亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        除草劑配施安全劑對(duì)土壤酶活性與糜子根系生理代謝的影響

        2020-03-03 02:13:54趙穎楠林瑞嫦高小麗
        關(guān)鍵詞:除草劑

        馮 煜,趙穎楠,林瑞嫦,王 娜,高小麗

        除草劑配施安全劑對(duì)土壤酶活性與糜子根系生理代謝的影響

        馮 煜,趙穎楠,林瑞嫦,王 娜,高小麗※

        (西北農(nóng)林科技大學(xué)/旱區(qū)作物逆境生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,楊凌 712100)

        為探究安全劑與除草劑復(fù)配施用對(duì)除草劑藥害的緩解以及對(duì)糜子田土壤酶活性、根系活性氧代謝和糜子生長(zhǎng)發(fā)育的影響。于2019年5-10月在陜西省榆林市小雜糧試驗(yàn)示范站進(jìn)行試驗(yàn),選用糜子品種‘榆糜2號(hào)’為試驗(yàn)材料,選取苗前除草劑:谷友(10%單嘧磺隆,2.4 kg/hm2)與3種安全劑:蕓苔素(300 mL/hm2)、赤霉素(300 mL/hm2)、奈安(1.2 kg/hm2)復(fù)配使用,設(shè)置清水不除草對(duì)照與人工除草對(duì)照。測(cè)定雜草鮮重防效、藥害指數(shù)、根際土壤酶活性、糜子根系抗氧化酶活性與丙二醛含量及糜子農(nóng)藝性狀與產(chǎn)量。結(jié)果表明:1)蕓苔素、赤霉素、奈安與單嘧磺隆復(fù)配后藥害指數(shù)顯著下降,分別降低了20.27%、21.63%、20.94%;2)單嘧磺隆處理(H1)的土壤蔗糖酶、脲酶活性在施藥后7~42 d時(shí)相較于不除草處理CK1被顯著抑制,活性抑制率隨時(shí)間降低,添加安全劑后土壤蔗糖酶和脲酶活性顯著提升,抑制率顯著降低;3)與單施除草劑相比,安全劑復(fù)配施用的糜子根系超氧化物歧化酶活性在施藥后14~28 d時(shí)顯著升高;過氧化氫酶活性顯著降低;丙二醛含量明顯降低;4)單嘧磺隆導(dǎo)致糜子株高、穗長(zhǎng)、主穗質(zhì)量降低,安全劑復(fù)配施用減少了除草劑的不利影響,其中單嘧磺隆與赤霉素復(fù)配施用產(chǎn)量最高,達(dá)5 035 kg/hm2,較CK1增產(chǎn)1 114 kg/hm2,較單施單嘧磺隆處理的增產(chǎn)1 061 kg/hm2。安全劑與單嘧磺隆復(fù)配使用能延緩單嘧磺隆對(duì)糜子根際土壤酶活性的抑制,提高土壤蔗糖酶、脲酶活性,提高糜子根系超氧化物歧化酶活性,減緩了藥害脅迫造成的膜脂過氧化作用,減少細(xì)胞膜系統(tǒng)的損傷,延緩了根系衰老進(jìn)程,提高了糜子的株高、莖粗、穗長(zhǎng)、主穗質(zhì)量及產(chǎn)量。其中赤霉素與單嘧磺隆復(fù)配使用在緩解除草劑藥害,促進(jìn)糜子增產(chǎn)方面效果較好。

        除草劑;土壤;酶活性;安全劑;糜子;活性氧代謝

        0 引 言

        糜子(L.)屬禾本科黍?qū)伲≒anicum),又名黍、稷和糜,是中國(guó)干旱、半干旱地區(qū)重要的禾谷類作物,具有抗旱、耐貧瘠、耐鹽堿、早熟等優(yōu)良特性,且具有較高的營(yíng)養(yǎng)價(jià)值和藥用價(jià)值。隨著水資源的日益緊缺,糜子作為抗旱節(jié)水作物,在農(nóng)業(yè)上受到越來(lái)越多的重視[1-2]。因糜子屬于直播密植作物,且播種后正是雜草的生長(zhǎng)旺盛期和繁殖期,而傳統(tǒng)人工除草成本高、效率低,所以除草劑的使用在糜子田間生產(chǎn)中具有重要意義[3]。研究發(fā)現(xiàn)苗前除草劑谷友(10%單嘧磺?。┰诿幼犹镩g生產(chǎn)中雜草防除效果好,明顯提升了糜子產(chǎn)量[4]。但也有人研究發(fā)現(xiàn),除草劑在殺死雜草,提升作物產(chǎn)量降低勞動(dòng)成本的同時(shí),亦會(huì)對(duì)作物產(chǎn)生一定的藥害作用,對(duì)作物造成多種損傷,降低產(chǎn)量[5]。除草劑安全劑是一種與除草劑復(fù)配使用,本身對(duì)植物沒有明顯副作用,通過一系列植物體內(nèi)的生理生化反應(yīng)來(lái)消除或緩解除草劑藥害的有機(jī)化合物[6]。研究顯示,蕓苔素與赤霉素可以有效緩解撲草凈和草甘膦對(duì)棉花造成的藥害[7]。奈安在緩解除草劑二甲四氯鈉與煙嘧磺隆對(duì)玉米的藥害作用上均有較好表現(xiàn),使用后可顯著提升受藥害玉米葉綠素含量與最終產(chǎn)量[8]。

        土壤是農(nóng)藥的主要載體,土壤酶活性是土壤環(huán)境變化的敏感指標(biāo),常與土壤農(nóng)藥污染、土壤理化性質(zhì)具有關(guān)聯(lián)性,代表了土壤中各種生化過程的強(qiáng)度和方向,常被作為土壤環(huán)境質(zhì)量的指標(biāo)[9]。農(nóng)藥在土壤中的生物降解主要通過土壤酶完成的[10]。除草劑在土壤中以溶液形式存在,被根系長(zhǎng)時(shí)間吸收,導(dǎo)致根系生長(zhǎng)發(fā)育受到影響,所以根系抗氧化物酶活性可以反映出植物根系受除草劑影響的程度[11]。研究顯示,除草劑廣佳安處理后的油菜根系,其超氧化物歧化酶(Superoxide Dismutase,SOD)、過氧化物酶(Peroxidase,POD)、過氧化氫酶(Catalase,CAT)和抗壞血酸過氧化物酶(Ascorbate Peroxidase,APX)活性均受到不同程度抑制,上述生理代謝水平的改變是導(dǎo)致作物種苗根系生物量積累和形態(tài)建成受抑制的重要原因[12]。除草劑在生產(chǎn)上的安全使用,對(duì)農(nóng)藥科學(xué)使用降低點(diǎn)源污染[13]及糜子輕簡(jiǎn)化生產(chǎn)意義重大。因此本研究通過研究單嘧磺隆與安全劑復(fù)配施用后糜子田土壤酶活性與糜子根系抗氧化酶活性及產(chǎn)量的變化,探究提高除草劑安全性及提升除草劑高效利用的方法,以期為除草劑在糜子生產(chǎn)上的安全使用提供理論依據(jù)與技術(shù)支撐。

