劉佩貴,夏 艷,尚熳廷
不同質地裸土潛水蒸發(fā)估算方法
劉佩貴1,夏 艷1,尚熳廷2※
(1. 合肥工業(yè)大學土木與水利工程學院,合肥 230009;2. 合肥工業(yè)大學汽車與交通工程學院,合肥 230009)
為定量分析裸土區(qū)潛水蒸發(fā)與水面蒸發(fā)的關系,該文通過自制試驗裝置,對粗砂、細砂、壤土和砂土4種質地土壤開展了二者之間相關關系的試驗研究。結果表明:相同條件下,不同土壤質地的潛水蒸發(fā)與水面蒸發(fā)量不相等,二者之間存在一個折算系數(shù),除粗砂外,細砂、壤土和砂土的折算系數(shù)均大于1,二者表現(xiàn)出較強的線性相關性,基于該相關性,建立了數(shù)學關系表達式。與實測數(shù)據(jù)的對比分析表明,若用水面蒸發(fā)強度代替潛水蒸發(fā),相對誤差達-17.79%,這將不可避免地影響到潛水蒸發(fā)計算結果的精度;而通過二者相關關系建立的折算系數(shù)法,可將相對誤差減小至-1.94%,有效提高了潛水蒸發(fā)計算結果的可靠度。
蒸發(fā);土壤;質地;相關關系;潛水埋深;裸土
潛水蒸發(fā)是陸面蒸發(fā)、水文循環(huán)的重要組成部分,是淺層地下水的主要消耗項之一,同時也是土壤鹽堿化的主要驅動因素之一[1-4]。開展?jié)撍舭l(fā)相關方面的研究,不僅可以深入理解蒸發(fā)在水文循環(huán)中的作用、提高地下水資源評價結果的可靠度,也有助于揭示土壤鹽堿化形成機制。在將潛水蒸發(fā)應用于上述研究領域時,地下水水位埋深為0時的潛水蒸發(fā)量(0)是不可缺少的重要指標[5-7],該值的大小直接影響到潛水蒸發(fā)計算結果的精度。通常認為0近似等于大氣蒸發(fā)強度,可用水面蒸發(fā)強度代替[6, 8-9]。實際上潛水蒸發(fā)是指潛水在土壤吸力作用下,向包氣帶土壤中輸送水分,并通過土壤蒸發(fā)或(和)植物蒸騰進入大氣的過程,水面蒸發(fā)是指水面的水分從液態(tài)轉化為氣態(tài)逸出水面的過程[10-14],二者蒸發(fā)過程存在差異。存在差異的主要原因是土壤質地[11, 15-16],土壤質地是影響土壤導水能力的重要因素,即使在相同的外部條件下,不同土壤質地的土壤水分運移過程也存在差異[17-19],并且對于不同的土壤質地來說,由于孔隙尺度以及連通性等特性不同,在太陽輻射等自然條件下土壤和水的響應程度也有差別,此時土壤含水率和土壤溫度會因不同的響應程度發(fā)生變化,進而影響潛水蒸發(fā)速率和整個蒸發(fā)過程[20-22]??梢姡瑵撍舭l(fā)和水面蒸發(fā)的影響因素和對外界的響應程度有所不同,因此,忽略這些差異,直接用水面蒸發(fā)強度代替0必然會產生誤差,影響計算結果的精度。
當前雖有學者認為不能用水面蒸發(fā)強度代替0,如張永明等[23-24]認為當潛水埋深為0時潛水蒸發(fā)等于水面蒸發(fā)與實際情況不完全一致;尚松浩等[13]認為可在兩者間增加1個系數(shù)來改進;邢旭光等[25-27]對不同土壤質地0和水面蒸發(fā)強度進行比較,發(fā)現(xiàn)不同土壤質地的計算結果存在不同程度的差異。這些研究文獻僅指出了二者之間存在差異,并未構建二者之間的定量關系表達式,為此,本文以不同土壤質地為例,通過自制室外柱試驗裝置,以裸土為例,探討0與水面蒸發(fā)的定量關系,以期進一步提高潛水蒸發(fā)量計算結果的可靠度。
