陳 明,李金龍,李 偉,劉晨旭,陳 琛,程德荷,陳紹江
利用低場核磁共振進(jìn)行活體玉米籽粒水分動態(tài)測試與成像
陳 明,李金龍,李 偉,劉晨旭,陳 琛,程德荷,陳紹江※
(中國農(nóng)業(yè)大學(xué)農(nóng)學(xué)院國家玉米改良中心,北京 100193)
籽粒脫水速率慢是影響中國玉米機(jī)械化粒收的重要原因。精確測定玉米籽粒含水率是實現(xiàn)篩選脫水速率快玉米種質(zhì)材料的重要方法。該研究設(shè)置玉米新鮮籽粒脫水(D)、干籽粒吸水(H)和再脫水處理(T),利用低場核磁共振(Low-Field Nuclear Magnetic Resonance, LF-NMR)單籽粒無損測試及核磁成像(Magnetic Resonance Imaging, MRI)技術(shù),分別對鄭單958及其親本鄭58和昌7-2籽粒含水率進(jìn)行測定,采集T2弛豫反演譜和可視化圖像,分時段監(jiān)測3個處理的含水率變化及水分遷移過程。研究結(jié)果表明,新鮮籽粒在D的D01~D02階段含水率下降20.93~21.94個百分點,而在T中同等含水率的籽粒T01~T02階段含水率下降25.13~27.69個百分點,2個階段失水速率差異顯著。在2次脫水處理中,昌7-2籽粒在D01~D03和T01~T03階段的脫水速率均大于鄭58和鄭單958,而在D03~D06和T03~T06階段,昌7-2籽粒的脫水速率均顯著低于鄭58和鄭單958,顯示不同種質(zhì)材料籽粒在D與T處理中表現(xiàn)相似趨勢。成像結(jié)果顯示,籽粒脫水過程先從胚乳開始,而在籽粒吸水過程中,種臍部位水分增加速度快,說明種臍是籽粒吸水過程的主要通道。該研究結(jié)果表明,LF-NMR可以反映不同處理方式及種質(zhì)材料間的水分變化,有助于解析玉米籽粒水分動態(tài)變化規(guī)律,可為籽粒水分的相關(guān)研究及宜機(jī)收種質(zhì)改良和新種質(zhì)材料創(chuàng)制提供重要手段。
玉米;低場核磁共振;種子;籽粒含水率;可視化
玉米籽粒發(fā)育和形成歷經(jīng)灌漿、脫水等復(fù)雜的生理過程。籽粒通過灌漿不斷積累淀粉、脂肪和蛋白質(zhì)等,直至黑層形成,標(biāo)志著籽粒生理成熟,隨之開始脫水過程[1-3]。收獲期籽粒含水率偏高,導(dǎo)致機(jī)收過程中破碎率及霉變率高等問題,是影響籽粒機(jī)械化收獲的重要因素。歐美在20世紀(jì)五六十年代就開展了玉米籽粒脫水研究并應(yīng)用于種質(zhì)改良,實現(xiàn)了玉米籽粒收獲的機(jī)械化,其研究結(jié)果表明,當(dāng)含水率下降至18%~23%時,籽粒機(jī)收效果最佳,破損率最低[4-6]。歐美部分品種在生理成熟時籽粒含水率可降低至22%~23%,收獲時甚至降至15%,可以保證安全存儲[7-8]。中國學(xué)者的研究結(jié)果也表明,籽粒含水率降至22.8%時破碎率最低,為5.07%[9]。然而,目前推廣的玉米品種在生理成熟時籽粒水分多在30%以上[10],籽粒脫水速度慢,限制了籽粒機(jī)械化收獲的規(guī)模化推廣。
玉米籽粒水分的遺傳基礎(chǔ)較為復(fù)雜,加之缺少快速精準(zhǔn)的無損測試方法,對單個籽粒水分動態(tài)研究較為困難,因而籽粒脫水性狀的遺傳改良進(jìn)展緩慢。鑒于此,應(yīng)用先進(jìn)測試手段研究籽粒水分動態(tài)變化,有助于明確籽粒水分變化的機(jī)制,有望為快速解決籽粒機(jī)械化收獲提供參考。玉米籽粒中的水分一般以自由水、結(jié)合水和半結(jié)合水3種相態(tài)存在[11],自由水是指不被籽粒中淀粉、蛋白質(zhì)等大分子物質(zhì)吸附而能自由流動的水,主要存在于種子的毛細(xì)管和細(xì)胞間隙中,具有一般水的性質(zhì);結(jié)合水是指籽粒中與大分子物質(zhì)緊密結(jié)合且不能自由流動的水;半結(jié)合水的存在相態(tài)介于結(jié)合水和自由水之間,受到吸附力較小[12-13]。通過測定籽粒中水分的相態(tài),可以明確是否達(dá)到最佳脫水狀態(tài),為評估籽粒脫水性能提供參考。籽粒含水率測定方法主要包括烘干法[14]、電容法[15-16]、光譜法[17]和核磁共振法[18]等。烘干法測定結(jié)果準(zhǔn)確,但其可導(dǎo)致籽粒失去發(fā)芽活力,且操作過程較為繁瑣,因此在育種種質(zhì)材料的高通量選擇上難以應(yīng)用。電容法能夠快速測定大批樣品的籽粒含水率,缺點是難以精確測定單個籽粒的含水率,因而多用于商品糧含水率估算[19-20]。低場核磁共振(Low-Field Nuclear Magnetic Resonance, LF-NMR)技術(shù)通過外加磁場檢測氫質(zhì)子的震動,根據(jù)氫質(zhì)子震動信號能準(zhǔn)確推斷籽粒中的含水率。