        1 材料與方法

        1.1 試驗(yàn)地概況

        試驗(yàn)于2019年在陜西省榆林市小雜糧試驗(yàn)示范站進(jìn)行(38°38′N,109°79′E),示范站地處黃土高原丘陵溝壑區(qū),降雨主要集中在7-9月,年均降水量400 mm左右,約占全年降水量的61%。試驗(yàn)區(qū)為典型的干旱半干旱大陸性季風(fēng)氣候,年平均氣溫為11.0 ℃,最高氣溫36.3 ℃,最低氣溫?25.7 ℃。試驗(yàn)地土壤為黃綿土,地勢(shì)平坦、肥力均勻,試驗(yàn)前耕層(0~20 cm)土壤pH值為8.27,含有機(jī)質(zhì)4.8 g/kg、全氮0.31 g/kg、有效磷32.7 mg/kg、速效鉀72 mg/kg。

        1.2 試驗(yàn)設(shè)計(jì)

        選用當(dāng)?shù)刂髟悦幼悠贩N‘榆糜2號(hào)’為試驗(yàn)材料,選用苗前除草劑谷友(H1,主要成分:10%單嘧磺?。?;3種安全劑:蕓苔素(S1,東立信生物工程有限公司)、赤霉素(S2,東立信生物工程有限公司)、奈安(S3,河南遠(yuǎn)東生物工程有限公司)。根據(jù)本課題組前期除草劑篩選試驗(yàn)結(jié)果[14],單嘧磺隆濃度設(shè)置為2.4 kg/hm2,安全劑濃度參考田間推薦劑量。施用時(shí)將除草劑溶于水中,加入安全劑混勻,使用氣壓式噴霧器(蘇州嘉達(dá)園林公司)6月13日播種后均勻噴施。設(shè)置2個(gè)對(duì)照(噴灑等量清水不除草CK1和人工除草CK2)。試驗(yàn)田間種植隨機(jī)區(qū)組排列,小區(qū)面積10 m2(2 m×5 m),共6個(gè)處理,重復(fù)4次,共24個(gè)小區(qū),5行區(qū),行距40 cm,株距4 cm,基本苗4萬(wàn)株/hm2。田間管理同當(dāng)?shù)卮筇锷a(chǎn)。具體藥劑品種和用量見表1。

        表1 試驗(yàn)處理

        1.3 測(cè)定項(xiàng)目及方法

        1.3.1 田間防效及藥害指數(shù)調(diào)查

        每個(gè)處理隨機(jī)選取3個(gè)重復(fù)小區(qū)作為取樣小區(qū),用面積為0.25 m2的鐵絲框(邊長(zhǎng)0.5 m)來(lái)隨機(jī)取樣,每個(gè)取樣小區(qū)隨機(jī)量取一個(gè)樣點(diǎn),將樣點(diǎn)內(nèi)全部雜草取回,稱鮮質(zhì)量。施藥后15 d開始調(diào)查,每15 d調(diào)查1次,共調(diào)查5次。田間防效用鮮重防效標(biāo)示,計(jì)算見式(1):

        =(1?2)/1×100(1)

        式中為鮮重防效,%;1為噴灑清水對(duì)照區(qū)雜草鮮質(zhì)量,g;2為處理區(qū)雜草鮮質(zhì)量,g。

        噴藥后14 d調(diào)查藥害指數(shù)。藥害分級(jí)標(biāo)準(zhǔn)參考字雪靖[14]的藥害分級(jí)表,并結(jié)合試驗(yàn)實(shí)際藥害情況進(jìn)行適當(dāng)調(diào)整。藥害分級(jí)標(biāo)準(zhǔn)詳見表2,根據(jù)各級(jí)藥害的株數(shù)和總株數(shù),計(jì)算藥害指數(shù),見式(2):

        表2 藥害分級(jí)標(biāo)準(zhǔn)

        1.3.2 土壤酶活性測(cè)定

        噴藥后根據(jù)糜子生育進(jìn)程確定取樣時(shí)間(遇雨提前或推后)。分別于6月20日(噴藥后7 d)、6月27日(噴藥后14 d)、7月11日(噴藥后28 d)、7月25日(噴藥后 42 d)、8月22日(噴藥后70 d)、9月17日(噴藥后96 d)采集糜子根際土樣。每次采集的糜子根際土樣過2 mm篩,自然風(fēng)干后保存用于測(cè)定酶活性。土壤脲酶活性用靛酚藍(lán)比色法測(cè)定;土壤蔗糖酶活性用3,5-二硝基水楊酸比色法測(cè)定;土壤磷酸酶活性用磷酸苯二鈉比色法測(cè)定;土壤過氧化氫酶活性用紫外分光光度法測(cè)定[15-16]。以清水對(duì)照CK1的土壤酶活性為對(duì)照,計(jì)算各處理對(duì)土壤酶活性的抑制率,見式(3):

        1.3.3 糜子根系抗氧化酶活性及丙二醛含量測(cè)定

        噴藥后14 d開始取糜子根系,取樣間隔時(shí)間同根際土壤取樣。每次所取根系樣品用水小心沖洗干凈后用吸水紙吸干表面水分,然后保存在?80 ℃冰箱備用。超氧化物歧化酶(SOD)活性采用光照核黃素體系,氮藍(lán)四唑(Nitro-Blue Tetrazolium,NBT)光還原法測(cè)定;過氧化氫酶(Catalase,CAT)活性采用紫外法測(cè)定;丙二醛(Maleicdialdehyde,MDA)含量測(cè)定采用硫代巴比妥酸法測(cè)定[17-19]。