為對比不同土壤質地條件下二者之間的定量關系,本文自制了一套試驗裝置(圖1),裝置主體為直徑分別為60、25 mm的同心環(huán),高均為42 mm,底部密封,頂部開口,外環(huán)填充40 mm高的試樣;內環(huán)側壁布有均勻的小孔,并用過濾網包裹,內環(huán)裝水,保持內環(huán)水面高度與外環(huán)試樣高度齊平,且內環(huán)上部密封。
該試驗操作的關鍵問題之一為如何合理控制潛水水位埋深為0,因為隨著蒸發(fā)的進行,必然引起試樣中的水位下降。為盡量減小補水所產生的誤差,并保證蒸發(fā)的同時水位埋深始終為0,研制了潛水蒸發(fā)的自動補水裝置。將50 mL規(guī)格試管進行改裝(試管的量程應略大于相鄰2次讀數(shù)間隔時間內的蒸發(fā)量),上部密封,為防止水附著在試管內壁,試管底部側邊開1個30°左右的斜口,裝滿水后豎直倒扣在內環(huán)水面上,在大氣壓作用下試管口與水面接觸,用蝴蝶夾固定在鐵架臺上。根據(jù)連通器原理,若試樣中水位下降,則內環(huán)中的水及時補充,而試管中的水在重力的作用下,及時補充到內環(huán)中,從而使砂樣中的水位埋深保持為0,當試驗中的水即將用完時對水進行補充。
圖1 潛水埋深為0的蒸發(fā)試驗裝置示意圖
本試驗重在探討潛水埋深為0時潛水蒸發(fā)與水面蒸發(fā)的關系,為便于對比分析試驗結果,在合肥工業(yè)大學校內試驗場地取了土樣和砂樣,烘干、過2m篩后,選取了粗砂、細砂、壤土、砂土4種均質試驗材料。根據(jù)《土壤物理學》中的美國農部土壤質地劃分標準[28],壤土和砂土的顆粒組成分別為砂粒60%、粉粒40%和砂粒90%、粉粒10%,不同方案之間的區(qū)別主要是質地不同。為了降低測量尺度對測定結果精度的影響,水面蒸發(fā)的測量裝置與土樣完全相同,即填充土樣部分全部充滿水。所有試驗環(huán)境均在自然條件下進行,溫度為室外環(huán)境溫度。
基于本試驗設計的試驗裝置,考慮到各試驗材料的毛細上升高度,本文潛水水位埋深為0指的是表面沒有積水但濕潤的狀態(tài)。試驗過程中,每天08:00讀取試管讀數(shù),根據(jù)試驗條件,試管中減少的水量是由于蒸發(fā)引起的,故試管中減少的水量即為相鄰2個觀測時段內蒸發(fā)的水量,再根據(jù)式(1)折算成相應的潛水蒸發(fā)量和水面蒸發(fā)量。
1.3.1 潛水埋深為0處潛水蒸發(fā)量
1)替代法
采用實測水面蒸發(fā)量代替潛水埋深為0處的潛水蒸發(fā)量。
2)系數(shù)法
通過回歸方程分析,二者間的關系可擬合為
0=αE(2)
式中0為潛水埋深為0時的裸土潛水蒸發(fā)量,mm/d;E為相同條件下的水面蒸發(fā)量,mm/d;為擬合系數(shù),與土壤質地等影響因素有關。
1.3.2 不同潛水埋深處潛水蒸發(fā)量
用阿維里揚諾夫公式(式(3))計算潛水埋深0.4 m處的潛水蒸發(fā)量為
式中為潛水蒸發(fā)量,mm/d;為監(jiān)測時間段內地下水的平均埋藏深度,mm;max為潛水蒸發(fā)極限埋深,mm;為與土壤質地、氣候有關的蒸發(fā)指數(shù),一般為1~3。
為進一步驗證測定數(shù)據(jù)的有效性,基于試驗裝置,自2016—2019年共重復開展了3次該試驗方案下的試驗,3次數(shù)據(jù)的趨勢相同(受篇幅限制,未列出),表明了測量數(shù)據(jù)的有效性及合理性。因3次試驗的觀測日期和氣象條件不完全相同,不宜取平均值進行分析,且通過后續(xù)研究發(fā)現(xiàn)折算系數(shù)主要與土壤質地和有無植被有關,因此僅選取其中最具代表性的1組試驗數(shù)據(jù)進行結果分析。根據(jù)試驗觀測數(shù)據(jù)得到潛水埋深為0時每個觀測時間段的潛水日蒸發(fā)量和水面日蒸發(fā)量以及氣溫變化情況,如圖2所示。