LF-NMR測定水分的優(yōu)點在于不損傷籽粒因而能保持其發(fā)芽活力,因此適用于育種種質(zhì)材料的單籽粒水分選擇。另外,LF-NMR測定獲得的T2弛豫反演譜還能夠反映籽粒水分與大分子物質(zhì)結(jié)合程度,馳豫時間越短表明結(jié)合程度越高;馳豫時間越長則結(jié)合程度越低,因而可根據(jù)T2弛豫反演譜每個曲線的波峰位置區(qū)分結(jié)合水、半結(jié)合水及自由水3種水分相態(tài)[21]。鑒于上述特點,LF-NMR逐漸成為水分分布和含水率檢測的一種有效手段,特別適用于活體檢測。目前已被廣泛應(yīng)用于醫(yī)學(xué)[22]、食品[23]、石油勘探[24]、生物科學(xué)[25]和高分子材料[26]等研究領(lǐng)域。
在農(nóng)業(yè)上,LF-NMR具有簡便、快速、無損等優(yōu)點,并可通過成像實現(xiàn)氫質(zhì)子信號的可視化,主要應(yīng)用于研究農(nóng)產(chǎn)品中的水分和油脂含量與分布[27-28]。使用LF-NMR對籽粒中水分進(jìn)行分析,可在得到籽粒含水率的同時,直接顯示水分分布情況[18]。不僅可從時間維度研究水分的變化規(guī)律,也能從空間上直接觀察種子內(nèi)部的水分分布及動態(tài)過程[29-30]。綜上,本研究利用LF-NMR研究不同玉米種質(zhì)材料的籽粒含水率、水分相態(tài)和空間分布變化過程,為建立高效精準(zhǔn)的籽粒含水率測定方法及宜機(jī)械粒收種質(zhì)材料的快速篩選改良及新種質(zhì)材料選育提供技術(shù)支撐。
試驗以生產(chǎn)上主推雜交種鄭單958(ZD958)及其親本自交系鄭58(Z58)和昌7-2(C7-2),于2018年5月26日和31日分2次播種于中國農(nóng)業(yè)大學(xué)上莊實驗站,選取花期相近單株于2018年7月17日同時進(jìn)行嚴(yán)格自交授粉,并于授粉后52 d收獲。為減少試驗誤差,只收獲授粉良好的3個果穗,并選擇果穗中部、生長發(fā)育良好、形狀規(guī)則的40個籽粒進(jìn)行單籽粒水分測定;隨機(jī)選取8粒,其中5粒進(jìn)行T2弛豫反演譜采集,3粒用于核磁共振成像,分析籽粒中水分的分布。
1.2.1 試驗處理及流程
上述樣品在田間采集后,立即使用自封袋進(jìn)行封閉并置于冰盒,防止水分蒸發(fā)。在實驗室對樣品進(jìn)行以下處理:1)新鮮籽粒脫水處理(D):首先利用LF-NMR測定籽粒初始含水率,記為D01。此后將籽粒放置于26 ℃的恒溫烘箱,每隔24 h利用LF-NMR測定單個籽粒的含水率,共測定5次,分別記為D02、D03、D04、D05和D06;2)吸水處理(H):對上述D06階段的籽粒進(jìn)行浸水處理,水溫26 ℃,每隔90 min采樣并使用LF-NMR測定單個籽粒的含水率,共測定6次,分別記為H01、H02、H03、H04、H05和H06,之后對籽粒進(jìn)行一次15 h浸水處理后,再次測定籽粒的含水率,記為T01;3)再次脫水處理(T):上述T01階段的種子再次進(jìn)行脫水處理,處理條件與方法同D,共檢測6次,分別記為T01、T02、T03、T04、T05和T06;4)烘干處理(CK):上述參試籽粒在130 ℃的烘箱中烘干至恒質(zhì)量,分別稱質(zhì)量及成像,作為對照。
1.2.2 玉米籽粒水分核磁信號采集及含水率測定
利用LF-NMR(上海紐邁,NMI20-015V-I)分別對脫水-吸水-再脫水過程的籽粒的硬脈沖回波(Q-CPMG)信號及核磁成像信號進(jìn)行采集。利用已建立的籽粒含水率測量標(biāo)線,得到單籽粒含水率[18]。采集Q-CPMG信號并進(jìn)行反演獲取T2馳豫反演譜,結(jié)合不同相態(tài)水分的馳豫時間范圍,判斷籽粒中不同水分相態(tài)差異。采集的質(zhì)子密度加權(quán)像用于分析籽粒水分的分布。籽粒核磁信號采集具體參數(shù)為序列選項Q-CPMG,偏移頻率為588 696.49 Hz,重復(fù)采樣次數(shù)為16次,重復(fù)采樣等待時間為1.5 s,回波個數(shù)為3 000,信號采集點樣為74 988,回波時間為0.000 25 s,90°脈寬為0.000 008 s,180°脈寬為0.000 016 s。籽粒含水率測定流程參照已發(fā)表文獻(xiàn)[20]。核磁成像具體參數(shù)為偏移頻率為588 696.49 Hz,譜寬為40 kHz,重復(fù)采樣次數(shù)為64次,回波個數(shù)為500,信號采集點樣為300,重復(fù)時間為1.5 s,回波時間為0.000 376 s,90°脈寬為0.000 008s,180°脈寬為0.000 016 s,設(shè)定層數(shù)為1,選層寬度為0.013 m,選層厚度為0.013 m。將采集的籽粒含水率、T2弛豫反演譜、質(zhì)子密度圖像分別命名存儲。