        1.3.4 糜子農(nóng)藝性狀

        株高、莖粗及穗長(zhǎng)測(cè)定:糜子成熟期每個(gè)處理取長(zhǎng)勢(shì)均勻的6株糜子植株進(jìn)行測(cè)定。株高和穗長(zhǎng)用直尺測(cè)量;莖粗用游標(biāo)卡尺測(cè)量。主穗質(zhì)量測(cè)定:將標(biāo)記的糜子主穗去掉穗柄后用電子天平稱取質(zhì)量。產(chǎn)量測(cè)定:每小區(qū)取中間未取樣行單收計(jì)產(chǎn)。

        1.4 數(shù)據(jù)處理

        采用Excel 2013軟件對(duì)數(shù)據(jù)進(jìn)行處理和繪圖,SPSS19.0統(tǒng)計(jì)分析軟件對(duì)數(shù)據(jù)進(jìn)行差異顯著性分析。表格數(shù)據(jù)用“平均值±標(biāo)準(zhǔn)誤”表示。

        2 結(jié)果與分析

        2.1 單嘧磺隆配施安全劑對(duì)除草劑防效及藥害的影響

        由表3可以看出,除草劑與安全劑復(fù)配施用對(duì)除草劑的防效并無(wú)顯著的影響,各處理雜草防效均能保持較高水平。除草劑與安全劑復(fù)配處理(H1S1、H1S2、H1S3)的藥害指數(shù)均顯著低于只噴除草劑處理(H1),分別下降了20.27%、21.63%、20.94%,說(shuō)明安全劑與除草劑復(fù)配施用可以顯著減輕除草劑對(duì)糜子的藥害。

        2.2 單嘧磺隆配施安全劑對(duì)根際土壤酶活性的影響

        由圖1可知,處理H1S1、H1S2、H1S3、H1的土壤蔗糖酶相較于清水對(duì)照表現(xiàn)為為先抑制后激活,處理CK2變化趨勢(shì)為先激活后抑制。7~42 d時(shí)處理H1的土壤蔗糖酶活性均被抑制,其中7 d時(shí)抑制率最高,達(dá)76.49%;復(fù)配安全劑后,處理H1S1、H1S2、H1S3的土壤蔗糖酶抑制率顯著下降,其中處理H1S2的抑制率最低,顯著低于處理H1S1與H1S3,說(shuō)明安全劑S2相較于S1、S3能更好的降低單嘧磺隆對(duì)土壤蔗糖酶活性的抑制影響。施藥后96 d(成熟期)時(shí)處理除CK2外其余處理的土壤酶活性均被激活,其中H1S2激活率最高,H1S1激活率最低,分別為49.25%和1.46%,H1S1、H1S3激活率顯著低于H1。對(duì)照CK2的蔗糖酶活性除了在96 d時(shí)被抑制,其余時(shí)期均被激活。

        表3 糜子農(nóng)田雜草鮮重防效和藥害指數(shù)

        注:不同小寫字母表示不同處理間在 0.05 水平存在顯著性差異,下同。

        Note: Different lowercase letters indicate that there is a significant difference between the different treatments at 0.05 level, the same as below.

        除草劑的土壤脲酶活性變化表現(xiàn)為抑制-激活-恢復(fù),7~42 d時(shí)處理H1的脲酶活性被抑制,復(fù)配安全劑后處理H1S1、H1S2、H1S3的土壤脲酶活性的抑制率顯著降低。施藥后70 d時(shí)各處理脲酶活性均表現(xiàn)為激活,其中處理H1激活率最高,達(dá)51.24%,H1S3激活率最低,為3.76%。施藥后96 d時(shí),處理H1脲酶活性仍表現(xiàn)為激活,激活率對(duì)比70 d時(shí)下降了41.09%,H1S1、H1S2、H1S3脲酶活性均被抑制,抑制率分別為1.60%、1.28%、4.48%。說(shuō)明除草劑在前期抑制了土壤脲酶活性,后期隨時(shí)間逐漸恢復(fù),添加安全劑可以減緩前期除草劑對(duì)土壤脲酶的抑制作用,使其更快的恢復(fù)到正常水平。其中安全劑S2添加后土壤的脲酶活性的恢復(fù)速度最快。

        圖1 土壤酶活性抑制率

        除草劑激活了糜子田的土壤堿性磷酸酶活性,激活率變化趨勢(shì)為上升-下降-上升,其中施藥后14 d時(shí)激活率最高,為37.37%;復(fù)配安全劑的處理H1S1、H1S2、H1S3的堿性磷酸酶在施藥后7、42、96 d時(shí)表現(xiàn)為抑制,14、28、70 d時(shí)表現(xiàn)為激活,3個(gè)處理在7 d時(shí)抑制率都達(dá)到最大值,為15.67%、18.21%、14.83%,28 d時(shí)激活率都達(dá)到最大值,為52.09%、48.61%、23.81%。處理CK2除了96 d時(shí)表現(xiàn)為抑制,其余時(shí)期均為激活。

        處理H1的土壤過氧化氫酶活性變化表現(xiàn)為激活-抑制-激活,僅在施藥后28 d時(shí)表現(xiàn)為抑制,且抑制率顯著高于處理H1S1、H1S2、H1S3。處理H1S1、H1S2、H1S3的過氧化氫酶活性變化表現(xiàn)為抑制-激活-抑制,僅在施藥后14 d時(shí)表現(xiàn)為激活,激活率顯著高于處理H1,分別為10.01%、9.32%、16.13%;人工除草處理CK2相較于CK1表現(xiàn)為反復(fù)激活抑制??傮w來(lái)看,土壤過氧化氫酶活性受各處理的影響相對(duì)較小。復(fù)配安全劑的處理(H1S1、H1S2、H1S3)的堿性磷酸酶和過氧化氫酶的活性變化趨勢(shì)相同,但在不同時(shí)期激活/抑制率略有不同。

        2.3 單嘧磺隆配施安全劑對(duì)糜子根系生理代謝的影響

        由圖2a可知,各處理根系SOD活性的變化趨勢(shì)為降低-增加-降低,處理H1在施藥后14~28 d時(shí)的SOD活性顯著低于CK1,復(fù)配安全劑后處理H1S1、H1S2、H1S3的SOD活性顯著高于H1。施藥后42~70 d時(shí)處理H1的SOD活性顯著高于CK1,復(fù)配安全劑后降低了糜子根系的SOD活性。施藥后96 d(成熟期)時(shí)4個(gè)處理的SOD活性均顯著低于2個(gè)對(duì)照。3種安全劑與除草劑復(fù)配對(duì)根系SOD活性的影響趨勢(shì)是一致的,但不同安全劑處理間對(duì)糜子根系SOD活性的影響在不同時(shí)期略有不同。

