亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        紅邊位置改進(jìn)算法的冬小麥葉綠素含量反演

        2020-03-03 02:21:44錢彬祥黃文江葉回春孔維平邢乃琛焦全軍
        關(guān)鍵詞:插值法牛頓冬小麥

        錢彬祥,黃文江,葉回春,孔維平,任 淯,邢乃琛,焦全軍

        ·農(nóng)業(yè)信息與電氣技術(shù)·

        紅邊位置改進(jìn)算法的冬小麥葉綠素含量反演

        錢彬祥1,2,3,黃文江2,3※,葉回春2,3,孔維平4,任淯1,3,邢乃琛1,3,焦全軍2,3

        (1. 中國(guó)科學(xué)院大學(xué),北京 100049;2. 海南省地球觀測(cè)重點(diǎn)實(shí)驗(yàn)室,三亞 572029;3. 中國(guó)科學(xué)院空天信息創(chuàng)新研究院,數(shù)字地球重點(diǎn)實(shí)驗(yàn)室,北京 100094; 4. 中國(guó)科學(xué)院空天信息創(chuàng)新研究院,定量遙感信息技術(shù)重點(diǎn)實(shí)驗(yàn)室,北京 100094)

        植被反射光譜的紅邊位置對(duì)葉綠素含量高度敏感,利用遙感數(shù)據(jù)建立基于紅邊位置的作物葉綠素含量反演模型,可實(shí)現(xiàn)大范圍作物及時(shí)的長(zhǎng)勢(shì)監(jiān)測(cè)。該研究以冬小麥為研究對(duì)象,在學(xué)習(xí)6種經(jīng)典紅邊位置求解算法的基礎(chǔ)上,提出牛頓-切比雪夫插值法和牛頓八點(diǎn)插值法2種改進(jìn)紅邊位置求解算法。根據(jù)不同算法的紅邊位置分布特征綜合分析了改進(jìn)算法的優(yōu)缺點(diǎn),并在此基礎(chǔ)上建立基于紅邊位置的冬小麥葉綠素含量反演模型。結(jié)果表明,與傳統(tǒng)算法相比,2種改進(jìn)算法均顯著改善了雙峰現(xiàn)象和紅邊位移,且基于改進(jìn)算法的模型預(yù)測(cè)值與葉綠素含量實(shí)測(cè)值的決定系數(shù)>0.619,較最大一階導(dǎo)數(shù)法,牛頓八點(diǎn)插值法提高了6.321%~9.947%,牛頓-切比雪夫插值法提高了5.024%~10.480%,具有更高的精度。同時(shí),在2種改進(jìn)算法中,牛頓八點(diǎn)插值法具有更高的穩(wěn)定性與實(shí)用性。研究結(jié)果為植被理化參數(shù)反演與農(nóng)業(yè)生產(chǎn)應(yīng)用提供理論與技術(shù)支撐。

        算法;遙感;模型;冬小麥;葉綠素反演;牛頓-切比雪夫插值法;牛頓八點(diǎn)插值法;紅邊位置

        0 引 言

        葉綠素含量是一種綜合反映作物受外界環(huán)境脅迫情況、光合作用能力強(qiáng)弱和新陳代謝旺盛程度的非常敏感的指示劑[1-2]。研究表明,作物反射光譜的紅邊位置(Red Edge Position,REP)與葉綠素含量具有相當(dāng)高的相關(guān)關(guān)系,是作物生理生化參數(shù)遙感反演的一個(gè)重要指標(biāo)[3-5]。建立基于紅邊位置的作物葉綠素含量反演模型,為實(shí)現(xiàn)大面積作物及時(shí)的長(zhǎng)勢(shì)監(jiān)測(cè)提供了一種快速而實(shí)用的方法[6]。紅邊波段一般認(rèn)為在可見(jiàn)光波段的660~770 nm范圍內(nèi),由于帶寬較寬,不利于其與作物理化參數(shù)相關(guān)模型的建立,所以通常用位于紅光-近紅外波段作物反射光譜的突變點(diǎn)來(lái)精確定位紅邊位置[7-8]。