為消除籽粒間質(zhì)量的差異對籽粒含水率的影響,在含水率計算中根據(jù)單個籽粒的質(zhì)量對其T2弛豫反演譜數(shù)據(jù)進(jìn)行校正,即將T2弛豫反演譜的所有回波峰幅值除以單個籽粒的質(zhì)量,得到籽粒的含水率。
烘干法測定籽粒的含水率(,%)計算如式(1)所示:
式中0代表處理前籽粒質(zhì)量,g;1代表完全烘干后籽粒質(zhì)量,g。
對T2衰減曲線進(jìn)行反演得到反演譜,通過反演譜峰弛豫時間對水分的相態(tài)進(jìn)行分類,同時以質(zhì)量校正的譜峰面積代表各相態(tài)水分的含水率,在不同相態(tài)水分之間進(jìn)行比較。采用Tukey法,對不同時期的籽粒含水率進(jìn)行多重比較,<0.05為差異顯著,<0.01表示差異極顯著。
將成像得到的原始灰度圖通過核磁共振影像分析軟件(V1.0)進(jìn)行映射處理后,再進(jìn)行偽彩處理,圖中的紅色、綠色、藍(lán)色區(qū)域分別代表氫質(zhì)子的高密度區(qū)、中等密度區(qū)和低密度區(qū)。試驗數(shù)據(jù)采用統(tǒng)計分析軟件R 4.0.0和EXCEL進(jìn)行統(tǒng)計分析。繪圖使用R包ggplot2和Adobe Illustrator(2020)完成。
通過分析不同處理的籽粒含水率結(jié)果發(fā)現(xiàn),自交系C7-2、Z58和雜交種ZD958三者兩兩之間的新鮮籽粒(D01)在含水率上存在顯著差異(<0.05)(圖1)。籽粒含水率由高到低分別為Z58、ZD958和C7-2。在D01~D02處理過程中,籽粒含水率迅速下降,C7-2、Z58和ZD958的含水率平均值分別下降21.94、21.37和20.93個百分點(表1)。D02測定中3個種質(zhì)材料的平均籽粒含水率從高到低仍為Z58、ZD958和C7-2,兩兩之間的差異顯著(<0.05)。D02~D03處理過程中,3個種質(zhì)材料的籽粒含水率進(jìn)一步降低,C7-2、Z58和ZD958含水率分別下降3.28、10.28和4.83個百分點,均顯著低于D01~D02處理過程的含水率降幅(<0.01),D02~D03處理中Z58籽粒含水率降幅顯著高于C7-2和ZD958(<0.05)。D03測定中的Z58籽粒的含水率顯著高于C7-2和ZD958(<0.05),C7-2和ZD958之間在籽粒含水率上無顯著差異。隨著含水率降低,后期處理過程中(D03~D05)籽粒脫水速率逐漸下降,C7-2、Z58和ZD958的平均水分降幅只有2.36%、4.46%和2.96%。在T06測定中,C7-2籽粒含水率顯著高于Z58和ZD958(<0.05),Z58和ZD958之間的籽粒含水率沒有顯著差異。
注:同一處理不同小寫字母表示不同種質(zhì)材料間差異顯著(P<0.05)。D為新鮮籽粒脫水處理,H為吸水處理,T為再次脫水處理,下同。
在H中(D06~T01),C7-2籽粒吸水速率較快,其在D06~H01和H01~H02階段中的籽粒含水率增幅均顯著高于Z58和ZD958籽粒(<0.05)。隨著籽粒水分含量提高,浸泡處理過程中籽粒含水率增幅明顯降低。飽和吸水后,在T01測試中C7-2和Z58籽粒的含水率無顯著差異,但均顯著高于ZD958(<0.05)。
T與D中含水率的變化呈現(xiàn)出類似的規(guī)律,約60%的水分均是在T01~T03脫水階段散失。隨著含水率降低,籽粒水分降幅明顯下降(表1)。不同種質(zhì)材料在再脫水處理中的水分降幅存在顯著差異,在T01~T02處理中,C7-2、Z58和ZD958籽粒含水率平均值分別下降27.69、26.40、和25.13個百分點,兩兩之間的差異顯著(<0.05)。在T02~T03處理過程中,C7-2、Z58和ZD958的籽粒含水率平均值分別下降2.66、4.67和3.44個百分點,兩兩之間的差異同樣顯著(<0.05)。不同的是,在3個種質(zhì)材料中,C7-2在T03~T04處理過程中含水率降幅最大,而在T04~T05過程中,其含水率降幅最小。隨著籽粒含水率降低,進(jìn)一步脫水處理過程中水分降幅縮?。═05~T06)。最終,C7-2的籽粒含水率顯著高于Z58和ZD958,而Z58和ZD958籽粒的含水率之間無顯著差異(T06)。
表1 不同處理間玉米籽粒含水率差值變化的顯著性分析
注:不同小寫字母表示不同種質(zhì)材料間差異顯著(<0.05)。
Note: Different lowercase letters stand for significant differencesamong different germplasm materials(<0.05).
