羅小平,彭子哲,劉 倩,郭 峰,章金鑫
電場(chǎng)對(duì)微細(xì)通道內(nèi)R141b制冷劑流動(dòng)沸騰壓降的影響
羅小平,彭子哲,劉倩,郭峰,章金鑫
(華南理工大學(xué)機(jī)械與汽車工程學(xué)院,廣州 510640)
在農(nóng)業(yè)工程領(lǐng)域,微細(xì)通道散熱技術(shù)在農(nóng)產(chǎn)品培育系統(tǒng)、農(nóng)業(yè)機(jī)械、農(nóng)產(chǎn)品干燥系統(tǒng)中有著廣泛的應(yīng)用。通過施加電場(chǎng)可強(qiáng)化微細(xì)通道換熱系統(tǒng)的傳熱效率,為探究電場(chǎng)對(duì)微細(xì)通道內(nèi)制冷劑流動(dòng)沸騰阻力的影響,該文采用了2種電極布置方式(針狀和線狀),以制冷劑R141b為試驗(yàn)工質(zhì),在系統(tǒng)壓力為140 kPa,工質(zhì)入口溫度32.5 ℃、質(zhì)量流率277.35~531.75 kg/(m2·s)、熱流密度7.50~21.49 kW/m2、電壓0~850 V工況下,在截面尺寸為2 mm×2 mm的矩形微細(xì)通道內(nèi)進(jìn)行流動(dòng)沸騰試驗(yàn),探究直流電場(chǎng)對(duì)微細(xì)通道內(nèi)R141b流動(dòng)沸騰壓降特性影響。研究結(jié)果表明:在本文試驗(yàn)工況下,電場(chǎng)會(huì)增大微細(xì)通道內(nèi)的摩擦壓降,針狀與線狀電極電場(chǎng)作用下的微細(xì)通道內(nèi)摩擦壓降分量在總壓降中所占比例均比無電極作用下的更大;電場(chǎng)作用下單位長(zhǎng)度兩相摩擦壓降隨電壓、熱流密度的增大而增大,針狀電極與線狀電極電場(chǎng)作用下平均單位長(zhǎng)度兩相摩擦壓降分別比無電極作用下增加0.7%~15.4%和1.3%~18.7%;電壓為0~250 V時(shí),針狀電極對(duì)壓降的影響效果大于線狀電極,電壓大于400 V后,線狀電極對(duì)壓降的影響效果更為顯著。通過COMSOL軟件對(duì)6 mm長(zhǎng)微細(xì)通道內(nèi)2種電場(chǎng)的分布進(jìn)行了模擬,模擬結(jié)果表明相同電壓作用下,針狀電極產(chǎn)生的電場(chǎng)強(qiáng)度最大值超過線性電極,但線狀電極的電場(chǎng)有效作用范圍超過針狀電極。該文研究結(jié)果可為通過施加電場(chǎng)提高微細(xì)通道換熱器的性能實(shí)現(xiàn)微細(xì)通道高效節(jié)能提供新思路。
制冷劑;電場(chǎng);電極;微細(xì)通道;流動(dòng)沸騰;壓降
微通道散熱在集成電路、農(nóng)業(yè)機(jī)械、航空等領(lǐng)域有著越來越廣泛的應(yīng)用[1],在農(nóng)業(yè)工程中,LED光源系統(tǒng)對(duì)農(nóng)作物的生長(zhǎng)具有重要意義[2],然而LED光源的散熱卻存在一定的問題,將微細(xì)通道散熱技術(shù)應(yīng)用于LED光源值得深入研究,此外微細(xì)通道在太陽能電池的散熱、農(nóng)產(chǎn)品干燥系統(tǒng)的設(shè)計(jì)等方面也有重要的前景[3-4]。
近年來,國(guó)內(nèi)外學(xué)者研究發(fā)現(xiàn)電場(chǎng)可以明顯地改善散熱器傳熱性能[5-9],黃烜等[10]研究了電場(chǎng)分布對(duì)R123沸騰傳熱的影響,表明電場(chǎng)的強(qiáng)化傳熱是電場(chǎng)強(qiáng)度和電場(chǎng)均勻性共同作用的結(jié)果。Zhang等[11]研究了豎直微細(xì)通道內(nèi)針狀電極和線狀電極電場(chǎng)對(duì)流動(dòng)沸騰傳熱的強(qiáng)化作用,試驗(yàn)結(jié)果表明施加電壓≤400 V時(shí),針狀電極電場(chǎng)強(qiáng)化效果好;電壓≥550 V后,線狀電極強(qiáng)化效果好。利用電場(chǎng)來強(qiáng)化傳熱具有簡(jiǎn)單、快速、低功耗等優(yōu)點(diǎn)[12],流動(dòng)沸騰壓降是設(shè)計(jì)微細(xì)通道兩相冷卻系統(tǒng)時(shí)要考慮的關(guān)鍵參數(shù)[13],所以在研究電場(chǎng)的流動(dòng)沸騰強(qiáng)化傳熱時(shí),壓降是非常重要的性能指標(biāo)。Bryan等[14]研究了常規(guī)直徑光滑管和強(qiáng)化管中電場(chǎng)對(duì)R134a與R404a的流動(dòng)沸騰壓降的影響,研究表明垂直于流動(dòng)方向的電場(chǎng)作用力導(dǎo)致了流動(dòng)阻力增加,從而增加了壓降。Cotton等[15]研究了直流和交流電壓作用下電場(chǎng)對(duì)環(huán)形管中HFC-134a流動(dòng)沸騰壓降的影響,表明電場(chǎng)易于增加氣態(tài)與液態(tài)的動(dòng)量相互作用,使得壓力損失沿管道長(zhǎng)度的方向,電壓越強(qiáng),壓降越大。