圖2 日蒸發(fā)量過程線
對比分析圖2中的日蒸發(fā)量變化過程線可以看出,觀測前期(12月24日—2月25日)正好屬于冬季,氣溫偏低,且氣溫變幅較小,而冬季蒸發(fā)主要受氣溫因素控制[15, 29-30],各試樣的日蒸發(fā)量變化幅度也相對較小。觀測后期(2月25日—4月29日)逐漸進入春季,氣溫開始逐漸升高,此時日蒸發(fā)量也表現(xiàn)出增大的趨勢。其中,在2月27日—3月2日及3月23日時出現(xiàn)溫度較高但蒸發(fā)量偏低的情況,主要是由于這幾天天氣為小到中雨,空氣濕度較大。試驗期間蒸發(fā)量的觀測數(shù)據(jù)與理論分析趨勢一致,也間接表明了數(shù)據(jù)的有效性。
試驗期間0和水面蒸發(fā)量的變化趨勢基本一致,氣溫越高,蒸發(fā)量越大。但不同觀測時段不同試樣的0與水面蒸發(fā)量并不完全相等,大體趨勢是砂土和壤土的0均明顯高于水面蒸發(fā)量,細砂的0總體上略高于水面蒸發(fā)量,而粗砂的0則呈現(xiàn)出略低于水面蒸發(fā)量的現(xiàn)象,且隨著氣溫的升高,二者之間的差異性越明顯。以3月30日的觀測值為例,氣溫、日照、風速等外界環(huán)境相同條件下,細砂、粗砂、壤土、砂土的0值分別為9.10、7.86、9.81、10.36 mm,水面蒸發(fā)量為8.39 mm,分別相差0.71、?0.53、1.42、1.97 mm,差值分別占潛水蒸發(fā)量的7.80%、?6.74%、14.48%、19.02%。由此可見,相同外界環(huán)境條件下,不同質地試樣0與水面蒸發(fā)量之間的差異較明顯,且隨著氣溫升高,差異性越顯著。
為進一步定量研究0與水面蒸發(fā)量的關系,繪制了0與水面蒸發(fā)量的散點圖(圖3)。
注:R2是決定系數(shù)。所有模型P<0.05。
由圖3可知,不同質地試樣0值與水面蒸發(fā)量線性關系的判定系數(shù)均大于0.97,其中,細砂的判定系數(shù)達到了0.99,相關性顯著;且線性擬合系數(shù)均不等于1,細砂、粗砂、壤土、砂土的線性擬合系數(shù)分別為1.04、0.94、1.14、1.19,擬合系數(shù)不為1。因0值與水面蒸發(fā)量之間的關系是線性的,方程的擬合系數(shù)即為折算系數(shù),也就是說,細砂、粗砂、壤土、砂土的0值與水面蒸發(fā)的折算系數(shù)分別為1.04、0.94、1.14、1.19。若仍用水面蒸發(fā)量代替埋深為0時的潛水蒸發(fā)量0,不可避免地影響到潛水蒸發(fā)計算結果的精度。
以五道溝試驗場的壤土和砂土為例,選取2018年1月五道溝氣象觀測場的實測數(shù)據(jù)進行分析,用阿維里揚諾夫公式(式(3))計算潛水埋深0.4 m處的潛水蒸發(fā)量,計算結果如表1所示。為便于對分析計算結果的科學表述,本文將直接用水面蒸發(fā)量代替0值計算潛水蒸發(fā)量的方法稱為替代法;將用折算系數(shù)與水面蒸發(fā)量的乘積計算潛水蒸發(fā)量的方法稱為0系數(shù)法。
由表1可以看出,利用不同的方法計算得到的0值代入到阿維里揚諾夫公式中計算潛水蒸發(fā)量的精度有一定的差異。當潛水埋深為0.4 m時,用替代法和0系數(shù)法計算出的壤土潛水蒸發(fā)量與實測值的差值分別為?1.93 mm、0.42 mm,相對誤差分別為?10.30%、2.25%;用替代法計算出的砂土潛水蒸發(fā)量與實測值小5.11 mm,相對誤差為?17.79%,而用0系數(shù)法計算出的砂土潛水蒸發(fā)量僅小于實測值0.56 mm,相對誤差為?1.94%,0系數(shù)法的計算誤差相對較小。由此可見,計算不同深度處潛水蒸發(fā)強度時,直接用水面蒸發(fā)量代替0必然會引起較大的誤差;而根據(jù)0系數(shù)法計算的潛水蒸發(fā)強度值誤差更小,更接近于實測值,提高了潛水蒸發(fā)計算結果的可靠度。