對各處理的籽粒T2馳豫反演譜分析發(fā)現(xiàn),質(zhì)量歸一化的譜峰面積可以反映籽粒的含水率,高含水率籽粒具有較高的質(zhì)量歸一化的譜峰面積(圖2)。授粉后52 d的C7-2和ZD958籽粒含水率相當(dāng)(D01),兩者在0.001~0.01 s區(qū)間具有主要的信號峰,為半結(jié)合水[11]。此外在0.01~0.1 s區(qū)間存在略小的水分信號峰,為自由水。與C7-2和ZD958相比,Z58籽粒在D01階段具有更高的籽粒含水率,在其水分信號峰表現(xiàn)為除了在0.001~0.01 s區(qū)間具有明顯的信號峰外,在0.01~0.10 s區(qū)間具有比C7-2和ZD958更高的信號峰,說明此時Z58籽粒含有較高比例的自由水。
在D中(D01~D06),3種籽粒在水分相態(tài)上表現(xiàn)出一致的變化,無論是自由水還是結(jié)合水,在脫水處理的過程中,由于水分含量的降低,其信號強(qiáng)度逐漸減弱。然而,不同相態(tài)的水分散失規(guī)律不同,自由水的散失主要集中在D01~D02階段,0.01~0.10 s的信號峰面積迅速縮小。半結(jié)合水散失速率較為緩慢,在D01~D06過程中持續(xù)存在。此外,籽粒中水分的相態(tài)隨著含水率降低也發(fā)生了改變。在D01~D06處理過程中,除了信號峰面積逐步縮小外,主要信號峰也向左偏移,說明脫水過程中結(jié)合水的比例升高。在H中(D06~T01),隨著籽粒浸泡吸水時間的增加,籽粒中半結(jié)合水和自由水的含量同步增加,同時伴隨著半結(jié)合水和自由水峰位逐漸右移,說明此過程中水分的結(jié)合程度降低。在T中(T01~T06),不同相態(tài)的水分含量及峰位變化規(guī)律與第一次脫水過程基本一致。
圖2 玉米籽粒水分相態(tài)變化
為了更直觀地觀察籽粒水分的分布,通過對新鮮籽粒脫水、吸水和再次脫水的籽粒樣品進(jìn)行核磁成像,獲得了3個種質(zhì)材料自交籽粒水分分布的偽彩圖(圖3)。如圖3所示,深藍(lán)色的信號和深紅色的信號分別代表低水分信號和高水分信號。授粉后52 d采收的籽粒的胚和胚乳中均具有較為清晰的水分信號,胚中的信號強(qiáng)度要強(qiáng)于胚乳。Z58自交的籽粒在胚乳中的含水率較高,這個結(jié)果與圖1中Z58自交籽粒含水率顯著高于ZD958和C7-2自交籽粒含水率的結(jié)果一致。在脫水過程中,胚乳中的水分散失最快,在D03階段已經(jīng)基本檢測不到。胚中的水分散失速率較慢,在D03階段雖然含水率明顯降低,胚中剩余信號依舊比較強(qiáng),繼續(xù)脫水至D05,胚中的含水率進(jìn)一步降低。剩余位于胚部的偽彩信號可能主要來自籽粒油分。
籽粒經(jīng)過吸水處理后(H01),在果皮部位呈現(xiàn)明顯的水分信號,胚的基部也呈現(xiàn)較為明顯的水分信號,隨著吸水處理進(jìn)行,籽粒胚乳和胚中的水分信號逐漸增強(qiáng)。在H05測試中,胚乳中的偽彩信號較強(qiáng)并且分布均勻,而胚中偽彩信號相比胚乳更加強(qiáng)烈,但分布不均勻。3個種質(zhì)材料中T01測定中胚的下半部分偽彩信號要強(qiáng)于上半部分。再脫水過程中的籽粒偽彩信號分布和變化規(guī)律基本與第一次脫水過程一致(T01~T05)。
玉米籽粒含水率直接影響機(jī)械化收獲過程中的破損率及后期貯藏成本,研究籽粒脫水及吸水過程中水分的動態(tài)變化規(guī)律,可為探索快速脫水種質(zhì)材料的選擇方法及籽粒宜機(jī)收品種的選育提供參考。前人已對小麥[31]、玉米[11]、水稻[32]等對籽粒吸水過程進(jìn)行了研究,而對吸水后再脫水過程認(rèn)識相對缺乏。新鮮籽粒脫水過程與再脫水過程之間存在一定差異,相比于新鮮籽粒脫水過程,吸水后的籽粒在再脫水過程的T01~T02階段失水率顯著高于D01~D02,這說明籽粒吸水處理過程中所吸收的水分散失速率更快。由于玉米籽粒機(jī)械化收獲過程中的含水率超過25%即導(dǎo)致破碎率顯著提高[9-10],因此在本研究中,前期高水分階段(D01~D03、T01~T03)脫水速率可能在應(yīng)用上具有較大參考價值。此外,籽粒水分動態(tài)變化也可能受遺傳背景及籽粒結(jié)構(gòu)等影響,在D01~D02和T01~T02階段,C7-2的籽粒失水率均大于其他2個種質(zhì)材料,其原因可能與其籽粒淀粉等成分和果皮厚度等種質(zhì)材料的遺傳特性有一定關(guān)聯(lián),此現(xiàn)象如能進(jìn)一步在更多種質(zhì)材料上得到驗證,將有望建立通過室內(nèi)模擬處理鑒別單籽粒脫水性能的快速方法,從而降低田間工作量,提高選擇效率。
LF-NMR T2馳豫反演譜峰的位置能反映籽粒水分的動力學(xué)特性,即水分子與大分子物質(zhì)的結(jié)合程度[33]。通常,與自由水相比,籽粒中的水分子與淀粉、蛋白質(zhì)及脂肪等大分子緊密結(jié)合,其中水分子中的氫質(zhì)子受到較強(qiáng)的偶極耦合作用及磁場不均勻性的影響,從而快速衰減,在弛豫反演譜中表現(xiàn)為譜峰位置靠左,即主峰的弛豫時間較短。