McGranaghan等[16]研究了60 Hz交流電壓對(duì)細(xì)通道內(nèi)HFE7000流動(dòng)沸騰特性的影響,結(jié)果表明電壓為0到3 kV時(shí),壓降隨電壓的增加而緩慢增加,電壓為4~7 kV時(shí),壓降隨電壓增大而迅速增加,電壓為7~10 kV時(shí),壓降隨電壓的增加而減小。由于線狀與針狀電極電場(chǎng)在不同電壓范圍下對(duì)流動(dòng)沸騰傳熱強(qiáng)化的規(guī)律不同,且目前電場(chǎng)對(duì)流動(dòng)沸騰壓降影響的研究較為匱乏,本文以R141b為試驗(yàn)工質(zhì),在分別布置針狀和線狀2種電極的矩形微細(xì)通道內(nèi)進(jìn)行流動(dòng)沸騰試驗(yàn),探究針狀與線狀2種電極電場(chǎng)對(duì)微細(xì)通道內(nèi)R141b流動(dòng)沸騰壓降特性的影響。
試驗(yàn)系統(tǒng)如圖1a所示,該試驗(yàn)系統(tǒng)主要由注液與循環(huán)流動(dòng)模塊、工質(zhì)環(huán)境控制模塊(加熱、冷卻、壓力控制)、試驗(yàn)段模塊、試驗(yàn)數(shù)據(jù)采集模塊4部分組成,其中試驗(yàn)段模塊如圖1b所示,試驗(yàn)段模塊由固定蓋板、聚四氟乙烯蓋板、玻璃板、鋁制微細(xì)通道板、加熱板及鋁制基座組成。試驗(yàn)開始前進(jìn)行氮?dú)獬錃鈾z漏,而后抽真空進(jìn)行試驗(yàn),鋁制基座側(cè)面布有測(cè)溫孔和測(cè)壓孔。本試驗(yàn)平臺(tái)的鋁制矩形微通道試驗(yàn)段由微細(xì)電火花切割而成,規(guī)格為240 mm×42 mm×19 mm,由6條矩形微通道組成,其中單個(gè)微細(xì)通道寬ch為2 mm,微細(xì)通道高ch為2 mm,2個(gè)相鄰微細(xì)通道之間的壁厚w為5 mm,整塊微細(xì)通道板長(zhǎng)為240 mm,板寬為42 mm,板高為19 mm,鋁制微細(xì)通道板示意圖如圖1c所示。
圖1 試驗(yàn)平臺(tái)
在微通道流動(dòng)沸騰傳熱過程中,通道換熱表面特性參數(shù)對(duì)微細(xì)通道的流動(dòng)沸騰阻力特性有一定影響,課題組前期對(duì)此進(jìn)行了大量研究,如文獻(xiàn)[17]研究了微細(xì)通道表面潤(rùn)濕性對(duì)通道內(nèi)流動(dòng)沸騰摩擦阻力的影響,研究發(fā)現(xiàn)超疏水表面微細(xì)通道內(nèi)的總壓降、兩相摩擦壓降最大,普通光滑表面次之,超親水表面微細(xì)通道內(nèi)的總壓降、兩相摩擦壓降最小,這是因?yàn)闈?rùn)濕性差的表面產(chǎn)生的汽泡受到的表面張力較大,汽泡脫離直徑大、脫離頻率低,更容易發(fā)展成受限汽泡,擠壓壁面,導(dǎo)致壓降增大。文獻(xiàn)[18]研究了微細(xì)通道表面粗糙度對(duì)通道內(nèi)流動(dòng)沸騰摩擦阻力的影響,結(jié)果表明壁面粗糙度大的微細(xì)通道內(nèi)兩相摩擦壓降大,原因是粗糙度大的表面會(huì)生成更多的汽泡使通道內(nèi)流動(dòng)擾動(dòng)更加劇烈及通道內(nèi)形成的液膜表面不平滑,使得壓降增大。此外,通道表面特性參數(shù)對(duì)傳熱特性也有一定影響,如通道表面粗糙度越大,傳熱強(qiáng)化效果越好[19],超疏水表面ONB的過熱度最低、超親水次之、普通光滑表面最高[20]等。目前對(duì)于將電場(chǎng)作用于微細(xì)通道換熱系統(tǒng)的研究較少,電場(chǎng)影響微細(xì)通道內(nèi)壓降的研究也十分匱乏,影響機(jī)理也不完全清楚,電場(chǎng)影響壓降的機(jī)理需要進(jìn)一步的研究。本文在微細(xì)通道上分別布置針狀、線狀2種電極,對(duì)電極施加直流電壓產(chǎn)生電場(chǎng),研究針狀、線狀電極產(chǎn)生的電場(chǎng)對(duì)微細(xì)通道內(nèi)流動(dòng)沸騰壓降的影響,并采用COMSOL軟件對(duì)電場(chǎng)分布進(jìn)行模擬,從而對(duì)電場(chǎng)影響壓降的機(jī)理進(jìn)行解釋,為設(shè)計(jì)新型微細(xì)通道換熱器提供思路。