        如圖2b所示,各處理的CAT活性隨時(shí)間變化大致趨勢(shì)為先升高再降低,在42 d時(shí)CAT活性達(dá)到最大值。施藥后14~42 d時(shí)H1處理的根系CAT活性顯著高于CK1,復(fù)配安全劑處理H1S1、H1S2、H1S3的CAT活性均有所下降。施藥后96 d(成熟期)時(shí)4個(gè)處理的CAT活性均顯著低于對(duì)照CK1??傮w來(lái)看,添加安全劑處理的CAT活性除了70 d時(shí)的處理H1S1,其他時(shí)期均低于處理H1,3種安全劑處理間CAT的活性在不同時(shí)期略有不同。

        如圖2c所示,各處理的根系MDA含量隨時(shí)間增加而上升,除草劑處理H1的根系MDA活性全生育期均顯著高于對(duì)照CK1,復(fù)配安全劑后根系MDA含量顯著下降,接近對(duì)照CK1和CK2。安全劑S2添加后,在28、42、70 d時(shí)處理H1S2的MDA含量在3個(gè)安全劑處理中最小,效果相對(duì)較好。

        注:SOD為超氧化物歧化酶;CAT為過氧化氫酶;MDA為丙二醛。

        2.3 單嘧磺隆配施安全劑對(duì)糜子農(nóng)藝性狀和產(chǎn)量的影響

        由表4可知,噴施除草劑后糜子株高被明顯抑制,處理H1的株高顯著低于對(duì)照CK1與CK2,處理CK2的株高顯著高于其他處理。安全劑與除草劑復(fù)配施用的處理H1S1、H1S2、H1S3株高均比處理CK1高,且顯著高于處理H1,說(shuō)明苗前除草劑會(huì)顯著抑制糜子的株高,安全劑與除草劑復(fù)配施用能顯著減少除草劑對(duì)株高的影響。只噴施除草劑處理H1的莖粗均低于添加安全劑的處理(H1S1、H1S2、H1S3),但高于CK1,安全劑與除草劑復(fù)配施用后,相較于處理H1糜子莖粗有明顯改善,與CK2相近。各處理穗長(zhǎng)間差異不顯著,但處理H1穗長(zhǎng)最低,添加安全劑在一定程度上減少了除草劑對(duì)糜子穗長(zhǎng)的影響。

        表4 糜子農(nóng)藝性狀和產(chǎn)量

        如表4所示,人工除草對(duì)照CK2主穗質(zhì)量最大,達(dá)24.96 g,處理H1最小,為19.15 g,安全劑與除草劑復(fù)配處理H1S1、H1S2、H1S3主穗質(zhì)量均高于處理H1。從產(chǎn)量來(lái)看,不除草處理CK1產(chǎn)量最低,僅有3 921 kg/hm2,人工除草處理CK2產(chǎn)量最高,達(dá)5 456 kg/hm2,處理H1產(chǎn)量?jī)H高于CK1,低于安全劑與除草劑復(fù)配處理。安全劑與除草劑復(fù)配處理的H1S2、H1S3的產(chǎn)量顯著高于僅噴除草劑處理H1和清水對(duì)照CK1,其中H1S2產(chǎn)量達(dá)5 035 kg/hm2,較H1增產(chǎn)1 061 kg/hm2,較CK1增產(chǎn)1 114 kg/hm2。由此可以看出,安全劑與除草劑復(fù)配施用能明顯改善除草劑對(duì)糜子農(nóng)藝性狀的影響,緩解除草劑對(duì)糜子產(chǎn)生的藥害,提高糜子產(chǎn)量,增加經(jīng)濟(jì)效益。

        3 討 論

        大量研究表明,除草劑、殺蟲劑等各種化學(xué)藥劑都會(huì)對(duì)土壤酶活性產(chǎn)生明顯的影響,化學(xué)藥劑與土壤酶之間產(chǎn)生的互作影響極其復(fù)雜,不同的除草劑對(duì)土壤酶活性的影響也不盡相同,一種化學(xué)藥劑或許是一種土壤酶的激活劑,也是另一種酶的抑制劑[20-23]。當(dāng)有機(jī)污染物進(jìn)入土壤后需要經(jīng)過一系列過程才能降解,其中生物降解主要依賴于土壤酶[24]。Feng等[25]研究表明,在污染土壤修復(fù)過程中,酶活性的變化不僅反映土壤生態(tài)系統(tǒng)功能的恢復(fù),也反映修復(fù)所用方法及材料在不同土壤的相互作用對(duì)土壤微生物及酶的影響。常用于農(nóng)藥修復(fù)的主要是水解酶和氧化還原酶,其中包括了脲酶、磷酸酶和過氧化氫酶。

        研究土壤蔗糖酶活性變化有利于了解土壤肥力變化及農(nóng)藥對(duì)土壤生態(tài)環(huán)境的影響,而土壤生態(tài)環(huán)境對(duì)農(nóng)藥的生物降解具有重要意義[26-27]。脲酶是作用專一的酰胺酶,它僅能將尿素水解,將土壤中的有機(jī)氮水解為氨態(tài)氮,使植物所需的養(yǎng)分轉(zhuǎn)化為有效態(tài)[28]。劉丹丹等[29]研究發(fā)現(xiàn)除草劑莠去津在土壤中的降解需要由脲酶等6種酶與莠去津降解菌sp.共同完成。本研究表明噴施除草劑單嘧磺隆后對(duì)土壤蔗糖酶和脲酶活性在前中期產(chǎn)生顯著的抑制作用,添加安全劑后這種抑制作用被明顯減輕,到了后期由于除草劑降解,蔗糖酶活性被激活;添加安全劑處理的脲酶活性均有所下降,表明添加安全劑后可以使除草劑對(duì)土壤蔗糖酶和脲酶活性的不利影響更快的恢復(fù),這有助于除草劑在土壤中的生物降解。其中安全劑赤霉素相比蕓苔素、奈安能更好的減小除草劑對(duì)蔗糖酶的抑制作用,并更快的使脲酶活性恢復(fù)正常水平。土壤磷酸酶可以將繁雜的有機(jī)磷水解成能被直接吸收的無(wú)機(jī)磷,在土壤磷流動(dòng)中發(fā)揮著十分重要的作用[30-31]。本研究表明,除草劑對(duì)土壤中的堿性磷酸酶活性有激活作用,添加安全劑后,對(duì)堿性磷酸酶活性的影響表現(xiàn)為反復(fù)的抑制-激活。土壤中的過氧化氫酶作為農(nóng)藥生物降解的重要氧化還原酶,本研究中各處理的土壤過氧化氫酶活性也表現(xiàn)為反復(fù)抑制-激活,但抑制/激活率相對(duì)較低,表明除草劑與安全劑對(duì)土壤過氧化氫酶活性的影響較小,這與周世雄等[32]的研究結(jié)果相近。本研究結(jié)果表明,安全劑的使用可以減少除草劑單嘧磺隆對(duì)糜子田土壤產(chǎn)生的負(fù)面影響,使其土壤酶活性更快的恢復(fù)到正常水平,有利于土壤農(nóng)藥的酶修復(fù),這對(duì)除草劑在土壤中的生物降解、保護(hù)土壤生態(tài)環(huán)境和后茬作物的生長(zhǎng)都具有重要的意義。