玉米籽粒脫水是水分由內(nèi)部向外界環(huán)境散失的過程,籽粒中水分的相態(tài)在脫水過程中也發(fā)生著動態(tài)的變化[34]。從質(zhì)量歸一化的T2馳豫反演譜可以看出,隨著籽粒脫水過程的推進(jìn),含水率下降,伴隨著馳豫反演譜峰面積的減小。這一結(jié)果與小麥穗的LF-NMR T2弛豫反演譜信號峰的關(guān)系基本一致[21]。此外,隨著籽粒含水率的降低,T2馳豫反演譜峰的位置逐步向左遷移,表明籽粒中剩余的水分與大分子物質(zhì)的結(jié)合程度提高,水分相態(tài)從以自由水為主過渡到以結(jié)合水為主,與前人發(fā)現(xiàn)的水稻種子水分變化規(guī)律一致[32,35-36]。在籽粒吸水處理中,隨著籽粒含水率提高,T2馳豫反演譜信號峰迅速右移,說明在此過程中籽粒水分與大分子物質(zhì)的結(jié)合程度降低。
籽粒水分由內(nèi)部向外部散失的過程受多種因素影響,明晰其過程有助于種質(zhì)改良及選擇。前人研究結(jié)果表明,玉米生理成熟后籽粒脫水速率與果皮透性、苞葉和果柄性狀、籽粒形狀和大小有關(guān),果皮透性好和短苞葉更有利于籽粒脫水[37];籽粒的形態(tài)特征影響籽粒與環(huán)境的接觸面積,與籽粒脫水速率呈正相關(guān),且籽粒長度與脫水速率呈顯著正相關(guān)[38]。本研究利用核磁共振成像直觀地展示了脫水過程動態(tài)變化,不同種質(zhì)材料中胚乳的水分散失較快,說明果皮是籽粒水分散失的重要路徑。完全烘干的籽粒(CK)仍有一定氫質(zhì)子的信號,其分布主要在胚中,推測是由于玉米籽粒中油分導(dǎo)致。在籽粒吸水處理后,籽粒的胚基部水分信號強(qiáng)度要高于胚乳,顯示該部位可能也是水分進(jìn)入籽粒內(nèi)部的重要通道。此外,種皮附近的水分信號明顯增強(qiáng),說明種皮也是水分進(jìn)入籽粒的重要路徑。通過核磁共振成像,可以直觀觀察籽粒水分分布的變化,有助于在室內(nèi)對脫水過程中及吸水過程中水分?jǐn)U散更快的種質(zhì)材料加以選擇。
1)不同玉米種質(zhì)材料的籽粒脫水速率存在差異。新鮮籽粒在脫水(D)的D01~D02階段的含水率下降20.93~21.94個百分點,而在再次脫水(T)的T01~T02階段含水率下降25.13~27.69個百分點,2個階段含水率降幅差異顯著。因此,相同環(huán)境條件下,干籽粒在吸水后的脫水速率大于同等條件下新鮮籽粒脫水速率。
2)籽粒的T2反演譜可以反映水分的相態(tài)變化。隨著水分降低,峰位逐漸左移,水分結(jié)合更加牢固。吸水后水分增加,峰位逐漸右移,水分結(jié)合程度降低。
3)低場核磁共振(LF-NMR)技術(shù)可以清晰地監(jiān)測籽粒中的水分分布及動態(tài)變化,籽粒脫水過程始于胚乳逐步趨向于胚部,而吸水過程則是靠近種臍的部位水分增速更快。因此,該技術(shù)有望成為籽粒水分直觀檢測及宜機(jī)收種質(zhì)材料篩選改良等相關(guān)研究的重要手段。
[1]Brooking I. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying[J]. Field Crops Research, 1990, 23(1): 55-68.
[2]Magari R, Kang M S, Zhang Y. Genotype by environment interaction for ear moisture loss rate in corn[J]. Terapia Psicológica, 1997, 29(1): 97-105.
[3]曹鐘洋,湯彬,郭歡樂,等. 長江中游南部春玉米子粒不同階段脫水規(guī)律研究[J]. 玉米科學(xué),2019,27(5):87-94. Cao Zhongyang, Tang Bin, Guo Huanle, et al. Study on the grain dehydration regularity of spring maize in the south area of middle reaches of Yangtze River[J]. Journal of Maize Sciences, 2019, 27(5): 87-94. (in Chinese with English abstract)
[4]Hall G E, Johnson W H. Corn kernel crackage induced by mechanical shelling[J]. American Society of Agricultural Engineers, 1970, 13(1): 51-55.
[5]Chowdhury M H, Buchele W F. The Nature of corn kernel damage inflicted in the shelling crescent of grain combines[J]. International Journal for Engineering Modelling, 1978, 21(4): 610-614.