        目前,紅邊位置求解算法可分為基于微分插值和基于曲線擬合兩大類?;谇€擬合思想的算法提出的更早,Miller等[3]提出倒高斯模型法(Red Edge Position calculated by Inverted Gaussian,REP_IG),即用一條傾斜的倒高斯曲線近似紅邊波段范圍內(nèi)的作物反射光譜,該模型較為復(fù)雜,需先經(jīng)等價(jià)變換才能進(jìn)行下一步解算。為了簡(jiǎn)化計(jì)算,Demetriades-Shah等[9]用紅邊波段范圍內(nèi)作物反射光譜的一階導(dǎo)數(shù)最大值對(duì)應(yīng)的波段位置確定紅邊位置。Dawson等[10]研究表明最大一階導(dǎo)數(shù)法(Red Edge Position calculated by Maximum First Derivative,REP_MFD)提取紅邊位置的精度取決于傳感器平臺(tái)的波段范圍和光譜分辨率,為減少紅邊位置求解精度對(duì)光譜分辨率的過(guò)度依賴,提出了拉格朗日三點(diǎn)內(nèi)插法(Red Edge Position calculated by Lagrange,REP_LAGR)。Clevers等[11]認(rèn)為拉格朗日三點(diǎn)內(nèi)插法只適用于粗分辨率光譜,且不能解決紅邊位置求解過(guò)程中存在雙峰現(xiàn)象(bimodal phenomenon,BP)的問(wèn)題,為此提出了線性四點(diǎn)內(nèi)插法(Red Edge Position calculated by Linear Four-Point Insert,REP_LFPI),該方法是最簡(jiǎn)單、易行的紅邊位置求解算法,只需要4個(gè)波段和簡(jiǎn)單的線性插值運(yùn)算。此外,Pu等[12]采用5次多項(xiàng)式擬合作物反射光譜,多項(xiàng)式一階差分最大值對(duì)應(yīng)的波段位置即為紅邊位置,并利用實(shí)測(cè)光譜數(shù)據(jù)驗(yàn)證了該方法的合理性。Lin等[13]開(kāi)展了拉格朗日三點(diǎn)內(nèi)插法和多項(xiàng)式擬合法(Red Edge Position calculated by Polynomial fitting,REP_POLY)的精度對(duì)比研究,發(fā)現(xiàn)拉格朗日三點(diǎn)內(nèi)插法的精度取決于波段組合,且對(duì)噪音尤為敏感,而多項(xiàng)式擬合法的適用性更高、穩(wěn)定性更強(qiáng)。Cho等[14]為減少雙峰現(xiàn)象帶來(lái)的不穩(wěn)定性的影響,提出了線性外推法(Red Edge Position calculated by Line Extrapolate,REP_LE)。陳西亮等[4]將牛頓插值法(Red Edge Position calculated by Newton Interpolation,REP_NI)應(yīng)用于紅邊位置求解過(guò)程,利用6個(gè)等距的紅邊波段反射光譜數(shù)據(jù)內(nèi)插出紅邊位置,求解精度位于倒高斯模型法和線性四點(diǎn)內(nèi)插法之間。陳西亮等[4]的研究中存在以下不足:1)選取ENVI自帶的USGS植被波譜庫(kù)中的矮松樹(shù)、山楊樹(shù)、草坪和藍(lán)云杉4種植被的4條反射光譜做分析,數(shù)據(jù)量過(guò)少,分析結(jié)果受偶然誤差和樣本選取的影響較大,且與實(shí)際生產(chǎn)相脫離,研究缺乏普適性;2)由于缺乏試驗(yàn)數(shù)據(jù),無(wú)法分析不同算法求解出的紅邊位置的分布特征(如雙峰現(xiàn)象、紅邊位移),僅利用紅邊位置的相對(duì)誤差來(lái)衡量算法的優(yōu)劣缺乏科學(xué)性;3)沒(méi)有將新算法與作物生理生化參數(shù)遙感反演相結(jié)合,無(wú)法檢驗(yàn)新算法的實(shí)用性。

        與傳統(tǒng)算法相比,牛頓插值法具有明顯優(yōu)勢(shì)。傳統(tǒng)算法普遍對(duì)傳感器提出光譜分辨率高、采樣均勻的要求,且求解的紅邊位置存在雙峰現(xiàn)象、紅邊位移(Displacement of Red Edge Position,REPD)和精度不足等缺點(diǎn)。牛頓插值法屬于微分插值方法,相較于曲線擬合方法需要的數(shù)據(jù)量更少,并且能夠完全保留原始數(shù)據(jù),以及引入差分(Difference,DF)和差商(Difference Quotient,DFQ)的概念,可以計(jì)算非等距節(jié)點(diǎn)的光譜反射率。同時(shí),與拉格朗日插值法相比較,牛頓插值法不僅克服了每增加一個(gè)節(jié)點(diǎn)整個(gè)計(jì)算必須重新開(kāi)始的缺點(diǎn),而且可以節(jié)省乘、除法運(yùn)算的次數(shù),提高了計(jì)算速度[15]。

        鑒于牛頓插值法的優(yōu)越性以及前人研究工作還有待進(jìn)一步完善,本研究以冬小麥為試驗(yàn)對(duì)象,采用數(shù)值分析技術(shù),在學(xué)習(xí)經(jīng)典算法的基礎(chǔ)上提出2種改進(jìn)的紅邊位置求解算法:牛頓八點(diǎn)插值法(Red Edge Position calculated by Newton Eight-Point Interpolation,REP_NEPI)和牛頓-切比雪夫插值法(Red Edge Position calculated by Newton-Chebyshev-Node Interpolation,REP_NCNI),并進(jìn)行兩者的綜合比較,擬建立更高精度的基于紅邊位置的冬小麥葉綠素含量反演模型。研究結(jié)果可以為植被理化參數(shù)遙感反演增添新的理論依據(jù),為農(nóng)業(yè)工程領(lǐng)域的冬小麥葉綠素含量監(jiān)測(cè)、長(zhǎng)勢(shì)評(píng)估等實(shí)際生產(chǎn)應(yīng)用提供新的技術(shù)支撐。

        1 材料與方法

        1.1 研究區(qū)概況及試驗(yàn)設(shè)計(jì)

        研究區(qū)位于北京市昌平區(qū)小湯山國(guó)家精準(zhǔn)農(nóng)業(yè)示基地(40°11′N,116°26′E),氣候類型為暖溫帶半濕潤(rùn)大陸季風(fēng)氣候。本研究選取2002—2003年和2018—2019年小麥生長(zhǎng)季內(nèi)不同品種、不同肥水處理下的冬小麥連續(xù)開(kāi)展了野外測(cè)量試驗(yàn),在其關(guān)鍵生育期采集常規(guī)農(nóng)學(xué)數(shù)據(jù)與近地高光譜數(shù)據(jù)。具體處理方式如下:

        1)小麥品種:2002—2003年選用3種不同株型、籽粒品質(zhì)的冬小麥,包括株型緊湊、籽粒品質(zhì)弱筋型的“京411”,株型松散、籽粒面筋質(zhì)量好的“中優(yōu)9507”和株型與籽粒品質(zhì)中間型的“京冬8”[7-8]。2018—2019年選用株型半緊湊、籽粒面筋質(zhì)量好的“輪選167”和株型緊湊、籽粒品質(zhì)中間型的“京冬18”。

        2)肥水處理:2002—2003年的研究區(qū)共有48個(gè)肥水處理小區(qū),各小區(qū)面積為32.4 m×30 m,在試驗(yàn)區(qū)內(nèi)對(duì)不同品種的冬小麥分別進(jìn)行肥水脅迫處理。4個(gè)梯度施肥處理:0N處理,返青期至成熟期不施肥;②1N處理,返青期和拔節(jié)期各追施尿素50 kg/hm2;8N處理,返青期和拔節(jié)期各追施尿素200 kg/hm2;④14N處理,返青期和拔節(jié)期各追施尿素350 kg/hm2[7-8]。4個(gè)梯度供水處理:0水處理,全生育期不灌溉;②1水處理,全生育期灌水225 m3/hm2;2水處理,全生育期灌水450 m3/hm2;3水處理,全生育期灌水675 m3/hm2[7-8]。2018—2019年的研究區(qū)共有32個(gè)肥水處理小區(qū),各小區(qū)面積為10 m×15 m,在試驗(yàn)區(qū)內(nèi)正常供水,對(duì)不同品種的冬小麥進(jìn)行肥脅迫處理:N0處理,返青期至成熟期不施肥;N1處理,基肥(2018年9月)97.5 kg/hm2和拔節(jié)期(2019年4月)追肥97.5 kg/hm2;N2處理,基肥(2018年9月)195 kg/hm2和拔節(jié)期(2019年4月)追肥195 kg/hm2;N3處理,基肥(2018年9月)292.5 kg/hm2和拔節(jié)期(2019年4月)追肥292.5 kg/hm2。

        3)測(cè)定項(xiàng)目:不同生育時(shí)期的冠層光譜反射率、配套的數(shù)碼照片和包括葉綠素含量(mg/g)、葉面積指數(shù)在內(nèi)的常規(guī)田間調(diào)查農(nóng)學(xué)參數(shù)。

        4)測(cè)定時(shí)期:包括返青期(3月25日前后)、拔節(jié)期(4月15日前后)、挑旗期(4月25日前后)、開(kāi)花期(5月10日前后)、灌漿中期(5月20日前后)、灌漿后期(5月30日前后)在內(nèi)的冬小麥6個(gè)關(guān)鍵生育期。通過(guò)詢問(wèn)試驗(yàn)區(qū)內(nèi)經(jīng)驗(yàn)豐富的技術(shù)人員,獲取試驗(yàn)區(qū)內(nèi)該年度冬小麥的長(zhǎng)勢(shì)情況、降水量和氣溫變化等信息,并就此制定具體的測(cè)量時(shí)間與試驗(yàn)方案。

        1.2 光譜和農(nóng)學(xué)參數(shù)測(cè)定

        小麥冠層光譜采用美國(guó)ASD公司生產(chǎn)的FieldSpec FR光譜輻射儀測(cè)定[16],選取晴朗無(wú)云、風(fēng)力較小的10:30-14:00(北京時(shí)間)進(jìn)行,采樣范圍為350~2 500 nm,采樣間隔為1 nm。測(cè)定時(shí),探頭在距離冠層約1 m處垂直向下觀測(cè),測(cè)定前后用標(biāo)準(zhǔn)參考板校正,每個(gè)點(diǎn)重復(fù)測(cè)定20次,取全部測(cè)數(shù)的均值作為該點(diǎn)的冠層光譜反射率。同時(shí),在目標(biāo)區(qū)域附近利用打孔器獲取測(cè)試樣品,稱量后在黑暗環(huán)境下浸泡于95%乙醇溶液中24~48 h,使用UV765PC型分光光度計(jì)測(cè)定溶液在可見(jiàn)光440、649和665 nm處的吸光度值,并由此計(jì)算葉綠素含量(mg/g)。

        1.3 紅邊位置求解算法

        1.3.1 傳統(tǒng)的紅邊位置求解算法

        傳統(tǒng)的紅邊位置求解算法主要有以下6種:

        1)最大一階導(dǎo)數(shù)法

        在紅邊波段范圍內(nèi),植被光譜曲線反射率的一階差分最大值對(duì)應(yīng)的波長(zhǎng)位置即為紅邊位置[17],其計(jì)算如式(1)和式(2)所示:

        2)倒高斯模型法

        采用一條傾斜的倒高斯曲線近似紅邊范圍內(nèi)的植被反射光譜,倒高斯曲線函數(shù)表達(dá)式[18]如式(3)和式(4)所示:

        式中()為倒高斯函數(shù);R為植被光譜反射率在紅邊波段范圍內(nèi)的最大值;0、0分別為紅邊位置范圍內(nèi)植被光譜反射率最小值及其所對(duì)應(yīng)的波長(zhǎng)位置;為高斯模型標(biāo)準(zhǔn)差系數(shù),nm。

