019,一定是個(gè)分水嶺!
        鎘污染來(lái)源對(duì)蘿卜鎘積累特性的影響
        蘋果樹(shù)木質(zhì)部及韌皮部組織基因組DNA的提取及質(zhì)量檢測(cè)
        鹽分脅迫對(duì)2種楊樹(shù)次生木質(zhì)部導(dǎo)管特征的影響
        河南科技(2014年4期)2014-02-27 14:06:59
        “華北第一隧”——張涿高速分水嶺隧道貫通
        美女在线一区二区三区视频| 久久久国产精品樱花网站| 亚洲av影院一区二区三区四区| 免费在线av一区二区| 成人久久久精品乱码一区二区三区| 国产精品av在线| 亚洲欧美日韩中文无线码| 中文字幕精品一二三区| 蜜桃一区二区三区在线视频| 亚洲综合网国产精品一区| 成人无码α片在线观看不卡| 国产麻豆精品一区二区三区v视界| 久久无码高潮喷水抽搐| 亚洲精品国产综合久久| 白丝爆浆18禁一区二区三区| 三上悠亚av影院在线看| 国产精品久久久久久久y| 国产精品国产传播国产三级| 夜夜爽日日澡人人添| 男女肉粗暴进来120秒动态图| 老熟女一区二区免费| 中文字幕中文字幕777| 国产乱妇无乱码大黄aa片| 激情亚洲一区国产精品| 国产亚洲精选美女久久久久| 久久精品一区二区熟女| 樱桃视频影院在线播放 | 富婆如狼似虎找黑人老外| 亚洲嫩模一区二区三区视频| 亚洲国产成人久久精品一区| 成年女人色毛片| 四虎在线播放免费永久视频| 一区二区三区在线观看精品视频| 米奇欧美777四色影视在线| 黑人大荫道bbwbbb高潮潮喷| 久久中文字幕日韩无码视频| 国产一区二区三区在线观看黄| 久久精品国产亚洲不av麻豆| 国产精品一区一区三区| www夜片内射视频在观看视频| 中文字幕无码不卡一区二区三区|