        超氧化物歧化酶(SOD)是主要的活性氧清除酶系,過氧化氫酶(CAT)使H2O2轉(zhuǎn)化為H2O和O2,二者協(xié)同運(yùn)作,使自由基維持在一個(gè)較低的水平,從而避免膜受到損傷,抗氧化物酶的活性受不同農(nóng)藥及相同農(nóng)藥的不同濃度的影響均有所不同[33-34]。安全劑除了是除草劑解毒劑,也是一種植物生長(zhǎng)調(diào)節(jié)劑,具有調(diào)節(jié)植物體內(nèi)物質(zhì)輸導(dǎo)和生長(zhǎng)發(fā)育、新陳代謝的功能,因而可通過與除草劑混用促進(jìn)雜草快速吸收除草劑,進(jìn)而提高防除雜草的效果[35]。胡利峰等[36]研究發(fā)現(xiàn)安全劑可能通過抑制作物對(duì)除草劑的吸收轉(zhuǎn)運(yùn),或誘導(dǎo)植物體內(nèi)的酶活性發(fā)生變化而增強(qiáng)其對(duì)除草劑的代謝來(lái)緩解除草劑對(duì)作物的不利影響。Panfili等[37]研究表明解草酮用于緩解除草劑特丁津藥害時(shí)會(huì)提升作物的抗氧化酶活性。本研究表明,除草劑單嘧磺隆處理的糜子根系SOD活性在生育前期被顯著抑制,添加安全劑后明顯緩解了單嘧磺隆對(duì)糜子根系的抑制影響,這與陶波等[38]的研究結(jié)果一致。生育中后期隨除草劑在土壤中的降解,單嘧磺隆處理糜子根系SOD活性被明顯激活。除草劑單嘧磺隆處理的糜子根系CAT活性相較于清水處理表現(xiàn)為激活-抑制,在前中期CAT活性有顯著提高,添加安全劑后這種激活作用受到了不同程度的減弱,這與張盼盼等[39]的研究結(jié)果相似。除草劑單嘧磺隆會(huì)顯著提升糜子根系的MDA含量,安全劑與單嘧磺隆復(fù)配使用后能顯著降低根系MDA含量,其中安全劑赤霉素添加后中后期糜子根系MDA含量最小,延緩根系衰老效果相對(duì)較好。根系抗氧化物酶活性與MDA含量的變化說(shuō)明安全劑的添加有效的緩解了除草劑單嘧磺隆對(duì)糜子根系的不利影響,顯著減少單嘧磺隆對(duì)糜子根系細(xì)胞膜系統(tǒng)的傷害,減弱了單嘧磺隆對(duì)糜子根系生長(zhǎng)發(fā)育和形態(tài)建成的抑制作用,從而保證糜子正常的生長(zhǎng)發(fā)育,顯著提高了糜子的產(chǎn)量。

        4 結(jié) 論

        與單施除草劑單嘧磺隆相比,其配施蕓苔素、赤霉素、奈安后藥害指數(shù)顯著下降,分別降低了20.27%、21.63%、20.94%,并且緩解了除草劑對(duì)糜子根際土壤酶活性的抑制,提高土壤蔗糖酶、脲酶活性,改變了單嘧磺隆對(duì)土壤堿性磷酸酶和過氧化氫酶活性的不利影響。添加安全劑后,糜子根系超氧化物歧化酶活性提高,減緩了藥害脅迫造成的膜脂過氧化作用,減少細(xì)胞膜系統(tǒng)的損傷,延緩了根系衰老進(jìn)程,提高了糜子的株高、莖粗、穗長(zhǎng)、主穗重及產(chǎn)量,其中赤霉素與單嘧磺隆復(fù)配較單施單嘧磺隆增產(chǎn)1 061 kg/hm2,故而安全劑赤霉素與除草劑單嘧磺隆復(fù)配使用在緩解除草劑藥害,促進(jìn)糜子增產(chǎn)方面效果相對(duì)較好。

        [1]柴巖. 糜子[M]. 北京:中國(guó)農(nóng)業(yè)出版社,1999:68-90.

        [2]王顯瑞,趙敏,柴曉嬌,等. 施肥對(duì)糜子密度、產(chǎn)量及農(nóng)藝性狀的影響[J]. 中國(guó)農(nóng)學(xué)通報(bào),2013,29(6):160-165.

        Wang Xianrui, Zhao Min, Chai Xiaojiao, et al. The impact of fertilizer on proso millet density, yield and agronomic traits[J]. Chinese Agricultural Science Bulletin, 2013, 29(6): 160-165. (in Chinese with English abstract)

        [3]朱懿. 不同除草劑對(duì)機(jī)直播稻田雜草控制及水稻生長(zhǎng)和產(chǎn)量的影響[D]. 成都:四川農(nóng)業(yè)大學(xué),2015.

        Zhu Yi. The Influences of Different Herbicides on Weed Control and Rice Growth and Output in Mechanical Direct Seeding Fields[D]. Chengdu: Sichuan Agricultural University, 2015. (in Chinese with English abstract)

        [4]黃貴斌. 糜子農(nóng)田除草劑的防效及安全性評(píng)價(jià)[D]. 楊凌:西北農(nóng)林科技大學(xué),2017.

        Huang Guibin. The Control Effect and Safety Evaluation of Herbicide in Broomcorn Millet Farmland[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)

        [5]Bartucca M L, Alessandro D M, Daniele D B. Interference of three herbicides on iron acquisition in maize plants[J]. Chemosphere, 2018, 206: 424-431.