[6]Plett S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment[J]. Canadian Journal of Plant Science, 1994, 74(3): 543-544.
[7]Fuchs C, Kasten J, Urbanek M. Trends and potential of the market for combine harvesters in Germany[J]. Machines, 2015, 3(4): 364-378.
[8]Hadi G, Kása S, Rácz F. Changes in the water content of maize varieties after physiological maturity[J]. Acta Agronomica Hungarica, 2009, 57(1): 41-46.
[9]宋衛(wèi)堂,封俊,胡鴻烈. 北京地區(qū)夏玉米聯(lián)合收獲的試驗研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2005,36(5):45-48. Song Weitang, Feng Jun, Hu Honglie. Experimental study on combine harvesting of summer corn in Beijing area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(5): 45-48. (in Chinese with English abstract)
[10]李少昆. 我國玉米機(jī)械粒收質(zhì)量影響因素及粒收技術(shù)的發(fā)展方向[J]. 石河子大學(xué)學(xué)報:自然科學(xué)版,2017,35(3):265-272. Li Shaokun. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology[J]. Journal of Shihezi University: Natural Science Edition, 2017, 35(3): 265-272. (in Chinese with English abstract)
[11]宋平,彭宇飛,王桂紅,等. 玉米種子萌發(fā)過程內(nèi)部水分流動規(guī)律的低場核磁共振檢測[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(10):274-281. Song Ping, Peng Yufei, Wang Guihong, et al. Detection of internal water flow in germinating corn seeds based on low field nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 274-281. (in Chinese with English abstract)
[12]任廣躍,曾凡蓮,段續(xù),等. 利用低場核磁分析玉米干燥過程中內(nèi)部水分變化[J]. 中國糧油學(xué)報,2016,31(8):95-99. Ren Guangyue, Ceng Fanlian, Duan Xu, et al. Analysis of internal moisture changes in corn dry process investigated by low field-NMR[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(8): 95-99. (in Chinese with English abstract)
[13]周靜宜,趙一霖,張浩,等. 熱風(fēng)干燥溫度對糯玉米理化特性的影響[J]. 食品科學(xué),2020,41(13):83-88. Zhou Jingyi, Zhao Yilin, Zhang Hao, et al. Effect of hot air-drying temperature on physical and chemical properties of waxy corn[J]. Food Science, 2020, 41(13): 83-88. (in Chinese with English abstract)
[14]胡晉,李永平,蘇菊萍,等. 種子水分測定的原理和方法[M]. 北京:中國農(nóng)業(yè)出版社,2008.
[15]付鶴翔,張利鳳,郭文川. 電容式糧食含水率測量儀的設(shè)計[J]. 農(nóng)機(jī)化研究,2011,33(11):131-134. Fu Hexiang, Zhang Lifeng, Guo Wenchuan. Research on capacitive grain moisture content meter[J]. Journal of Agricultural Mechanization Research, 2011, 33(11): 131-134. (in Chinese with English abstract)
[16]宋華魯,閆銀發(fā),宋占華,等. 利用介電參數(shù)和變量篩選建立玉米籽粒含水率無損檢測模型[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(20):262-272. Song Hualu, Yan Yinfa, Song Zhanhua, et al. Nondestructive testing model for maize grain moisture content established by screening dielectric parameters and variables[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 262-272. (in Chinese with English abstract)
[17]李江波,蘇憶楠,饒秀勤. 基于高光譜成像及神經(jīng)網(wǎng)絡(luò)技術(shù)檢測玉米含水率[J]. 包裝與食品機(jī)械,2010,28(6):1-4. Li Jiangbo, Su Yinan, Rao Xiuqin. Detection of water content in corn based on hyperspectral imaging and neural network[J]. Packaging and Food Machinery, 2010, 28(6): 1-4. (in Chinese with English abstract)
[18]張垚,陳琛,陳明,等. 基于低場核磁共振技術(shù)的玉米單子粒含水率測定方法研究[J]. 玉米科學(xué),2018,26(3):89-94. Zhang Yao, Chen Chen, Chen Ming, et al. Single kernel moisture content evaluation based on low-field nuclear magnetic resonance in maize[J]. Journal of Maize Sciences, 2018, 26(3): 89-94. (in Chinese with English abstract)
[19]張越,趙進(jìn),趙麗清,等. 基于介電特性谷物水分在線測量儀的設(shè)計與試驗[J]. 中國農(nóng)機(jī)化學(xué)報,2020,41(5):105-110. Zhang Yue, Zhao Jiang, Zhao Liqing, et al. Design and experiment of on-line measuring instrument for grain moisture based on dielectric properties[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 105-110. (in Chinese with English abstract)
[20]劉強(qiáng),汪福友,呂秉霖. LDS-1H電腦水分測定儀測定玉米水分應(yīng)用與分析[J]. 糧食流通技術(shù),2011,2(6):32-33. Liu Qiang, Wang Fuyou, Lv Binglin. Study on determining moisture content in maize with computer moisture meter of model No.LDS-1H[J]. Grain Distribution Technology, 2011, 2(6): 32-33. (in Chinese with English abstract)
[21]杜光源,唐燕,張嵩午,等. 小麥葉片衰老態(tài)勢核磁共振分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2014,45(4):264-270. Du Guangyuan, Tang Yan, Zhang Songwu, et al. Investigating senescence status of wheat leaves by nuclear magnetic resonance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 264-270. (in Chinese with English abstract)