        3)拉格朗日三點(diǎn)內(nèi)插法

        拉格朗日三點(diǎn)內(nèi)插法是一種適用于粗采樣光譜的三點(diǎn)插值算法,具體原理是利用二次多項(xiàng)式擬合植被反射率光譜一階導(dǎo)數(shù)[16],如式(5)和式(6)所示:

        4)線性四點(diǎn)內(nèi)插法

        其假設(shè)紅邊波段范圍內(nèi)的植被反射率光譜近似為一條直線,紅邊位置由4個(gè)特征點(diǎn)的反射率值(670、700、740和780)內(nèi)插得到[19],如式(7)和式(8)所示:

        式中rep為拐點(diǎn)反射率。

        5)多項(xiàng)式擬合法

        多項(xiàng)式擬合法是利用高次多項(xiàng)式高精度逼近紅邊波段的植被光譜曲線,經(jīng)多次試驗(yàn)表明9階多項(xiàng)式的擬合效果最好,均方根誤差<0.15和決定系數(shù)>0.999 93,其計(jì)算如式(9)和式(10)所示:

        6)線性外推法

        基于一階導(dǎo)數(shù)光譜在遠(yuǎn)紅色(680~700 nm)和近紅外(725~760 nm)區(qū)域的2條直線線性外推紅邊位置[20],如式(11)所示:

        式中1、1分別為遠(yuǎn)紅色波段直線的截距與斜率;2、2分別為近紅外波段直線的截距與斜率。

        1.3.2 本研究改進(jìn)的紅邊位置求解算法

        在學(xué)習(xí)傳統(tǒng)方法的基礎(chǔ)上,本研究運(yùn)用數(shù)值分析技術(shù)將牛頓插值法應(yīng)用到紅邊位置的求解過(guò)程中。在利用插值多項(xiàng)式進(jìn)行近似逼近時(shí),通常認(rèn)為構(gòu)建多項(xiàng)式的原始插值節(jié)點(diǎn)越多、多項(xiàng)式階數(shù)越高,多項(xiàng)式逼近原始數(shù)據(jù)的效果就越好,可事實(shí)并非如此。龍格在20世紀(jì)初就證明了高次插值多項(xiàng)式具有病態(tài)性:基于等距節(jié)點(diǎn)的高階插值多項(xiàng)式插值點(diǎn)數(shù)量越多,多項(xiàng)式在逼近區(qū)間兩端產(chǎn)生的振蕩現(xiàn)象就會(huì)越明顯,即插值結(jié)果越偏離原函數(shù)[4],這種病態(tài)性現(xiàn)象被稱為龍格現(xiàn)象[21]。龍格現(xiàn)象在牛頓插值法中尤為明顯,為了有效減少龍格現(xiàn)象的影響,本研究提出了以下2種解決方法:一是選擇適當(dāng)?shù)牟逯荡螖?shù);二是借助切比雪夫零點(diǎn)替換等距節(jié)點(diǎn)。

        1)牛頓八點(diǎn)插值法

        為確定適當(dāng)?shù)牟逯荡螖?shù),本研究進(jìn)行多次試驗(yàn)得出:在紅邊位置范圍內(nèi)采集跨度為20 nm左右的8個(gè)插值點(diǎn)的插值效果最好,8個(gè)插值點(diǎn)分別位于651、671、691、711、731、751、771和790 nm處。利用差商原理將8個(gè)插值點(diǎn)代入牛頓插值多項(xiàng)式求取各階系數(shù)[4]如式(12)所示:

        2)牛頓-切比雪夫插值法

        牛頓八點(diǎn)插值法中的節(jié)點(diǎn)選取比較固定,會(huì)降低算法的實(shí)用性,將切比雪夫零點(diǎn)應(yīng)用到插值節(jié)點(diǎn)選取中,用零點(diǎn)替換等距節(jié)點(diǎn),可以使得插值點(diǎn)的選取更具有科學(xué)性和普適性[22],其計(jì)算如式(13)和式(14)所示:

        式中T()為切比雪夫多項(xiàng)式;、分別為零點(diǎn)區(qū)間的上下限;x為零點(diǎn)解。

        進(jìn)行上述9種算法核心思想的對(duì)比,如表1所示。

        表1 8種紅邊位置求解算法的特征描述

        1.4 葉綠素含量反演方法與精度評(píng)價(jià)指標(biāo)

        研究采用紅邊位置分布特征的描述統(tǒng)計(jì)量對(duì)不同算法進(jìn)行特性分析,這些統(tǒng)計(jì)量包括最值、平均值、相對(duì)誤差(Relative Error,RE)等。并運(yùn)用最小二乘回歸原理(Least Square Regression,LSR)建立基于不同算法紅邊位置的冬小麥葉綠素含量反演模型,對(duì)反演模型的預(yù)測(cè)值與葉綠素含量實(shí)測(cè)值進(jìn)行線性擬合,評(píng)定各個(gè)模型的精度,精度評(píng)價(jià)指標(biāo)包括擬合方程的斜率、截距、決定系數(shù)(coefficient of determination,2)、均方根誤差(Root Mean Squared Error,RMSE)和標(biāo)準(zhǔn)均方根誤差(Normalized Root Mean Squared Error,NRMSE)。各指標(biāo)計(jì)算如式(15)~式(18)所示:

        式中x為紅邊位置的相對(duì)誤差;為各類算法所求的紅邊位置,nm;此處,、y分別為植被光譜反射率實(shí)測(cè)值的數(shù)組和元素;、ye分別為植被光譜反射率擬合值的數(shù)組和元素;?為植被光譜反射率實(shí)測(cè)值的平均值;和分別表示實(shí)測(cè)數(shù)據(jù)的編號(hào)和總數(shù)。一般認(rèn)為,當(dāng)NRMSE≤0.1時(shí),認(rèn)為模型的擬合優(yōu)度很好;當(dāng)0.10.3時(shí),認(rèn)為模型的擬合優(yōu)度較差[23-25]。

        挑旗期、開(kāi)花期、灌漿中期是冬小麥生長(zhǎng)周期中新陳代謝最為旺盛的3個(gè)時(shí)期,本研究選取以上3個(gè)生育期的原始試驗(yàn)數(shù)據(jù)進(jìn)行研究,其中,2002-2003年的樣本數(shù)據(jù)(樣本數(shù)為136)用于不同算法的特性分析與冬小麥葉綠素含量反演模型的建立,2018-2019年的樣本數(shù)據(jù)(樣本數(shù)為64)進(jìn)行模型的檢驗(yàn)。

        2 結(jié)果與分析

        2.1 不同算法的特性分析

        實(shí)現(xiàn)8種紅邊位置求解算法,并對(duì)建模集數(shù)據(jù)進(jìn)行處理,得到不同算法紅邊位置的分布特征和算法特性(表2)。同時(shí),為了直觀地觀察不同算法的紅邊位移與雙峰現(xiàn)象,繪制出的紅邊位置與葉綠素含量的散點(diǎn)圖(圖1)。各種算法紅邊位置的最小值在694~717 nm,主要集中在694~706 nm,線性四點(diǎn)內(nèi)插法的最小值顯著偏大(717 nm);紅邊位置的最大值在729~736 nm,主要集中在735~736 nm,倒高斯模型法的最大值相對(duì)偏?。?29 nm);紅邊位置的平均值在719.5~727.2 nm,主要集中在725.4~727.2 nm,倒高斯模型法和線性外推法的最大值明顯偏小,分別為715.9和721.9 nm。紅邊位置的變幅是評(píng)價(jià)紅邊算法對(duì)植被反射光譜敏感程度的重要指標(biāo)之一,在一定程度上,紅邊位置的變幅越大,說(shuō)明該算法對(duì)植被光譜曲線越敏感;變幅較小會(huì)存在紅邊位置的飽和現(xiàn)象。以上算法紅邊位置的變幅在14~41 nm,主要集中在30~41 nm,線性四點(diǎn)內(nèi)插法的變幅明顯偏小(14 nm)??紤]到最大一階導(dǎo)數(shù)法是嚴(yán)格遵守紅邊位置定義的算法,所以將其計(jì)算結(jié)果作為參考標(biāo)準(zhǔn)計(jì)算得到其他算法的RE在0~0.882%,主要集中在0~0.179%。其中,拉格朗日三點(diǎn)內(nèi)插法的RE最小,可忽略不計(jì),倒高斯模型法和線性外推法的RE較大,分別為0.882%和0.551%。

        雙峰現(xiàn)象和紅邊位移對(duì)葉綠素含量反演模型的建立是非常不利的。根據(jù)散點(diǎn)圖中紅邊位置與葉綠素含量的分布特征可知,最大一階導(dǎo)數(shù)法、拉格朗日三點(diǎn)內(nèi)插法、倒高斯模型法和九階多項(xiàng)式擬合法在進(jìn)行紅邊位置求解時(shí)均出現(xiàn)明顯的雙峰現(xiàn)象,即紅邊位置出現(xiàn)在中心波長(zhǎng)分別為698和730 nm的集中區(qū)。與之相比,其他4種方法在不同程度上削減了雙峰現(xiàn)象的不利影響,且牛頓插值法的效果最佳。同時(shí),線性四點(diǎn)內(nèi)插法的紅邊位置向長(zhǎng)波方向收攏(不是紅移,是收攏,整體集中在720~730 nm);倒高斯模型法、線性外推法存在紅邊位置向短波方向位移(藍(lán)移)。

        表2 不同紅邊位置求解算法的特性分析

        注:進(jìn)行不同紅邊位置求解算法的特性分析所用的數(shù)據(jù)來(lái)源于2002-2003年的試驗(yàn)數(shù)據(jù)(樣本數(shù)為136)。

        Note: Data used to analyze the characteristics of different Red Edge Positions (REP) solving algorithms come from the experimental data from 2002 to 2003 (The number of samples are 136).

        注:用于制作散點(diǎn)圖的數(shù)據(jù)來(lái)源于2002-2003年的試驗(yàn)數(shù)據(jù)(樣本數(shù)為136)。

        經(jīng)以上分析,可以得到以下結(jié)論:1)最大一階導(dǎo)數(shù)法、拉格朗日三點(diǎn)內(nèi)插法的紅邊位置變幅最大(41 nm),對(duì)葉綠素含量十分敏感,然而存在明顯的雙峰現(xiàn)象;2)倒高斯模型法的結(jié)果介于695~729 nm之間,平均值最?。?19.5 nm),整體向短波方向移動(dòng)(藍(lán)移),且RE最大(0.882%);3)線性四點(diǎn)內(nèi)插法的結(jié)果介于717~731 nm之間,整體向長(zhǎng)波方向收攏,平均值為725.4 nm,紅邊位置變幅最?。?4 nm),對(duì)葉綠素含量變化不敏感;4)線性外推法的結(jié)果變幅較好(37.1 nm),但平均值偏低(721.9 nm),整體向短波方向移動(dòng)(藍(lán)移),且RE較大(0.551%);5)九階多項(xiàng)式擬合法的結(jié)果整體較好,不過(guò)雙峰現(xiàn)象最為顯著;6)牛頓八點(diǎn)插值法和牛頓-切比雪夫插值法的結(jié)果最小值偏大(705和706 nm),平均值、變幅和RE較為理想,并有效克服了雙峰現(xiàn)象和紅邊位移。