表1 不同計算方式下潛水蒸發(fā)量計算結果
注:潛水埋深為0.4 m。
Note: Groundwater table is 0.4 m.
綜合試驗結果可以看出,由于潛水蒸發(fā)和水面蒸發(fā)過程的差異性,不同土壤質地的0與相同條件下的水面蒸發(fā)量并不相等。太陽輻射是蒸發(fā)的主要來源,太陽輻射強度和時長會引起地表溫度的變化,進而影響水的物理特性和土水勢等方面,最終表現(xiàn)在水分運動的方向和速率上,因此氣溫越高時土壤質地的0值與水面蒸發(fā)量差異性越明顯,但二者表現(xiàn)出極強的線性相關性。
土壤質地是影響土壤導水能力和土壤水分運動的主要因素,雖本次試驗均在相同的室外自然環(huán)境下進行,但不同質地試樣蒸發(fā)對外界的響應能力不同。在環(huán)境溫度較高、太陽輻射較強時,溫度升高,加快土壤水分運移過程和液態(tài)水、氣態(tài)水的相互轉化過程,此時水汽逸散加劇,加快了整個潛水蒸發(fā)和水面蒸發(fā)過程,但因為不同土壤質地和水的比輻射率不同,因此熱輻射能力有所差異。
一般來說,壤土和砂土因顏色較深,表面粗糙度較大,能吸收和儲存到的太陽輻射能較多,可迅速地形成上部土壤溫度大于下部土壤溫度的溫度梯度,而細砂、粗砂和水的顏色較淺,表面相對光滑,所能吸收轉化的太陽輻射能相對較少,砂土的顆粒組成又相對均勻,因此壤土和砂土的0值均明顯高于水面蒸發(fā)量,砂土的0值又高于壤土。細砂、粗砂和水的顏色雖都較淺,但細砂的比熱容比水的比熱容小,升溫較快,同時細砂的含水孔隙和表面粗糙度較大,因此與大氣直接交換的空間較大,土壤水分運移速率和水汽逸散速率較快,最終細砂的0值略大于水面蒸發(fā)量。粗砂的比熱容雖也較小,但因其機械組成的相對不均勻性,其土壤水分運移和水汽逸散過程存在一定的滯后性,因此粗砂的0值略低于水面蒸發(fā)量。而在陰雨及霧霾等天氣,太陽輻射和溫度對蒸發(fā)的影響減弱,此時空氣中的相對濕度增加,對整個潛水蒸發(fā)和水面蒸發(fā)過程產生了一定的抑制作用,水汽逸散減弱,蒸發(fā)量明顯減小。但也因質地的不同,空氣中的相對濕度對蒸發(fā)的抑制程度有所差異,因此在陰雨等太陽輻射較弱的外界條件下,不同土壤質地的0值與水面蒸發(fā)量也不等。
由上述分析可知,不同土壤質地的0與相同條件下的水面蒸發(fā)量并不相等。受太陽輻射、氣溫、土壤質地等綜合因素的影響,相同條件下粗砂的0值小于水面蒸發(fā)量,其他土壤質地的0值均大于水面蒸發(fā)量,確定的不同土壤質地的0值與水面蒸發(fā)量的定量關系與機理分析結果相一致。
本文基于構建的裸土潛水蒸發(fā)和水面蒸發(fā)的試驗模型,開展了潛水埋深為0時的蒸發(fā)試驗研究,試驗結果表明,相同條件下,裸土區(qū)不同土壤質地的潛水蒸發(fā)量(0)與水面蒸發(fā)量不相等,0與水面蒸發(fā)量之間呈現(xiàn)較強的線性相關性,二者之間存在一個折算系數(shù),裸土條件下,該系數(shù)與土壤質地有關。一般地,在合肥類似氣候條件的地區(qū),粗砂的折算系數(shù)為0.94,細砂、壤土和砂土的折算系數(shù)分別為1.04、1.14和1.19,即粗砂的0值小于水面蒸發(fā)量,細砂、壤土和砂土的0值均大于水面蒸發(fā)量,且砂土的差值最大。明確了二者之間的相關關系,不僅可以通過水面蒸發(fā)數(shù)據(jù)簡便獲得0,還可以提高潛水蒸發(fā)計算結果的精度。