        [6]李瑾,劉秀,金晨鐘,等. 酰胺類除草劑安全劑作用機(jī)理及研究應(yīng)用進(jìn)展[J]. 現(xiàn)代農(nóng)業(yè)科技,2016(21):107-109,114.

        Li Jin, Liu Xiu, Jin Chenzhong, et al. Research progress of mechanism and application of amide herbicide safener[J]. Modern Agricultural Science and Technology, 2016(21): 107-109, 114. (in Chinese with English abstract)

        [7]張?zhí)?,趙強(qiáng). 棉田闊葉除草劑與安全劑的復(fù)配藥劑篩選[J]. 農(nóng)藥,2017,56(4):307-310.

        Zhang Te, Zhao Qiang. Screening of drug combination in broad leaf herbicides and safeners in cotton filed[J]. Agrochemicals, 2017, 56(4): 307-310. (in Chinese with English abstract)

        [8]高新菊,葛玉紅,王恒亮,等. 緩解劑對(duì)2甲4氯鈉玉米藥害的解除作用[J]. 農(nóng)藥,2014,53(2):109-112.

        Gao Xinju, Ge Yuhong, Wang Hengliang, et al. Relief effects of antidotes on the MCPA-Na phytotoxicity in maize[J]. Agrochemicals, 2014, 53(2): 109-112. (in Chinese with English abstract)

        [9]Bo N’ska E, Lasota J, Zwydak M. The relationship between soil properties, enzyme activity and land use[J]. Forest Research Papers, 2017, 78(1): 39-44.

        [10]和文祥,蔣新,朱茂旭,等. 酶修復(fù)土壤農(nóng)藥污染的研究進(jìn)展[J]. 生態(tài)學(xué)雜志,2001,20(3):47-51,68.

        He Wenxiang, Jiang Xin, Zhu Maoxu, et al. Advance on enzymes bioremediation of pesticides-polluted[J]. Chinese Journal of Ecology, 2001, 20(3): 47-51, 68. (in Chinese with English abstract)

        [11]汪夢(mèng)竹. 油菜和小麥種苗根系對(duì)乙草胺耐性差異的分析[D]. 楊凌:西北農(nóng)林科技大學(xué),2016.

        Wang Mengzhu. Analysis of Acetochlor Tolerance in Root ofand[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)

        [12]董改改,慕小倩,汪夢(mèng)竹,等. 廣佳安對(duì)油菜芽苗根系形態(tài)結(jié)構(gòu)及生理指標(biāo)的影響[J]. 中國(guó)油料作物學(xué)報(bào),2015,37(2):206-213.

        Dong Gaigai, Mu Xiaoqian, Wang Mengzhu, et al. Attack effects on morphological structure and physiological change of rape seedling root[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(2): 206-213. (in Chinese with English abstract)

        [13]郭鴻鵬,朱靜雅,楊印生. 農(nóng)業(yè)非點(diǎn)源污染防治技術(shù)的研究現(xiàn)狀及進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2008,24(4):290-295.

        Guo Hongpeng, Zhu Jingya, Yang Yinsheng. Research status and development of technologies for controlling agricultural non-point source pollution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(4): 290-295. (in Chinese with English abstract)

        [14]字雪靖. 不同除草劑的田間防效及對(duì)糜子生長(zhǎng)發(fā)育的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2018.

        Zi Xuejing. Effct of Different Herbicides on Weeds in Millet Field and Their Effects on Growth and Development of Broomcorn Millet[D]. Yangling: Northwest A&F University, 2018. (in Chinese with English abstract)

        [15]關(guān)松蔭. 土壤酶及其研究法[M]. 北京:農(nóng)業(yè)出版社,1986.

        [16]楊蘭芳,曾巧,李海波,等. 紫外分光光度法測(cè)定土壤過氧化氫酶活性[J]. 土壤通報(bào),2011,42(1):207-210.

        Yang Lanfang, Zeng Qiao, Li Haibo, et al. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science, 2011, 42(1): 207-210. (in Chinese with English abstract)

        [17]鄒琦. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2003.

        [18]全國(guó)農(nóng)業(yè)技術(shù)推廣服務(wù)中心. 土壤分析技術(shù)規(guī)范[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2006:36-41.

        [19]陳建勛,王曉峰. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 廣州:華南理工大學(xué)出版社,2006.

        [20]谷盼妮,王美娥,陳衛(wèi)平. 環(huán)草隆與鎘復(fù)合污染對(duì)城市綠地重金屬污染土壤有機(jī)氮礦化量、基礎(chǔ)呼吸和土壤酶活性的影響[J]. 生態(tài)毒理學(xué)報(bào),2015,10(4):65-87.

        Gu Panni, Wang Meie, Chen Weiping. Combined effects of siduron and cadmium on organic nitrogen mineralization, basal respiration and enzyme activities in heavy metal polluted urban soil[J]. Asian Journal of Ecotoxicology, 2015, 10(4): 65-87. (in Chinese with English abstract)

        [21]Ramakrishnan B, Megharaj M, Venkateswarlu M, et al. Mixtures of environmental pollutants: Effects on microorganisms and their activities in soils[J]. Reviews of Environmental Contamination and Toxicology, 2011, 211: 63-120.

        [22]Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organic pollutants: A critical perspective[J]. Environment International, 2011, 37(8): 1362-1375.

        [23]Kucharski J, Wyszkowska J. Biological properties of soil contaminated with the herbicide Apyros 75 WG[J]. Journal of Elementology, 2008, 13(3): 357-371.

        [24]王聰穎,和文祥,何敏超,等. 酶在土壤農(nóng)藥污染修復(fù)中的研究進(jìn)展[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2005,24(S1):371-374.

        Wang Congying, He Wenxiang, He Minchao, et al. Research advances on repairing pesticides polluted soils by enzymes[J]. Journal of Agro-Environment Science, 2005, 24(S1): 371-374. (in Chinese with English abstract)

        [25]Feng C, Ma Y H, Jin X, et al. Soil enzyme activities increase following restoration of degraded subtropical forests[J]. Geoderma, 2019, 351: 180-187.

        [26]馬彥霞,郁繼華,張晶,等. 設(shè)施蔬菜栽培茬口對(duì)生態(tài)型無(wú)土栽培基質(zhì)性狀變化的影響[J]. 生態(tài)學(xué)報(bào),2014,34(14):4071-4079.