        2.2 基于紅邊位置的冬小麥葉綠素含量反演

        2.2.1 基于紅邊位置的冬小麥葉綠素含量反演模型的建立

        利用2002-2003年冬小麥的葉綠素a(Chlorophyll-a,Chla)、葉綠素b(Chlorophyll-b,Chlb)和葉綠素a+b(Chlorophyll-ab,Chlab)含量實(shí)測(cè)數(shù)據(jù)與紅邊位置計(jì)算結(jié)果進(jìn)行相關(guān)性分析,得到基于不同算法的冬小麥葉綠素含量反演模型(表3),研究表明8種方法計(jì)算出的紅邊位置和葉綠素含量均有很好的相關(guān)性。

        表3 基于不同紅邊位置求解算法的冬小麥葉綠素含量反演模型

        注:建立不同紅邊位置求解算法的冬小麥葉綠素反演模型的數(shù)據(jù)來(lái)源于2002—2003年的試驗(yàn)數(shù)據(jù)(樣本數(shù)為136)。

        Note: Data used to build the inversion models of winter wheat chlorophyll content based on different Red Edge Position (REP) solving algorithms are the experimental data from 2002 to 2003 (The number of samples are 136).

        2.2.2 基于紅邊位置的冬小麥葉綠素含量反演模型的精度評(píng)定

        同時(shí),基于幾種算法建立的Chlab預(yù)測(cè)值與測(cè)量值的擬合方程式的斜率在0.406~1.191,截距在?1.524~3.118。其中,線性四點(diǎn)內(nèi)插法和牛頓八點(diǎn)插值法的斜率分別為1.052和0.839,接近于1,截距分別為?0.101和0.378,接近于0,說(shuō)明基于以上2種方法建立的反演模型的預(yù)測(cè)值能夠高精度接近葉綠素含量實(shí)測(cè)值。相比之下,牛頓-切比雪夫插值法存在系統(tǒng)誤差,其斜率在0.498~0.628之間,與理論值不相符。

        表4 基于不同紅邊位置求解算法的冬小麥葉綠素含量反演模型的精度檢驗(yàn)

        注:反演模型的精度檢驗(yàn)數(shù)據(jù)來(lái)源于2018-2019年的試驗(yàn)數(shù)據(jù)(樣本數(shù)為64)。

        Note: The accuracy test data of the inversion model comes from the test data from 2018 to 2019 (The number of samples are 64).

        3 討 論

        3.1 改進(jìn)算法的性能評(píng)述

        不難發(fā)現(xiàn),與傳統(tǒng)方法相比,改進(jìn)方法在改善雙峰現(xiàn)象和紅邊位移方面具有顯著優(yōu)勢(shì)。線性四點(diǎn)內(nèi)插法在改善雙峰現(xiàn)象上的效果同樣明顯,但其紅邊位置變幅在8種算法中最?。?4 nm),對(duì)葉綠素含量變化不敏感,而且存在紅邊位置整體向長(zhǎng)波收攏,這對(duì)葉綠素反演模型的建立是不利的??紤]到擬合方程的斜率與截距,牛頓-切比雪夫插值法便暴露出其缺點(diǎn),這可能與切比雪夫零點(diǎn)的選取區(qū)間過(guò)大導(dǎo)致其出現(xiàn)系統(tǒng)誤差有關(guān),下一步可以縮小零點(diǎn)區(qū)間,驗(yàn)證切比雪夫零點(diǎn)替換等距節(jié)點(diǎn)的科學(xué)性。同時(shí),牛頓-切比雪夫插值法對(duì)光譜分辨率有較高的要求,很大程度上限制了其應(yīng)用范圍,而牛頓八點(diǎn)插值法不僅繼承了牛頓插值法的優(yōu)越性,而且融合了線性四點(diǎn)內(nèi)插法對(duì)插值點(diǎn)需求少的特性,具有更高的精度、穩(wěn)定性和實(shí)用性。綜合考慮算法特性和各項(xiàng)精度指標(biāo),研究認(rèn)為牛頓八點(diǎn)插值法優(yōu)于傳統(tǒng)算法和牛頓-切比雪夫插值法。

        3.2 基于紅邊參數(shù)的冬小麥葉綠素含量反演模型的評(píng)價(jià)

        8種算法擬合方程的2(0.396~0.656)普遍低于反演方程的2(0.455~0.758)的現(xiàn)象,是由于2002-2003和2018-2019年試驗(yàn)區(qū)內(nèi)的冬小麥品種、長(zhǎng)勢(shì)與生境狀況不完全相同,對(duì)模型的適用性產(chǎn)生了一定的影響。下一步可以在同一實(shí)驗(yàn)條件下,設(shè)置建模組與驗(yàn)證組,以期提高模型的精度。