現(xiàn)階段,本文僅圍繞裸土區(qū)構建了不同土壤質地的0與水面蒸發(fā)二者之間的定量關系,但折算系數(shù)與土壤質地、有無植被等影響因素有關。因此在有植被覆蓋條件下二者之間的定量關系研究,還有待于進一步探討。此外,受試驗條件和試驗時間限制,試驗不可能窮盡所有可能的氣象條件和影響因素,需要通過建立潛水蒸發(fā)模型深入研究不同因素對計算結果可靠度的影響,這些均是下一步研究的重點內容。
[1] Fan J, Oestergaard K T, Guyot A. Estimating groundwater recharge and evapotranspiration from water table fluctuations under three vegetation covers in a coastal sandy aquifer of subtropical Australia[J]. Journal of Hydrology, 2014, 519: 1120-1129.
[2] 於嘉聞,賈瑞亮,周金龍. 新疆潛水蒸發(fā)試驗研究進展[J]. 地下水,2016,38(1):16-18.
Yu Jiawen, Jia Ruiliang, Zhou Jinlong. Summary of evaporation from phreatic water in Xinjiang[J]. Ground water, 2016, 38(1): 16-18. (in Chinese with English abstract)
[3] 賈瑞亮,周金龍,周殷竹,等. 干旱區(qū)高鹽度潛水蒸發(fā)條件下土壤積鹽規(guī)律分析[J]. 水利學報,2016,47(2):150-157.
Jia Ruiliang, Zhou Jinlong, Zhou Yinzhu, et al. Analysis on law of soil salt accumulation under condition of high salinity phreatic water evaporation in arid areas[J]. Journal of Hydraulic Engineering, 2016, 47(2): 150-157. (in Chinese with English abstract)
[4] 賈瑞亮,周金龍,高業(yè)新,等. 干旱區(qū)高鹽度潛水蒸發(fā)規(guī)律初步分析[J]. 水科學進展,2015,26(1):44-50.
Jia Ruiliang, Zhou Jinlong, Gao Yexin, et al. Preliminary analysis on evaporation rules of high-salinity phreatic water in arid area[J]. Advances in Water Science, 2015, 26(1): 44-50. (in Chinese with English abstract)
[5] 阿維里揚諾夫. 防治灌溉土地鹽漬化的水平排水設施[M]. 北京:中國工業(yè)出版社,1985:56-61.
[6] 羅玉峰,毛怡雷,彭世彰,等. 作物生長條件下的阿維里揚諾夫潛水蒸發(fā)公式改進[J]. 農業(yè)工程學報,2013,29(4):102-109.