為了探究電場(chǎng)作用下微細(xì)通道內(nèi)R141b的流動(dòng)沸騰壓降特性,本文采用2種不同的電極安裝方式,在微細(xì)通道的局部相關(guān)位置設(shè)置針狀及線狀電極,通過施加不同強(qiáng)度的直流電源,在微細(xì)通道內(nèi)形成不同強(qiáng)度的非均勻電場(chǎng)。同一通道相鄰針狀電極之間距離為25 mm,針狀電極是由不銹鋼硬絲加工而成,并將其豎直向下固定于聚四氯乙烯蓋板上的電極孔內(nèi),針狀電極長(zhǎng)度為21 mm,電極頂端位于單個(gè)矩形微細(xì)通道幾何中心線上方,針狀電極放電頂端距離通道底面1.7 mm,單個(gè)矩形通道上針狀電極的布置方式如圖2a所示,單個(gè)矩形通道上方布有7根針狀電極,共42根。線狀電極由不銹鋼軟絲加工而成,線狀電極的一端從聚四氯乙烯蓋板上第一排某個(gè)電極孔穿入,另一端由蓋板上第六排對(duì)應(yīng)的電極孔穿出,兩端拉緊固定使線狀電極緊貼在通道上方的蓋板內(nèi)側(cè),并與矩形通道中心線相平行,單個(gè)線狀電極長(zhǎng)167 mm,線狀電極中心軸線距離相應(yīng)矩形通道底面1.85 mm,每個(gè)矩形通道上方布有一根線狀電極,共6根。單個(gè)線狀電極的布置方式如圖2b所示。為了盡量減少電極本身對(duì)微細(xì)通道內(nèi)所產(chǎn)生的汽泡運(yùn)動(dòng)的阻力影響,2種電極的直徑均為0.3 mm,且聚四氟乙烯蓋板上每個(gè)電極孔做了密封處理。
由于R141b制冷劑在不同壓力下飽和溫度不同,本文系統(tǒng)設(shè)計(jì)壓力為140 kPa,工質(zhì)對(duì)應(yīng)飽和溫度為41.6 ℃,為使微細(xì)通道內(nèi)飽和沸騰段以泡狀流為主,選擇工質(zhì)入口溫度為32.5 ℃,在質(zhì)量流率范圍為277.35~531.75 kg/(m2·s),熱流密度范圍為7.50~21.49 kW/m2,電壓范圍為0~850 V的試驗(yàn)工況下進(jìn)行2種電極布置的電場(chǎng)作用下微細(xì)通道內(nèi)R141b流動(dòng)沸騰試驗(yàn)。
注:L1為沿制冷劑流動(dòng)方向第一個(gè)電極孔距微細(xì)通道入口的距離,m;L2為單個(gè)微細(xì)通道上相鄰電極孔之間的距離,m。
試驗(yàn)工質(zhì)R141b自下而上流經(jīng)豎直放置的試驗(yàn)段,其入口溫度32.5 ℃比相應(yīng)壓力下的R141b飽和溫度低,隨著微細(xì)通道下加熱板的不斷加熱,試驗(yàn)工質(zhì)R141b從一開始的單相液態(tài)逐漸變?yōu)閮上鄽庖夯旌蠎B(tài),因此存在單相段長(zhǎng)度sp和兩相段長(zhǎng)度tp,其計(jì)算為[21]
式中sp為微細(xì)通道內(nèi)單相段長(zhǎng)度,m;tp為微細(xì)通道內(nèi)兩相段長(zhǎng)度,m;p,l為工質(zhì)液相定壓比熱容,kJ/(kg·K);為試驗(yàn)工質(zhì)的質(zhì)量流量,kg/s;sat為制冷劑基于局部壓力的飽和溫度,K;ave為微細(xì)通道試驗(yàn)段的平均有效熱流密度,kW/m2;ch為微細(xì)通道數(shù)量,ch=6;ch為單個(gè)矩形微細(xì)通道的寬度,m;w為單個(gè)矩形通道側(cè)壁寬度的2倍,m;in為試驗(yàn)工質(zhì)的入口溫度,K;為試驗(yàn)段總長(zhǎng),m;e,n為傳遞給試驗(yàn)段第對(duì)測(cè)溫點(diǎn)的局部有效熱流密度,kW/m2,1≤≤4;為鋁的導(dǎo)熱系數(shù);up,n為第對(duì)測(cè)溫點(diǎn)的上測(cè)點(diǎn)溫度,K;d,n為第對(duì)測(cè)溫點(diǎn)的下測(cè)點(diǎn)溫度,K;為上、下測(cè)量壁面溫度點(diǎn)之間的距離,m。
試驗(yàn)段R141b總壓降Δtot的值為工質(zhì)入口壓力in減去出口壓力out,由單相摩擦壓降Δsp,f、單相重力壓降Δsp,g、兩相加速度壓降Δtp,a、兩相摩擦壓降Δtp,f、兩相重力壓降Δtp,g、進(jìn)口突縮壓降Δc以及出口突擴(kuò)壓降Δe組成,其中單相摩擦壓降與單相重力壓降組成單相流壓降Δsp,兩相摩擦壓降壓降、兩相加速度壓降與兩相重力壓降組成兩相流壓降Δtp,對(duì)于兩相壓降的計(jì)算,采用分相模型,總壓降為4個(gè)部分,分別為摩擦壓降Δf、重力壓降Δg、加速度壓降Δa和進(jìn)出口壓降Δce:
重力壓降由式(5)計(jì)算[22]
式中L、G分別為液相、氣相密度,kg/m3;e,out為微細(xì)通道出口熱力平衡干度[23]。
加速度壓降由式(6)計(jì)算[22]
通道進(jìn)出口壓降為
通道總摩擦壓降為
由于在微細(xì)通道流動(dòng)沸騰試驗(yàn)中的兩相摩擦壓降是非常重要的參數(shù),而改變熱流密度的大小、電場(chǎng)強(qiáng)度等條件會(huì)對(duì)微細(xì)通道內(nèi)兩相段的長(zhǎng)度造成影響,因此本文以單位兩相流摩擦壓降大小Δftp作為重要參考。
其中
式中h為水力直徑,m;sp為單相段摩擦系數(shù);為寬高比,chch;LO為全液相雷諾數(shù)。
試驗(yàn)采用精度為0.5%的LWGY渦輪流量計(jì),精度為0.5%的HC3160-HVG4壓力傳感器,精度為0.2%的MIK-ST500溫度變送器和WRNK-191熱電偶,根據(jù)誤差傳遞原理[25],本文主要物理量誤差如表1所示。