        4 結(jié) 論

        本研究以冬小麥為研究對(duì)象,采用最小二乘回歸分析方法,在實(shí)現(xiàn)6種經(jīng)典紅邊位置求解算法的基礎(chǔ)上,將牛頓插值法應(yīng)用于紅邊位置求解,提出牛頓八點(diǎn)插值法和牛頓-切比雪夫插值法;并根據(jù)不同算法的紅邊位置分布特征綜合分析了新舊算法的優(yōu)缺點(diǎn),對(duì)比了不同算法的綜合屬性信息;此外,建立了基于紅邊參數(shù)的冬小麥葉綠素含量反演模型,進(jìn)行了葉綠素含量反演模型的預(yù)測(cè)值與實(shí)測(cè)值的線性擬合分析。通過(guò)以上研究得出,1)本研究提出的牛頓八點(diǎn)插值法和牛頓-切比雪夫插值法不僅有效地改善了紅邊位置求解時(shí)的雙峰現(xiàn)象和紅邊位移,具有更高的精度與穩(wěn)定性,而且使用牛頓插值法建立的葉綠素含量反演模型的決定系數(shù)(coefficient of determination,2)較其他方法高,牛頓八點(diǎn)插值法和牛頓-切比雪夫插值法的2分別為0.728和0.751;2)基于改進(jìn)算法反演模型的預(yù)測(cè)值與葉綠素含量實(shí)測(cè)值的擬合方程2較其他方法高,均>0.619;標(biāo)準(zhǔn)均方根誤差(Normalized Root Mean Squared Error,NRMSE)較其他方法小,均<0.151,即模型優(yōu)度較好;3)同時(shí),研究表明牛頓八點(diǎn)插值法比牛頓-切比雪夫插值法具有更高的精度、穩(wěn)定性和實(shí)用性;4)關(guān)于牛頓-切比雪夫插值法中零點(diǎn)區(qū)間的選取和利用切比雪夫零點(diǎn)替換等距節(jié)點(diǎn)的科學(xué)性還有待進(jìn)一步研究。

        根據(jù)本研究對(duì)不同紅邊算法的紅邊位置分布特征分析、算法的綜合屬性信息對(duì)比以及基于紅邊參數(shù)的冬小麥葉綠素含量反演模型的精度評(píng)定,可以認(rèn)為將牛頓插值法應(yīng)用到冬小麥的紅邊位置計(jì)算和葉綠素含量反演的效果優(yōu)于傳統(tǒng)方法。此外,考慮到牛頓八點(diǎn)插值法計(jì)算紅邊位置只需要8個(gè)特定的光譜波段,為制作簡(jiǎn)易的作物葉綠素含量測(cè)定傳感器提供了理論基礎(chǔ)。

        [1]Velichkova K, Krezhova D. Extraction of the red edge position from hyperspectral reflectance data for plant stress monitoring [C]//10th Jubilee International Conference of the Balkan Physical Union, 2019.

        [2]Ptushenko V, Ptushenko O, Tikhonov A. Chlorophyll fluorescence induction, chlorophyll content, and chromaticity characteristics of leaves as indicators of photosynthetic apparatus senescence in arboreous plants[J]. Biochemistry, 2014, 79(3): 260-272.

        [3]Miller J R, Hare E W, WU J. Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model[J]. International Journal of Remote Sensing, 1990, 11(10): 1755-1773.

        [4]陳西亮,張佳華. 牛頓插值法在植被紅邊擬合中的應(yīng)用[J]. 湖北農(nóng)業(yè)科學(xué),2016,55(7):1828-1831.

        Chen Xiliang, Zhang Jiahua. Application of Newton interpolation method in red edge fitting of vegetation[J]. Hubei Agricultural Science, 2016, 55(7): 1828-1831. (in Chinese with English abstract).

        [5]黃林生,江靜,黃文江,等. Sentinel-2影像和BP神經(jīng)網(wǎng)絡(luò)結(jié)合的小麥條銹病監(jiān)測(cè)方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(17):178-185.

        Huang Linsheng, Jiang Jing, Huang Wenjiang, et al. Sentinel-2 imaging and BP neural network monitoring method for wheat stripe rust[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 178-185. (in Chinese with English abstract).

        [6]Sun Yuanheng, Qin Qiming, Ren Huazhong, et al. Red-edge band vegetation indices for leaf area index estimation from Sentinel-2/MSI imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 826-840.

        [7]Curran P J, Dungan J L, Macler B A, et al. The effect of a red leaf pigment on the relationship between red edge and chlorophyll concentration[J]. Remote Sensing of Environment, 1991, 35(1): 69-76.

        [8]黃文江,王紀(jì)華,劉良云,等. 冬小麥紅邊參數(shù)變化規(guī)律及其營(yíng)養(yǎng)診斷[J]. 遙感技術(shù)與應(yīng)用,2003(4):206-211.

        Huang Wenjiang, Wang Jihua, Liu Liangyun, et al. Variation of red border parameters in winter wheat and its nutritional diagnosis[J]. Remote sensing technology and Applications, 2003(4): 206-211. (in Chinese with English abstract).

        [9]Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing[J]. Remote Sensing of Environment, 1991, 33(1): 55-64.

        [10]Dawson T P, Curran P J. Technical note A new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 1998, 19(11): 2133-2139.

        [11]Clevers J G P W, De Jong S M, Epema G F, et al. The use of the MERIS standard band setting for deriving the red edge index[J]. International Journal of Remote Sensing, 2002, 23(16): 3169-3184.