Luo Yufeng, Mao Yilei, Peng Shizhang, et al. Modified Aver’yanov’s phreatic evaporation equations under crop growing[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2013,29(4): 102-109. (in Chinese with English abstract)
[7] 葉水庭,施鑫源,苗曉芳. 用潛水蒸發(fā)經驗公式計算給水度問題的分析[J]. 水文地質工程地質,1982(4):45-48.
[8] 王小贊,孔凡哲. 有作物條件下的潛水蒸發(fā)計算方法[J]. 人民黃河,2014,36(2):40-42.
Wang Xiaozan, Kong Fanzhe. Calculation method for groundwater evaporation under crop growth[J]. Yellow River, 2014, 36(2): 40-42. (in Chinese with English abstract)
[9] 付秋萍,張江輝,王全九. 常用潛水蒸發(fā)經驗公式在新疆地區(qū)適用性研究[J]. 干旱地區(qū)農業(yè)研究,2008,26(3):182-188.
Fu Qiuping, Zhang Jianghui, Wang Quanjiu. Adaptability study on empirical formulae of frequent phreatic evaporation in Xinjiang[J]. Agricultural Research in the Arid Areas, 2008, 26(3): 182-188. (in Chinese with English abstract)
[10] 苗春燕,陳軍鋒,鄭秀清,等. 凍融作用下潛水蒸發(fā)研究進展及內涵[J]. 人民珠江,2017,38(1):1-4.
Miao Chunyan, Chen Junfeng, Zheng Xiuqing, et al. Research progress and connotation of phreatic water evaporation affected by freezing and thawing[J]. Pearl River, 2017, 38(1): 1-4. (in Chinese with English abstract)
[11] 束龍倉,荊艷東,黃修東,等. 改進的無作物潛水蒸發(fā)經驗公式[J]. 吉林大學學報:地球科學版,2012,42(6):1859-1865.
Shu Longcang, Jing Yandong, Huang Xiudong, et al. On the development of improved empirical formulas for calculating the phreatic water evaporation for bare land[J]. Journal of Jilin University: Earth Science Edition, 2012, 42(6): 1859-1865. (in Chinese with English abstract)
[12] 王振龍,章啟兵,李瑞. 淮北平原區(qū)水文實驗研究[M]. 合肥:中國科學技術大學出版社,2011:67-93.
[13] 尚松浩,毛曉敏. 潛水蒸發(fā)研究進展[J]. 水利水電科技進展,2010,30(4):85-89.
Shang Songhao, Mao Xiaomin. Research progress on evaporation from phreatic water[J]. Advances in Science and Technology of Water Resources, 2010, 30(4): 85-89. (in Chinese with English abstract)
[14] Peixinho J, Lefèvre G, Coudert F, et al. Water evaporation in silica colloidal deposits[J]. Journal of Colloid and Interface Science, 2013, 408: 206-211.
[15] Teng J, Zhang X, Zhang S, et al. An analytical model for evaporation from unsaturated soil[J]. Computers and Geotechnics, 2019, 108: 107-116.
[16] 羅玉峰,李思,彭世彰,等. 灌區(qū)潛水蒸發(fā)有效性評價[J]. 水利水電科技進展,2014,34(4):5-9.
Luo Yufeng, Li Si, Peng Shizhang, et al. Assessment of effectiveness of groundwater evapotranspiration in an irrigation district[J]. Advances in Science and Technology of Water Resources, 2014, 34(4): 5-9. (in Chinese with English abstract)
[17] 郝振純,陳璽,王加虎,等. 淮北平原裸土潛水蒸發(fā)趨勢及其影響因素分析[J]. 農業(yè)工程學報,2011,27(6):73-78.
Hao Zhenchun, Chen Xi, Wang Jiahu, et al. Trend and impact factors of evaporation from shallow phreatic groundwater of bare soil on Huaibei Plain in China[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of CSAE), 2011, 27(6): 73-78. (in Chinese with English abstract)
[18] Balugani E, Lubczynski M W, van der Tol C, et al. Testing three approaches to estimate soil evaporation through a dry soil layer in a semi-arid area[J]. Journal of Hydrology, 2018, 567: 405-419.