        Ma Yanxia, Yu Jihua, Zhang Jing, et al. Effect of different rotation systems on the characteristic change of ecotype soilless culture media for vegetables in greenhouse environments[J]. Acta Ecologica Sinica, 2014, 34(14): 4071-4079. (in Chinese with English abstract)

        [27]Wang Liuwei, Hou Deyi, Shen Zhengtao, et al. Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(24): 2724-2774.

        [28]劉淑娟,張偉,王克林,等. 桂西北喀斯特峰叢洼地不同植被演替階段的土壤脲酶活性[J]. 生態(tài)學(xué)報(bào),2011,31(19):5789-5796.

        Liu Shujuan, Zhang Wei, Wang Kelin, et al. Soil urease activity during different vegetation successions in karst peak-cluster depression area of northwest Guangxi, China[J]. Acta Ecologica Sinica, 2011, 31(19): 5789-5796. (in Chinese with English abstract)

        [29]劉丹丹,劉暢,王琳,等.sp.對(duì)土壤莠去津污染修復(fù)及代謝途徑分析[J]. 農(nóng)藥,2017,56(12):887-889.

        Liu Dandan, Liu Chang, Wang Lin, et al. Effect ofsp. on soil atrazine remediation and metabolic pathway analysis[J]. Agrochemicals, 2017, 56(12): 887-889. (in Chinese with English abstract)

        [30]鄭棉海,黃娟,陳浩,等. 氮、磷添加對(duì)不同林型土壤磷酸酶活性的影響[J]. 生態(tài)學(xué)報(bào),2015,35(20):6703-6710.

        Zheng Mianhai, Huang Juan, Chen Hao, et al. Effects of nitrogen and phosphorus addition on soil phosphatase activity in different forest types[J]. Acta Ecologica Sinica, 2015, 35(20): 6703-6710. (in Chinese with English abstract)

        [31]李瑩飛,耿玉清,周紅娟,等. 基于不同方法測(cè)定土壤酸性磷酸酶活性的比較[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2016,24(1):98-104.

        Li Yingfei, Geng Yuqing, Zhou Hongjuan, et al. Comparison of soil acid phosphatase activity determined by different methods[J]. Chinese Journal of Eco-Agriculture, 2016, 24(1): 98-104. (in Chinese with English abstract)

        [32]周世雄,魏朝俊,胡海燕,等. 氟磺胺草醚對(duì)大豆根際土壤微生物和酶活性的影響及其在根際的降解[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2018,24(1):203-211.

        Zhou Shixiong, Wei Chaojun, Hu Haiyan, et al. Effects of fomesafen on soil microorganisms, soil enzyme activities and its degradation in soybean rhizosphere[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(1): 203-211. (in Chinese with English abstract)

        [33]馮明,王宏富. 3種除草劑對(duì)晉谷21SOD的影響[J]. 現(xiàn)代農(nóng)業(yè)科技,2015,12:121,128.

        Feng Ming, Wang Hongfu. Effect of three herbicides on Jingu 21 superoxide dismutase[J]. Modern Agricultural Science and Technology, 2015, 12: 121, 128. (in Chinese with English abstract)

        [34]謝飛. 異丙甲草胺對(duì)玉米和水稻生態(tài)毒性的手性差異性研究[D]. 杭州:浙江工商大學(xué),2011.

        Xie Fei. Research on the Ecotoxicology and Enantioselectivity of Metolachlor on Maize and Rice[D]. Hangzhou: Zhejiang Gongshang University, 2011. (in Chinese with English abstract)

        [35]江海瀾. 除草劑與植物生長(zhǎng)調(diào)節(jié)劑互作對(duì)棉田龍葵的影響及生理機(jī)制研究[D]. 石河子:石河子大學(xué),2013.

        Jiang Hailan. Study on the Effect of Interaction of Plant Growth Regulations and Herbicides on the Physiology and Biochemistry ofL[D]. Shihezi: Shihezi University, 2013. (in Chinese with English abstract)

        [36]胡利鋒,劉小安,孫蘭,等. 除草劑安全劑作用機(jī)理研究進(jìn)展[J]. 農(nóng)藥學(xué)學(xué)報(bào),2017,19(2):152-161.

        Hu Lifeng, Liu Xiaoan, Sun Lan, et al. Progresses in the action mechanism of herbicide safeners[J]. Chinese Journal of Pesticide Science, 2017, 19(2): 152-161. (in Chinese with English abstract)

        [37]Panfili I, Bartucca M L, Marrollo G, et al. Application of a plant biostimulant to improve maize () tolerance to metolachlor[J]. Journal of Agricultural and Food Chemistry, 2019, 67(44): 12164-12171.

        [38]陶波,王禹堃,李德萍,等. 安全劑AD-67對(duì)精異丙甲草胺解毒效應(yīng)研究[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2019,50(1):29-35,51.

        Tao Bo, Wang Yukun, Li Deping, et al. Study on detoxification effect of safeners AD-67 on S-metolachlor[J]. Journal of Northeast Agricultural University, 2019, 50(1): 29-35, 51. (in Chinese with English abstract)

        [39]張盼盼,楊裕然,薛佳欣,等. 烯效唑?qū)}脅迫下糜子幼苗形態(tài)和生理特性的調(diào)控效應(yīng)[J]. 草業(yè)學(xué)報(bào),2020,29(10):81-90.

        Zhang Panpan, Yang Yuran, Xue Jiaxin, et al. Effects of uniconazole on morphology and physiological characteristics of proso millet seedings under salt stress[J]. Acta Prataculturae Sinica, 2020, 29(10): 81-90. (in Chinese with English abstract)

        Effects of combined application of safeners and herbicides on soil enzyme and active oxygen metabolism in proso millet

        Feng Yu, Zhao Yingnan, Lin Ruichang, Wang Na, Gao Xiaoli※

        (,712100,)