表1 主要物理量的誤差
3.1.1 無電極作用下的壓降
圖3為在試驗(yàn)運(yùn)行壓力為140 kPa、工質(zhì)入口溫度為32.5 ℃、質(zhì)量流率為277.35~531.75 kg/(m2·s)、熱流密度為7.50~21.49 kW/m2微細(xì)通道內(nèi)R141b的流動(dòng)沸騰壓降。由圖3a可知,在質(zhì)量流率為277.35~531.75 kg/(m2·s)的范圍內(nèi),隨著質(zhì)量流率的增加,重力壓降、加速度壓降、進(jìn)出口壓降的變化趨勢(shì)皆不明顯,而摩擦壓降隨微細(xì)通道內(nèi)R141b質(zhì)量流率的增加而增加;由圖3b可知,在熱流密度為7.50~21.49 kW/m2的范圍內(nèi),隨著熱流密度增加,摩擦壓降、加速度壓降、進(jìn)出口壓降呈現(xiàn)增大的趨勢(shì),重力壓降隨熱量流密度的增大而減小。由圖3可知,摩擦壓降在總壓降中占據(jù)了最大的比例,為66.2%~73.3%,重力壓降、加速度壓降、進(jìn)出口壓降在總壓降中占比分別為14.9%~28.8%、3.6%~9.4%、1.5%~2.8%。
注:圖3a中,P=140 Pa,Tin=32.5 ℃,qave=12.46 kW·m-2;圖3b中,P=140 Pa,Tin=32.5 ℃,G=277.35 kg·m-2·s-1;ΔPf、ΔPg、ΔPa、ΔPce分別為摩擦壓降、重力壓降、加速度壓降、進(jìn)出口壓降,Pa。
3.1.2 針狀和線狀電極作用下的壓降
圖4a和圖4b為針狀和線狀電極在不同電壓作用下微細(xì)通道內(nèi)R141b流動(dòng)沸騰各壓降組成的變化情況。
Note: P=140Pa, Tin=32.5℃.
由圖4a和圖4b可知,在同一熱流密度和質(zhì)量流率下,針狀電極電場(chǎng)作用下的摩擦壓降會(huì)隨著電壓增加而增加,重力壓降、加速度壓降與進(jìn)出口壓降無明顯變化規(guī)律;線狀電極電場(chǎng)作用下,摩擦壓降在0~250 V電壓范圍內(nèi)無明顯變化,在250~850 V電壓范圍內(nèi)隨電壓的增加而增加,重力壓降、加速度壓降與進(jìn)出口壓降在0~850 V電壓范圍內(nèi)無明顯變化規(guī)律。針狀電極電場(chǎng)作用下,摩擦壓降在總壓降中占比67.8%~76.3%;線狀電極作用下,總壓降中摩擦壓降的占比為69.8%~78.6%,與無電極作用下摩擦壓降在總壓降中占比例對(duì)比可知,2種電極作用下的摩擦壓降在總壓降中所占比例均有增大,其原因是由于電場(chǎng)對(duì)汽泡產(chǎn)生作用,使汽泡運(yùn)動(dòng)變得更加復(fù)雜,汽泡運(yùn)動(dòng)對(duì)流體產(chǎn)生擾動(dòng),引起摩擦壓降增大。
圖5為2種電極作用下的微細(xì)通道內(nèi)R141b流動(dòng)沸騰單位長(zhǎng)度兩相摩擦壓降隨電壓變化曲線圖。由圖5可知,在本文試驗(yàn)的熱流密度范圍內(nèi),2種電極作用下的單位長(zhǎng)度兩相摩擦壓降隨著熱流密度的增加而增大,這是因?yàn)楦邿崃髅芏认?,微?xì)通道內(nèi)沸騰更加劇烈,流體的質(zhì)量含氣率與汽泡
速度加快[26],使得氣液、液體與微細(xì)通道壁面摩擦加強(qiáng);在同一熱流密度下,單位長(zhǎng)度兩相摩擦壓降隨電壓的增大而增大。針狀電極作用下,施加0、250、400、550、700和850 V電壓下的微細(xì)通道內(nèi)隨熱流密度變化的R141b流動(dòng)沸騰平均單位長(zhǎng)度兩相摩擦壓降比無電極作用下的平均單位長(zhǎng)度兩相摩擦壓降分別提升0.7%、6.6%、9.2%、11.8%、13.5%、15.4%;線狀電極作用下施加0、250、400、550、700和850 V電壓下的平均單位長(zhǎng)度兩相摩擦壓降比無電極作用下分別提升1.3%、2.0%、10.7%、13.6%、16.8%、18.7%。由此可知,在運(yùn)行壓力140 kPa、工質(zhì)入口溫度為32.5 ℃、質(zhì)量流率為277.35 kg/(m2·s)工況下,2種電極本身對(duì)壓降的影響非常微弱。由于在微細(xì)通道內(nèi)施加電壓后,電場(chǎng)對(duì)汽泡的作用力使汽泡朝著低強(qiáng)度場(chǎng)強(qiáng)的方向運(yùn)動(dòng),此方向指向加熱壁面[27],汽泡在電場(chǎng)力的作用下會(huì)被沿軸向拉長(zhǎng)[28],在受到指向加熱壁面力的作用下,微細(xì)通道內(nèi)拉長(zhǎng)的汽泡會(huì)擠壓微細(xì)通道壁面的液膜,隨著電壓的升高,電場(chǎng)作用下汽泡受到的指向加熱壁面的力增大,汽泡與液膜之間、液體與微細(xì)通道壁面之間的摩擦也隨之增大,使得本文試驗(yàn)條件下,單位長(zhǎng)度兩相摩擦壓降隨電壓的增大而增大。
Note: P=140 Pa, Tin=32.5 ℃, G=277.35 kg·m-2·s-1.