[19] 劉悅,鞠琴,舒心怡,等. 裸地土壤蒸發(fā)與不同驅動要素之間的響應關系[J]. 華北水利水電大學學報:自然科學版,2018,39(3):50-54.
Liu Yue, Ju Qin, Shu Xinyi, et al. Response relationships between bare land soil evaporation and different drivers[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2018, 39(3): 50-54. (in Chinese with English abstract)
[20] An N, Hemmati S, Cui Y, et al. Numerical investigation of water evaporation from Fontainebleau sand in an environmental chamber[J]. Engineering Geology, 2018, 234: 55-64.
[21] Banimahd S A, Zand-Parsa S. Simulation of evaporation, coupled liquid water, water vapor and heat transport through the soil medium[J]. Agricultural Water Management, 2013, 130: 168-177.
[22] 王蘇玉. 不同土質土壤水分運移規(guī)律研究[J]. 四川環(huán)境, 2018,37(2):7-12.
Wang Suyu. Study on the law of soil water movement in different soil texture[J]. Sichuan Environment, 2018, 37(2): 7-12. (in Chinese with English abstract)
[23] 張永明,胡順軍,翟祿新,等. 塔里木盆地裸地潛水蒸發(fā)計算模型[J]. 農業(yè)工程學報,2009,25(1):27-32.
Zhang Yongming, Hu Shunjun, Zhai Luxin, et al. Models for calculating phreatic evaporation from bare soil in Tarim Basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 27-32. (in Chinese with English abstract)
[24] 胡順軍. 計算裸地潛水蒸發(fā)量的反S型曲線模型[J]. 干旱區(qū)地理,2016,39(2):233-239.
Hu Shunjun. Inverse “S” model for calculation of phreatic evaporation from bare soil[J]. Arid Land Geography, 2016, 39 (2): 233-239. (in Chinese with English abstract)
[25] 邢旭光,史文娟,王全九. 對常用潛水蒸發(fā)經驗模型中E0值的探討[J]. 干旱地區(qū)農業(yè)研究,2013,31(4):57-60.
Xing Xuguang, Shi Wenjuan, Wang Quanjiu. Discussion on E0value in common groundwater evaporation empirical models[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 57-60. (in Chinese with English abstract)
[26] 付秋萍,張江輝,王全九. E0值對潛水蒸發(fā)計算精度影響分析[J]. 干旱區(qū)地理,2007,30(6):820-825.
Fu Qiuping, Zhang Jianghui, Wang Quanjiu. Impact of E0value on calculation accuracy of phreatic evaporation empirical formulae[J]. Arid Land Geography, 2007, 30(6): 820-825. (in Chinese with English abstract)
[27] 胡順軍,宋郁東,田長彥,等. 潛水埋深為零時塔里木盆地不同土質潛水蒸發(fā)與水面蒸發(fā)關系分析[J]. 農業(yè)工程學報,2005,21(增刊1):80-83.
Hu Shunjun, Song Yudong, Tian Changyan, et al. Relationship between water surface evaporation and phreatic water evaporation when phreatic water buried depth is zero for different soil in Tarim River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Supp 1): 80-83. (in Chinese with English abstract)
[28] 邵明安,王全九,黃明斌. 土壤物理學[M]. 北京: 高等教育出版社,2006.
[29] Yin X, Liu E, Song B, et al. Numerical analysis of coupled liquid water, vapor, stress and heat transport in unsaturated freezing soil[J]. Cold Regions Science and Technology, 2018, 155: 20-28.
[30] Yang K, Wang C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J]. Agricultural and Forest Meteorology, 2019, 265: 280-294.