        Proso millet is a small-seeded grass crop that produces large amounts of grain. Proso millet is also usually cultivated in arid and semi-arid regions of China, due mainly to its drought resistance, barren tolerance, and early maturity. In proso millet fields, chemical herbicides are mostly used to remove or prevent the growth of unwanted plants, such as weeds, invasive species, or agricultural pests. However, the herbicides can inevitably damage the proso millet, even to cause phytotoxicity of crops in the weeding. As such, safeners can be added to reduce the damage of herbicides to plants. Nevertheless, there is still a lack of research concerning the effects of safeners and herbicides on the soil environment and root active oxygen metabolism of proso millet. Therefore, this study aims to explore the effects of safeners on the mitigation of herbicide damage, the soil enzyme activity, the root antioxidant enzyme activity, as well as the growth and development of proso millet. Taking proso millet variety’ Yumi-2’ as the material in Yulin, Shaanxi Province in 2019, four patterns of herbicides compounding were designed, including one pre-emergence herbicide: Guyou (10% monosulfuron wettablepowder, 2.4 kg/hm2, H1), Guyou add brassins (300 mL/hm2, H1S1), Guyou add gibberellin (300 mL/hm2, H1S2), and Guyou add Naian (1.2 kg/hm2, H1S3), meanwhile, the tap water (CK1) and artificial weeding (CK2) as controls. Moreover, the chemical and physical parameters were determined, including the control effect of weed fresh weight, phytotoxicity index, rhizosphere soil enzyme activity, root antioxidant enzyme activity, Maleicdialdehyde (MDA) content, agronomic traits and yield. The results showed that: 1) The phytotoxicity indexes of brassins, gibberellin, and Naian combined with Guyou significantly decreased by 20.27%, 21.63%, and 20.94%, respectively, but there was no significant change in the weed control effect. 2) The soil invertase and urease activities in the H1 treatment were dramatically inhibited, compared with that in the CK1 at 7-42 days after spraying, where the activity inhibition rate decreased with the time. Furthermore, the activities of soil invertase and urease significantly increased, whereas, the inhibition rate was significantly reduced after adding the safener (H1S1, H1S2, and H1S3 treatments). It infers that the mixed spraying of safener and Guyou can reduce soil alkaline phosphatase and catalase activities. 3) The root Superoxide Dismutase (SOD) activity in the H1 treatment was significantly lower than that in the CK1 at 14-28 d, while that was higher than that in the CK1 at 42-70 d. The activity of root SOD in the safener compound was higher than that in the H1 treatment at 14-28 d after spraying, while that was lower than that in the H1 treatment at 42-70 d. The root Catalase (CAT) activity in the H1 treatment was higher than that in the CK1 at 14-42 d, while was lower than that in the CK1 at 70-96 d. The CAT activity was reduced in safener compound after spraying. The root MDA content in the H1 treatment increased significantly, while it decreased significantly in the safener compound treatment after spraying. 4) Monosulfuron-methyl resulted in the reduction of plant height in proso millet, ear length, and main ear weight. The combined application of safeners reduced the adverse effects of herbicides. The yield of each treatment was higher than that of CK1. The combination of monosulfuron-methyl and gibberellin yields the highest yield, reaching 5 035 kg/hm2, which is an increase of 1 114 kg/hm2compared with CK1 treament and 1 061 kg/hm2compared with H1 treament. The combination of safener and monosulfuron-methyl can delay the inhibition of monosulfuron-methyl on the rhizosphere soil enzyme activity of proso millet, while increase the activities of soil invertase and urease, as well as the root SOD activity. It infers that the combined addition can be used to reduce the membrane lipid peroxidation, the damage of cell membrane system, and the senescence process of root system, while to increase plant height, stem thickness, ear length, main ear weight, and yield of proso millet. The findings demonstrated that the combination of safener gibberellin and herbicide monosulfuron-methyl can have a better effect to alleviate the herbicide damage, while promote the yield of proso millet.

        herbicides; soils;enzyme activity; safener; proso millet; active oxygen metabolism

        馮煜,趙穎楠,林瑞嫦,等. 除草劑配施安全劑對(duì)土壤酶活性與糜子根系生理代謝的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):117-123.doi:10.11975/j.issn.1002-6819.2020.23.014 http://www.tcsae.org

        Feng Yu, Zhao Yingnan, Lin Ruichang, et al. Effects of combined application of safeners and herbicides on soil enzyme and active oxygen metabolism in proso millet[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 117-123. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.014 http://www.tcsae.org

        2020-08-17

        2020-11-17

        國(guó)家谷子高粱產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-06-13.5-A26);陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018TSCXL-NY-03-01)

        馮煜,主要從事作物高效栽培與生理生態(tài)技術(shù)研究。Email:jqfyttt@qq.com

        高小麗,副教授,主要從事小雜糧優(yōu)質(zhì)高效栽培生理生態(tài)研究。Email:gao2123@nwsuaf.edu.cn

        10.11975/j.issn.1002-6819.2020.23.014

        S516

        A

        1002-6819(2020)-23-0117-07

        猜你喜歡
        除草劑
        納米除草劑和靶標(biāo)生物的相互作用
        封閉式除草劑什么時(shí)間噴最合適
        如何正確選擇使用農(nóng)藥及除草劑
        十種除草劑對(duì)蓮的安全性及藥害研究
        耕牛除草劑中毒治療
        除草劑引起作物的受害癥狀及預(yù)防
        幾種土壤處理除草劑對(duì)麥冬地雜草的防除作用
        小麥返青期除草劑防治效果試驗(yàn)
        玉米田除草劑的那些事
        生物除草劑,餡餅還是陷阱?
        国产精品人成在线765| 又硬又粗又大一区二区三区视频| 精品十八禁免费观看| 日韩精品一区二区三区在线观看的| 久久麻传媒亚洲av国产| 国产亚洲成av人片在线观黄桃| 长腿校花无力呻吟娇喘的视频| 久久99精品久久久久九色| 综合成人亚洲网友偷自拍| 香港三级午夜理论三级| 性大片免费视频观看| 激情 一区二区| 国产一级内射一片视频免费| av国产传媒精品免费| 国产精品内射后入合集| 素人系列免费在线观看| 国产91色综合久久免费| 在线观看热码亚洲av每日更新| 久久尤物AV天堂日日综合| 日本在线视频二区一区| 国产精品黄色片在线看| 射死你天天日| 国产精品18久久久久久首页| 亚洲国产区中文在线观看 | 国产在线手机视频| 中文字幕丰满人妻有码专区| 久久午夜av一区二区三区| 18成人片黄网站www| 五月天无码| 麻豆久久91精品国产| 在熟睡夫面前侵犯我在线播放| 伊人精品无码AV一区二区三区| 亚洲精品中文字幕乱码3| 无套内谢老熟女| 亚洲一区二区三区偷拍女厕| 亚洲一码二码在线观看| 亚洲国产成人av二区| a级毛片内射免费视频| 久久99亚洲网美利坚合众国| 阴唇两边有点白是怎么回事| 精东天美麻豆果冻传媒mv|