圖6為2種電極作用下各壓降隨電壓的變化圖。由圖6可知,在運(yùn)行壓力140 kPa、工質(zhì)入口溫度為32.5 ℃、質(zhì)量流率為277.35 kg/(m2·s)時(shí),高熱流密度時(shí)2種電極作用下的總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降均明顯高于低熱流密度下的對(duì)應(yīng)值。同一熱流密度下施加電壓超過250 V后,2種電極作用下各壓降隨電壓的增大而增大,線狀電極作用下的微細(xì)通道內(nèi)R141b流動(dòng)沸騰總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降皆比對(duì)應(yīng)針狀電極下的高,2種電極的總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降相對(duì)于0 V時(shí)皆有明顯的提升。
Note: P=140 Pa, Tin=32.5 ℃, G=277.35 kg·m-2·s-1.
電壓250 V時(shí),線狀電極電場(chǎng)作用下微細(xì)通道內(nèi)R141b流動(dòng)沸騰總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降與線狀電極施加0 V電壓時(shí)相比并無明顯的變化,平均變化絕對(duì)值分別為0.8%、0.5%、0.2%,而針狀電極作用下的總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降與針狀電極施加0 V電壓時(shí)的相比都有明顯的增加,甚至超過對(duì)應(yīng)線狀電極作用下的壓降數(shù)值。
為探究在本文試驗(yàn)工況下,針狀與線狀電極作用下微細(xì)通道內(nèi)流動(dòng)沸騰壓降隨電壓不同變化的原因,使用COMSOL軟件對(duì)微細(xì)通道內(nèi)電場(chǎng)的分布進(jìn)行模擬。由于針狀電極的電場(chǎng)強(qiáng)度在其3 mm距離處開始出現(xiàn)嚴(yán)重的衰減,所以選取6 mm試驗(yàn)段可以有效地表征通道內(nèi)電場(chǎng)分布,因此本文計(jì)算區(qū)域大小設(shè)為2 mm×2 mm×6 mm。邊界條件設(shè)置如下:通道底面和2個(gè)側(cè)壁面為固體域,并設(shè)置為零電勢(shì)邊界;電極表面為高電勢(shì)邊界。本文高電勢(shì)的值設(shè)置為各試驗(yàn)電壓,電極材料為304不銹鋼,有限元計(jì)算區(qū)域介質(zhì)為R141b,與文獻(xiàn)[29]的研究類似,本文將R141b的介電常數(shù)假設(shè)為恒定值,且將任意時(shí)刻的電場(chǎng)狀態(tài)看作為穩(wěn)態(tài),根據(jù)高斯定理提出的靜電場(chǎng)的方程[30]為
式中為介電常數(shù);為電勢(shì),V;e為電荷密度,C/m3。
圖8為針狀電極與線狀電極布置方式下6 mm長(zhǎng)微細(xì)通道內(nèi)電場(chǎng)分布模擬結(jié)果。圖8中的模擬結(jié)果中電場(chǎng)強(qiáng)度大小的數(shù)量級(jí)與文獻(xiàn)[11]中一致,可本文的模擬結(jié)果具有一定的準(zhǔn)確性。由圖8可知,與線狀電極相比,同一電壓下針狀電極在微細(xì)通道內(nèi)形成的電場(chǎng)強(qiáng)度更大,微細(xì)通道內(nèi)電場(chǎng)強(qiáng)度隨著與電極之間距離的增大而減小,施加電壓越大,微細(xì)通道內(nèi)同一位置電場(chǎng)強(qiáng)度也隨之越大,250 V時(shí),針狀電極電場(chǎng)強(qiáng)度最大值為2.75×106V/m,線狀電極電場(chǎng)強(qiáng)度最大值為1.96×106V/m。250 V之前,針狀電極電場(chǎng)作用下微細(xì)通道內(nèi)R141b流動(dòng)沸騰總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降隨電壓增加而增加,線狀電極電場(chǎng)作用下的壓降無明顯變化,電壓超過250 V后,線狀電極作用下微細(xì)通道內(nèi)R141b流動(dòng)沸騰總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降才開始增加,所以250 V時(shí)線狀電極作用下對(duì)汽泡產(chǎn)生的指向加熱壁面電場(chǎng)力的大小為臨界值[11],電壓低于250 V時(shí),線狀電極電場(chǎng)對(duì)汽泡的作用力沒有對(duì)汽泡產(chǎn)生有效的作用,只有當(dāng)電場(chǎng)對(duì)汽泡產(chǎn)生指向加熱壁面的作用力w超過臨界值,汽泡受到電場(chǎng)的作用明顯,汽泡對(duì)流體的擾動(dòng)作用才會(huì)導(dǎo)致壓降明顯增大。250 V電壓時(shí),針狀電極由于其結(jié)構(gòu)的特殊性,針狀電極形成的電場(chǎng)強(qiáng)度高,針狀電極作用下的電場(chǎng)對(duì)汽泡產(chǎn)生指向加熱壁面的作用力w超過臨界值,電場(chǎng)對(duì)汽泡產(chǎn)生顯著的影響,這使得250 V電壓下針狀電極對(duì)壓降的影響比線狀電極顯著。