[22]胡海華,趙紅星,張莎莎. CT與核磁共振診斷脂肪肝的準(zhǔn)確性以及CT檢查與中醫(yī)辨證分型的關(guān)系[J]. 中國現(xiàn)代醫(yī)生,2019,57(3):106-108. Hu Haiyan, Zhao Hongxin, Zhang Shasha. Accuracy of CT and MRI in the diagnosis of fatty liver and relationship between CT examination and TCM syndrome differentiation[J]. China Modern Doctor, 2019, 57(3): 106-108. (in Chinese with English abstract)
[23]杜美紅,孫永軍. 低分辨核磁共振技術(shù)在食品安全分析檢測中的應(yīng)用[J]. 食品工業(yè)科技,2013,34(21):374-376. Du Meihong, Sun Yongjun. Application of low-field nuclear magnetic resonance technique in food safety analysis and detection. Science and Technology of Food Industry, 2013, 34(21): 374-376. (in Chinese with English abstract)
[24]肖立志,謝然紅. 核磁共振在石油測井與地層油氣評價中的應(yīng)用[J]. 中國工程科學(xué),2003,5(9):87-94. Xiao Lizhi, Xie Ranhong. Applications of NMR to oil well logging and formation evaluation[J]. Strategic Study of CAE, 2003, 5(9): 87-94. (in Chinese with English abstract)
[25]牛曉剛,金長文. 利用核磁共振技術(shù)表征生物大分子的動態(tài)特性[J]. 中國科學(xué):化學(xué),2020,50(10):1375-1383. Niu Xiaogang, Jin Changwen. Biomolecular dynamic properties probed by solution NMR[J]. Science China: Chemistry, 2020, 50(10): 1375-1383. (in Chinese with English abstract)
[26]萬至彬,宋建會,郭鳴明. 原位液體核磁共振在高分子材料表征領(lǐng)域的應(yīng)用[J]. 波譜學(xué)雜志,2019,36(3):408-424. Wan Zhibin, Song Jianhui, Guo Mingming. The application of in operando liquid state NMR on macromolecular material Characterization[J]. Chinese Journal of Magnetic Resonance, 2019, 36(3): 408-424. (in Chinese with English abstract)
[27]宋同明. 脈沖核磁共振儀(Pulsed NMR)對作物種子含油量的快速測定[J]. 作物學(xué)報,1989,15(2):161-166. Song Tongming. Rapid determination of oil content of crop seeds by Pulsed NMR[J]. Crop Journal, 1989, 15(2): 161-166. (in Chinese with English abstract)
[28]Wang Hongzhi, Liu Jin, Xu Xiaoping, et al. Fully-automated high-throughput NMR system for screening of haploid kernels of maize (Corn) by measurement of oil content[J/OL]. PLoS ONE, 2016, 11(7), [2016-07-25], https://journals.plos.org/ plosone/article?id=10.1371/journal.pone.0159444.
[29]要世瑾,杜光源,牟紅梅,等. 基于核磁共振技術(shù)檢測小麥植株水分分布和變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(24):177-186. Yao Sshijin, Du Guangyuan, Mou Hongmei, et al. Detection of water distribution and dynamics in body of winter wheat based on nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 177-186. (in Chinese with English abstract)
[30]黃亞偉,李換,王若蘭. 大米品質(zhì)的儀器分析方法研究進(jìn)展[J]. 糧食與油脂,2017,30(1):1-4. Huang Yawei, Li Huan, Wang Ruolan. Research progress on instrumental analysis method of rice quality[J]. Cereals & Oils, 2017, 30(1): 1-4. (in Chinese with English abstract)
[31]要世瑾,牟紅梅,杜光源,等. 小麥種子吸脹萌發(fā)過程的核磁共振檢測研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2015,46(11):266-274. Yao Shijin, Mou Hongmei, Du Guangyuan, et al. Water imbibition and germination of wheat seed with nuclear magnetic resonance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 266-274. (in Chinese with English abstract)
[32]宋平,徐靜,馬賀男,等. 利用低場核磁共振及其成像技術(shù)分析水稻浸種過程水分傳遞[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(17):274-280. Song Ping, Xu Jing, Ma Henan, et al. Analysis on moisture transport in process of rice soaking using low field nuclear magnetic resonance and its imaging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 274-280. (in Chinese with English abstract)
[33]牟紅梅,何建強(qiáng),邢建軍, 等. 小麥灌漿過程籽粒水分變化的核磁共振檢測[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(8):98-104. Mou Hongmei, He Jianqiang, Xing Jianjun, et al. Water changes in wheat spike during grain filling stage investigated by nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 98-104. (in Chinese with English abstract)
[34]李璐璐,明博,高尚,等. 夏玉米籽粒脫水特性及與灌漿特性的關(guān)系[J]. 中國農(nóng)業(yè)科學(xué),2018,51(10):1878-1889. Li Lulu, Ming Bo, Gao Shang, et al. Study on grain dehydration characters of summer maize and its relationship with grain filling[J]. Science Agricultural China, 2018, 51(10): 1878-1889. (in Chinese with English abstract)
[35]宋平,楊濤,王成,等. 利用低場核磁共振分析水稻種子浸泡過程中的水分變化[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(15):279-284. Song Ping, Yang Tao, Wang Cheng, et al. Analysis of moisture changes during rice seed soaking process using low-field NMR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 279-284. (in Chinese with English abstract)
[36]宋平,楊濤,王成,等.用核磁共振研究浸種方法對水稻種子吸水量的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(7):237-243.