Estimation methods of phreatic evaporation for different textures in bare soil area
Liu Peigui1, Xia Yan1, Shang Manting2※
(1.230009,; 2.,230009,)
In order to quantitatively analyze the relationship between the phreatic evaporation and water surface evaporation of different soil textures in bare soil area, soils with different texture and sand samples were taken from the test site in Hefei University of Technology. After pretreatment such as drying and particles sieving, 4 types of homogeneous test materials were selected including coarse sand, fine sand, loam and sand soil. Then, a self-made phreatic evaporation measurement device was made with diameters of 60 and 25 mm and a height of 42 mm. It can easily solve the problem of automatic water replenishment during the evaporation process, so that the groundwater depth can always be 0. Based on the self-designed device, a total of 5 groups of comparative test schemes were constructed, including coarse sand, fine sand, loam, sandy soil and water in bare soil area. Under the same environmental conditions, daily phreatic evaporation of the 4 different soil textures and water surface evaporation were observed for a total of 127 days from December 24, 2018 to April 29, 2019. By analyzing the relationship between phreatic evaporation and water surface evaporation for soils with different textures, linear mathematical equations were established. The results revealed that the change trend of phreatic evaporation and water surface evaporation was basically the same during the experiment. The high air temperature would lead to larger soil evaporation. However, the phreatic evaporation of the 4 different soil textures was not equal to the water surface evaporation, and the difference between them was more significant as the air temperature was increased. The determination coefficients between phreatic evaporation value of different soil textures and the water surface evaporation were all greater than 0.97. Especially for fine sand, the correlation coefficient reached 0.99, which indicated that there was a significant correlation between phreatic evaporation and water surface evaporation (<0.05). And the conversion coefficients were achieved between them according to the linear mathematical equations. Generally, in soil bare areas with similar climatic conditions in Hefei, the conversion coefficient of coarse sand was 0.94, and the coefficients of fine sand, loam and sand are 1.04, 1.14 and 1.19, respectively. The phreatic evaporation value of coarse sand was less than the evaporation of water surface. The phreatic evaporation values of fine sand, loam and sand were greater than water evaporation. Under bare soil conditions, this conversion coefficient was only related to soil texture. In addition, the loam and sandy soil evaporation in the Wudaogou test site of Anhui Province, China was selected to verify the rationality of the conversion coefficient obtained above. The results showed that when the groundwater depth was 0.4 m, the relative error of the loam evaporation calculated by the substitution method and the phreatic evaporation coefficient method were -10.30% and 2.25%, respectively. Moreover, the sand evaporation calculated by the substitution method was 5.11 mm smaller than the measured value with a relative error of -17.79%, while the sand evaporation calculated using the phreatic evaporation coefficient method was only less than the measured value of 0.56 mm, and the relative error was reduced to -1.94%. Therefore, when calculating the phreatic evaporation at different groundwater depths, directly replacing phreatic evaporation with water surface evaporation would inevitably cause larger relative errors. However, the relative error of the calculation result obtained from the phreatic evaporation coefficient method was smaller, and the calculated value was much closer to the measured value. The coefficient method proposed in this paper would significantly improve the reliability and accuracy of the calculation results of phreatic evaporation.
evaporation; soils; texture; relationship; groundwater depth; bare soil
劉佩貴,夏 艷,尚熳廷. 不同質地裸土潛水蒸發(fā)估算方法[J]. 農業(yè)工程學報,2020,36(1):148-153.doi:10.11975/j.issn.1002-6819.2020.01.017 http://www.tcsae.org
Liu Peigui, Xia Yan, Shang Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(1): 148-153. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.01.017 http://www.tcsae.org
2019-05-25
2019-10-10
水文水資源與水利工程科學國家重點實驗室“一帶一路”水與可持續(xù)發(fā)展科技基金(2018nkms06);國家自然科學基金(51509064)
劉佩貴,副教授,博士,主要從事水資源評價方面研究。Email:liupg2512@163.com
尚熳廷,講師,博士,主要從事土壤水分運動物理規(guī)律模擬方面的研究。Email:hfut_smt@163.com
10.11975/j.issn.1002-6819.2020.01.017
S152.7+3
A
1002-6819(2020)-01-0148-06