注:A點(diǎn)為線狀電極邊緣處任意一點(diǎn),B點(diǎn)為針狀電極邊緣處任意一點(diǎn)。
圖8 針狀與線狀電極布置方式下微細(xì)通道內(nèi)電場(chǎng)分布模擬結(jié)果
圖9為2種電極作用下電場(chǎng)分布的有效范圍對(duì)比,由圖9可知,由于針狀電極的設(shè)置較為分散,在微細(xì)通道內(nèi)所形成的電場(chǎng)有效作用范圍相對(duì)于線狀電極更小,當(dāng)電壓達(dá)到400 V后,線狀電極作用下的超過臨界值,2種電場(chǎng)作用下的電場(chǎng)力超過臨界值后,線狀電極電場(chǎng)作用范圍大,微細(xì)通道中有更多的汽泡受到電場(chǎng)力的作用,針狀電極電場(chǎng)作用范圍小,受到電場(chǎng)作用的汽泡少,電場(chǎng)是通過對(duì)汽泡的作用影響壓降,所以線狀電極的總壓降、兩相流壓降、單位長(zhǎng)度兩相摩擦壓降均大于相應(yīng)條件下的針狀電極。
圖9 400 V時(shí)2種電極電場(chǎng)分布的有效范圍
本文設(shè)置2種電極布置方式(針狀和線狀),以R141b為試驗(yàn)工質(zhì),在2種電場(chǎng)作用下的微細(xì)通道內(nèi)進(jìn)行流動(dòng)沸騰傳熱試驗(yàn),通過研究電場(chǎng)作用下的微細(xì)通道內(nèi)R141b的流動(dòng)沸騰壓降特性,研究結(jié)果可為施加電場(chǎng)提高微細(xì)通道換熱器的性能,降低電場(chǎng)對(duì)微細(xì)通道流動(dòng)沸騰壓降的影響,為實(shí)現(xiàn)微細(xì)通道高效節(jié)能提供新思路,并得出以下主要結(jié)論:
1)在本文試驗(yàn)工況下,針狀電極電場(chǎng)作用下摩擦壓降會(huì)隨著電壓增加而增加;線狀電極電場(chǎng)作用下的摩擦壓降在0~250 V電壓范圍內(nèi)無明顯變化,在250~850 V電壓范圍內(nèi)隨電壓增加而增加。針狀電極電場(chǎng)作用下摩擦壓降在總壓降中占比約為67.8%~76.3%,線狀電極電場(chǎng)作用下的占比約為69.8%~78.6%,2種電極電場(chǎng)作用下的摩擦壓降在總壓降中的占比相對(duì)于無電極作用下均有升高。
2)本文試驗(yàn)工況下,電場(chǎng)作用下的單位長(zhǎng)度兩相摩擦壓降隨熱流密度的增大而增大,同一熱流密度下,單位長(zhǎng)度兩相摩擦壓降隨電壓的增大而增大。在質(zhì)量流率為277.35 kg/(m2·s)、熱流密度為21.49 kW/m2、電壓為850 V條件下,針狀電極作用下的平均單位長(zhǎng)度兩相摩擦壓降相對(duì)于無電極作用下提升15.4%,線狀電極電場(chǎng)作用下提升18.7%。
3)本文試驗(yàn)工況下,施加電壓為0~250 V時(shí),線性電極電場(chǎng)對(duì)汽泡產(chǎn)生指向加熱壁面的作用力小于臨界值,線狀電極電場(chǎng)對(duì)壓降無明顯作用,針狀電極由于其結(jié)構(gòu)的特殊性而產(chǎn)生尖端效應(yīng),在低電壓下會(huì)產(chǎn)生高電場(chǎng)力,使針狀電極電場(chǎng)在0~250 V電壓內(nèi)對(duì)壓降的影響效果大于線狀電極電場(chǎng);電壓達(dá)到400 V后,線狀電極電場(chǎng)對(duì)汽泡產(chǎn)生指向加熱壁面的作用力大于臨界值,且線狀電極電場(chǎng)的有效作用范圍比針狀電極電場(chǎng)更大,線狀電極電場(chǎng)對(duì)壓降的作用更為顯著。
[1]羅小平,王文,張超勇,等. 換熱器鋁基微細(xì)通道微納結(jié)構(gòu)表面制備及其傳熱特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):216-224.
Luo Xiaoping, Wang Wen, Zhang Chaoyong, et al. Surface preparation and heat transfer characteristics of aluminum-based microchannel micro-nanostructures in heat exchangers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 216-224. (in Chinese with English abstract)
[2]劉曉英,焦學(xué)磊,徐志剛,等. 可調(diào)LED光源系統(tǒng)設(shè)計(jì)及其對(duì)菠菜生長(zhǎng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012, 28(1):208-212.