Song Ping, Yang Tao, Wang Cheng, et al. Effects of rice seed soaking methods on moisture absorption capacity by low-field nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 237-243. (in English with Chinese abstract)
[37]Crane P L, Miles S R, Newman J E. Factors associated with varietal differences in rate of field drying in corn1[J]. Agronomy Journal, 1959, 51(6): 318-320.
[38]郭佳麗,呂志堯,呂穎穎,等. 玉米粒部性狀對子粒脫水速率的影響[J]. 玉米科學(xué),2014,22(4):33-38. Guo Jiali, Lu Zhiyao, Lu Yingying, et al. Effect of kernel characteristics on kernel dehydration rate of maize[J]. Journal of Maize Sciences, 2014, 22(4): 33-38. (in Chinese with English abstract)
Dynamic testing and imaging of living maize kernel moisture using Low-Field Nuclear Magnetic Resonance (LF-NMR)
Chen Ming, Li Jinlong, Li Wei, Liu Chenxu, Chen Chen, Cheng Dehe, Chen Shaojiang※
(,,,100193,)
Grain dehydration is a crucial aspect of the mechanized harvesting of maize. The high moisture of grains during harvest leads to a high percentage of damaged and mildew grains, and therefore, limiting the application of mechanized harvesting. Exploration of the moisture changes with the appropriate method is important for the development of inbred lines and hybrids with low grain moisture during harvesting. In this study, a popular planted hybrid Zhengdan958 (ZD958), and its parental inbred lines, Zheng58 (Z58) and Chang7-2 (C7-2), were used as models to test the live maize kernel moisture quantification and visualization using the Low-Field Nuclear Magnetic Resonance (LF-NMR). Self-pollination ears of ZD958, Z58, and C7-2 were harvested at 52 days after pollination, and then experienced three treatments, 1) naturally dehydration (D) under 26 ℃ environments for 5 days, samples were analyzed every 24 hours with LF-NMR; 2) hydration (H), grains from step1 were soaked in water at 26 ℃ for 9 hours, these samples were analyzed every 90 minutes with LF-NMR; 3) re-dehydration (T), repeat step 1 with grains from step 2, samples were analyzed every 24 hours with LF-NMR. For each analysis, 5 grains were used for moisture quantification with LF-NMR and 3 grains were used for grain moisture visualization with the MRI. Results showed that dehydration rate was negatively correlated with the grain moisture in both natural dehydration and re-dehydration among three materials. Under the same conditions, moisture reduction in T01-T02 was 25.13-27.69 percentage points, which was much higher than that of 20.93-21.94 percentage points, in D01-D02. Besides, significant differences were found in water loss among materials, water loss of C7-2 was significantly higher than that of Z58 and ZD958 in D01-D03 and T01-T03, while water loss of C7-2 was significantly lower than that of Z58 and ZD958 in D04-D06 and T04-T06. The visualization result showed a stronger moisture signal in the inner layer of endosperm than that in the outer layer of endosperm. In both D and T treatment, grain dehydration started from outside (endosperm) to inside (embryo). During H treatment, the moisture of the seed coat and navel increased rapidly, indicating that both seed coat and navel were important channels for water absorption. Because of the existence of grain oil which was mainly distributed in embryos and could be detected by MRI, embryos showed the strongest signals at all stages. Besides, the phase status of grain water was analyzed using transverse relaxation time (T2) of signal amplitude. Data showed that the T2 value of signal peaks decreased along with the water loss in either D treatment (D01-D06) or T treatment (T01-T06). By contrast, as water absorption went on in H treatment, the T2 value of signal peaks increased, demonstrating that phase status changes gradually along with both water absorption and dehydration treatment. Grains with low water content showed T2 value between 0.000 1-0.001 s, which meant tightly banding between water and other molecules, whole grains with high water content showed T2 value between 0.001-0.01 s (D01, T01), signifying loose banding or free from banding with other molecules. Overall, the results revealed that LF-NMR could be used to observe the continuous changes of maize grain moisture directly and accurately from three different perspectives, water content, visualization, and phase status. LF-NMR would have a high potential to be used as a powerful tool to evaluate water content and realize accurate single-kernel selection in maize breeding.
maize; low-field nuclear magnetic resonance; seeds; grain moisture; visualization
陳明,李金龍,李偉,等. 利用低場核磁共振進(jìn)行活體玉米籽粒水分動態(tài)測試與成像[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(23):285-292.doi:10.11975/j.issn.1002-6819.2020.23.033 http://www.tcsae.org
Chen Ming, Li Jinlong, Li Wei, et al. Dynamic testing and imaging of living maize kernel moisture using Low-Field Nuclear Magnetic Resonance (LF-NMR)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 285-292. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.033 http://www.tcsae.org
2020-08-24
2020-10-21
國家重點研發(fā)計劃(2018YFD0100201-2, 2016YFD0101201);國家玉米產(chǎn)業(yè)技術(shù)體系項目(CARS-02-04)
陳明,博士生,主要從事玉米遺傳育種研究。Email:acm2638@163.com
陳紹江,教授,主要從事玉米遺傳育種研究與教學(xué)。Email:chen368@126.com
10.11975/j.issn.1002-6819.2020.23.033
S351.5+1
A
1002-6819(2020)-23-0285-08