Liu Xiaoying, Jiao Xuelei, Xu Zhigang, et al. Design on LED flexible light system and its effect on growth of spinach[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 208-212. (in Chinese with English abstract)
[3]閆素英,李洪陽,史志國(guó),等. 太陽能電池冷卻用微通道散熱器內(nèi)納米流體換熱特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(13):212-217.
Yan Suying, Li Hongyang, Shi Zhiguo, et al. Heat transfer characteristics of nanofluid in microchannel applied on solar cell cooling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(13): 212-217. (in Chinese with English abstract)
[4]李偉釗,盛偉,張振濤,等. 熱管聯(lián)合多級(jí)串聯(lián)熱泵玉米干燥系統(tǒng)性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):278-284.
Li Weizhao, Sheng Wei, Zhang Zhentao, et al. Experiment on performance of corn drying system with combination of heat pipe and multi-stage series heat pump equipment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 278-284. (in Chinese with English abstract)
[5]Ogata J, Yabe A . Basic study on the enhancement of nucleate boiling heat transfer by applying electric fields[J]. International Journal of Heat and Mass Transfer, 1993, 36(3): 775-782.
[6]Liu X, Hu C, Li H, et al. Effects of an inhomogenous electric field on an evaporating thin film in a microchannel[J]. International Journal of Thermophysics. 2018, 39(3): 43.
[7]Nangle Smith S, Cotton J S. EHD based load controllers for R134a convective boiling heat exchangers[J]. Applied Energy, 2014, 134: 125-132.
[8]Grassi W, Testi D. Electrohydrodynamic convective heat transfer in a square duct[J]. Annals of the New York Academy of Sciences. 2009, 1161(1): 452-462.
[9]Cotton J S, Chang J S, Shoukri M, et al. Electrohydrodynamically enhanced flow boiling in an eccentric horizontal cylindrical channel[J]. College of Electrical Engineering and Computer, 2008, 15(3): 220-223.
[10]黃烜,李瑞陽,郁鴻凌,等. 電場(chǎng)分布對(duì)R123沸騰換熱的影響[J]. 化工學(xué)報(bào),2007,58(8):1926-1930.
Huang Xuan, Li Ruiyang, Yu Hongling, et al. Effects of electric field distribution on R123 boiling heat transfer enhancement[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(8): 1926-1930. (in Chinese with English abstract)
[11]Zhang J, Luo X, Feng Z, et al. Effects of pin and wire electrodes on flow boiling heat transfer enhancement in a vertical minichannel heat sink[J]. International Journal of Heat and Mass Transfer. 2019, 136: 740-754.
[12]Seyed Yagoobi J, Bryan J E. Enhancement of heat transfer and mass transport in single-phase and two-phase flows with electrohydrodynamics[J]. Advances in Heat Transfer, 1999: 33, 95-186.
[13]Costa Patry E, Olivier J, Michel B, et al. Two-phase flow of refrigerants in 85m-wide multi-microchannels: Part II-Heat transfer with 35 local heaters[J]. International Journal of Heat and Fluid Flow. 2011, 32(2): 464-476.
[14]Bryan J E, Seyed Yagoobi J. Electrohydrodynamically enhanced convective boiling of alternative refrigerants: fundamental understanding and applicability[J]. HVAC&R Research. 2002, 8(4): 337-355.
[15]Cotton J, Robinson A J, Shoukri M, et al. A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis[J]. International Journal of Heat and Mass Transfer. 2005, 48(25): 5563-5579.
[16]Mcgranaghan G, Robinson A J. EHD augmented convective boiling: Flow regimes and enhanced heat transfer[J]. Heat Transfer Engineering. 2014, 35(5): 517-527.
[17]羅小平,廖政標(biāo),周建陽,等. 極端潤(rùn)濕性微細(xì)通道內(nèi)R141b的流動(dòng)沸騰壓降特性[J]. 華南理工大學(xué)學(xué)報(bào):自然科學(xué)版,2018,46(2):109-117.
Luo Xiaoping, Liao Zengbiao, Zhou Jianyang, et al. Influence of two-phase flow physical properties on emulsification using novel parallelized multi-scale channels[J]. Journal of South China University of Technology: Natural Science Edition, 2018, 46(2): 109-117. (in Chinese with English abstract)
[18]劉波,羅小平,王二利. 粗糙度對(duì)微通道內(nèi)兩相流摩擦壓降的影響[J]. 中南大學(xué)學(xué)報(bào):自然科學(xué)版,2015(11):4334-4340.
Liu Bo, Luo Xiaoping, Wang Erli, et al. Effect of surface roughness on two-phase fractional pressure drop through microchannels[J]. Journal of Central South University: Science and Technology, 2015(11): 4334-4340. (in Chinese with English abstract)
[19]周建陽,羅小平,馮振飛,等. DMLS微換熱器粗糙度對(duì)Al2O3/R141b流動(dòng)沸騰傳熱影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(11):421-428.
Zhou Jianyang, Luo Xiaoping, Feng Zhenfei, et al. Effect of roughness on flow boiling heat transfer of Al2O3/R141b in DMLS micro heat exchanger[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(11): 421-428. (in Chinese with English abstract)
[20]羅小平,王文,廖政標(biāo),等. 基于不同潤(rùn)濕性微細(xì)通道過冷沸騰起始點(diǎn)(ONB)的實(shí)驗(yàn)研究[J]. 化工進(jìn)展,2018,37(3):884-892.
Luo Xiaoping, Wang Wen, Liao Zhengbiao, et al. Experimental study on onset of nucleate boiling (ONB) in different wettability micro-channels[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 884-892. (in Chinese with English abstract)
[21]Lee H, Park I, Mudawar I, et al. Micro-channel evaporator for space applications-1. Experimental pressure drop and heat transfer results for different orientations in earth gravity[J]. International Journal of Heat and Mass Transfer. 2014, 77(4): 1213-1230.
[22]Kim S M, Mudawar I. Consolidated method to predicting pressure drop and heat transfer coefficient for both subcooled and saturated flow boiling in micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3720-3731.
[23]閻昌琪. 氣液兩相流[M]. 哈爾濱:哈爾濱工程大學(xué)出版社,2007.
[24]Geiger G E. Sudden Contraction Losses in Single and Two-phase flow[D]. Pittsburgh: University of Pittsburgh, 1964.
[25]Mofat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17.
[26]Choi K, Pamitran A S, Oh J, et al. Pressure drop and heat transfer during two-phase flow vaporization of propane in horizontal smooth minichannels[J]. International Journal of Refrigeration, 2009, 32(5): 837-845.
[27]Cheung K, Ohadi M M, Dessiatoun S, et al. EHD-enhanced boiling coefficients and visualization of R-134a over enhanced tubes[J]. Journal of Heat Transfer, 1997, 119(2): 332-338.
[28]Zu Y Q, Yan Y Y. A numerical investigation of electrohydrodynamic (EHD) effects on bubble deformation under pseudo-nucleate boiling conditions[J]. International Journal of Heat and Fluid Flow, 2009, 30(4): 761-767.
[29]Diao Y H, Liu Y, Zhang J, et al. Effect of electric field on the enhanced heat transfer characteristic of an evaporator with multilayered sintered copper mesh[J]. Journal of Electrostatics, 2015, 73: 26-32.
[30]Kasayapanand Nat. Numerical modeling of the effect of number of electrodes on natural convection in an EHD fluid[J]. Journal of Electrostatics, 2007, 65(7): 465-474.
Effect of electric field on flow boiling pressure drop characteristics of R141b in microchannel
Luo Xiaoping, Peng Zizhe, Liu Qian, Guo Feng, Zhang Jinxin
(,,510640,)
Microchannel heat exchanger is highly efficient in heat exchange due to its microscopic structure and large heat exchange surface area ratio. Compared with conventional heat exchanger, it not only improves heat exchange efficiency but also saves space and reduces the weight of heat dissipation equipment. In agriculture, microchannel heat dissipation technology has been widely used in cultivation, machinery, and product drying. Microchannel increases resistance to fluid flow and could thus result in an increase in energy consumption. It could also give rise to a pressure-drop oscillation affecting operation of the system. Previous work showed that electric field has a beneficial impact on heat transfer efficiency in the microchannel heat exchanger. The purpose of this paper is to investigate how different electrodes (needle type and linear types) affect pressure drop of the boiling R141b coolant when it flows in the microchannel. The pressure in the system was kept at 140 kPa, the working inlet temperature was 32.5 ℃, the mass flow rate ranged from 277.35 to 531.75 kg/(m2·s), the heat flux density ranged from 7.50 to 21.49 kW/m2, the voltage ranged from 0 to 850 V, and the microchannel was rectangular with a cross section of 2 mm×2 mm. The results showed that the electric field under both electrodes increased the frictional pressure drop in the microchannel, compared with that without electric field. The frictional pressure drop of the two-phase along per unit length increased with both voltage and heat flux. The average two-phase frictional pressure drop along per unit length under the needle and the linear electrode was increased 0.7% to 15.4% and 1.3% to 18.7%, respectively, that without electric field. When the voltage changed from 0 to 250 V, the effect of the needle electrode on the pressure drop was greater than that of the linear electrode, while when the voltage was higher than 400 V, the effect of the linear electrode on the pressure drop was more significant. We simulated the electric field distribution in a microchannel 6 mm long using COMSOL for both electrodes. The results showed that under the same voltage, the maximum of the electric field intensity in the needle electrode was higher than that in the linear electrode, but the effective range of the electric field in the linear electrode was higher than that in the needle electrode. The results presented in this paper provide an alternative to improve performance of microchannel heat exchanger and reduce its energy consumption.
refrigerant; electric field; electrode; microchannel; flowing boiling; pressure drop
羅小平,彭子哲,劉倩,郭峰,章金鑫. 電場(chǎng)對(duì)微細(xì)通道內(nèi)R141b制冷劑流動(dòng)沸騰壓降的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(1):257-265.doi:10.11975/j.issn.1002-6819.2020.01.031 http://www.tcsae.org
Luo Xiaoping, Peng Zizhe, Liu Qian, Guo Feng, Zhang Jinxin. Effect of electric field on flow boiling pressure drop characteristics of R141b in microchannel[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 257-265. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.031 http://www.tcsae.org
2019-07-27
2019-10-29
國(guó)家自然科學(xué)基金資助項(xiàng)目(21776096)
羅小平,博士,教授,博士生導(dǎo)師,主要研究方向?yàn)槲⑼ǖ罁Q熱器相變傳熱、分子動(dòng)力學(xué)模擬等研究。Email:mmxpluo@scut.edu.cn
10.11975/j.issn.1002-6819.2020.01.031
TK124
A
1002-6819(2020)-01-0257-09