        [12]Pu R, Peng G, Biging G S, et al. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4):916-921.

        [13]Lin L, Ustin S L, Lay M. Application of AVIRIS data in detection of oil-induced vegetation stress and cover change at Jornada, New Mexico[J]. Remote Sensing of Environment, 2005, 94(1): 1-16.

        [14]Cho M A, Skidmore A K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sensing of Environment, 2006, 101(2): 181-193.

        [15]何天榮. 牛頓插值法計(jì)算函數(shù)值的優(yōu)缺點(diǎn)分析[J]. 考試與評(píng)價(jià),2016(6):70.

        He Tianrong. Analysis of advantages and disadvantages of Newton interpolation method for calculating function values[J]. Examination and Evaluation, 2016(6): 70. (in Chinese with English abstract)

        [16]曹中盛,李艷大,葉春,等. 基于高光譜的雙季稻分蘗數(shù)監(jiān)測(cè)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(4):185-192.

        Cao Zhongsheng, Li Yanda, Ye Chun, et al. Monitoring model of tiller number of double cropping rice based on hyperspectrum[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 185-192. (in Chinese with English abstract).

        [17]Ghule A, Deshmukh R R, Gaikwad C. MFDS-m red edge position detection algorithm for discrimination between healthy and unhealthy vegetable plants[J]. Recent Trends in Image Processing and Pattern Recognition, 2019, 7(1): 372-379.

        [18]高興,李斐,楊海波,等. 基于紅邊位置的馬鈴薯植株氮濃度估測(cè)方法研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(2):134-148.

        Gao Xing, Li Fei, Yang Haibo, et al. Study on nitrogen concentration estimation method of potato plants based on red edge location[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(2): 134-148. (in Chinese with English abstract).

        [19]丁永軍,張晶晶,李修華,等. 基于光譜紅邊位置提取算法的番茄葉片葉綠素含量估測(cè)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(3):292-297.

        Ding Yongjun, Zhang Jingjing, Li Xiuhua, et al. Estimation of chlorophyll content in tomato leaves based on spectral red edge location extraction algorithm[J]. Journal of Agricultural Machinery, 2016, 47(3): 292-297. (in Chinese with English abstract)

        [20]郝瑞娟,王周鋒,王文科,等. CO2脅迫下大豆葉片紅邊位置最優(yōu)算法的研究[J]. 大氣與環(huán)境光學(xué)學(xué)報(bào),2016,11(1):51-59.

        Hao Ruijuan, Wang Zhoufeng, Wang Wenke, et al. Study on the optimal algorithm of red edge position for soybean leaves under CO2stress[J]. Journal of Atmospheric and Environmental Optics, 2016, 11(1): 51-59. (in Chinese with English abstract)

        [21]Endre S, Mayers D F. An Introduction to Numerical Analysis[M]. Cambridge: Cambridge University Press, 2003.

        [22]余鵬,孫學(xué)金,趙世軍. GPS定位中衛(wèi)星坐標(biāo)計(jì)算的切比雪夫多項(xiàng)式擬合法[J]. 氣象科技,2004,32(3):198,4.

        Yu Peng, Sun Xuejin, Zhao Shijun. Chebyshev polynomial fitting method for satellite coordinate calculation in GPS positioning[J]. Meteorological Science and Technology, 2004, 32(3): 198, 4. (in Chinese with English abstract)

        [23]任嘉衍,劉慧敏,丁圣彥,等. 伊河流域景觀格局變化及其驅(qū)動(dòng)機(jī)制[J]. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(8):2611-2620.

        Ren Jiayan, Liu Huimin, Ding Shengyan, et al. Changes of landscape pattern in Yi River basin and its driving mechanism[J]. Journal of Applied Ecology, 2017, 28(8): 2611-2620. (in Chinese with English abstract).

        [24]于汧卉,楊貴軍,王崇倡. 地面高光譜和PROSAIL模型的冬小麥葉綠素反演[J]. 測(cè)繪科學(xué),2019,44(11):96-102.

        Yu Qianhui, Yang Guijun, Wang Chongchang. Ground winter wheat chlorophyll of hyperspectral and PROSAIL model inversion[J]. Mapping Science, 2019, 44(11): 96-102. (in Chinese with English abstract).

        [25]吳偉斌,李佳雨,張震邦,等. 基于高光譜圖像的茶樹(shù)LAI與氮含量反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):195-201.

        Wu Weibin, Li Jiayu, Zhang Zhenbang, et al. Inversion of tea tree LAI and nitrogen content based on hyperspectral images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(3): 195-201. (in Chinese with English abstract)

        Inversion of winter wheat chlorophyll contents based on improved algorithms for red edge position

        Qian Binxiang1,2,3, Huang Wenjiang2,3※, Ye Huichun2,3, Kong Weiping4, Ren Yu1,3, Xing Naichen1,3, Jiao Quanjun2,3

        (1100049; 2.,572029,; 3.,100094,; 4.,,100094,)

        Red Edge Position (REP) of vegetation spectral reflectance is highly sensitive to chlorophyll content. The inversion model of crop chlorophyll content based on REP enables timely growth monitoring of the crops on a large scale. The displacement of REP and bimodal phenomenon are ubiquitous in 6 traditional algorithms of REP. To reduce the adverse effects effectively, the Newton interpolation method was applied to calculate REP in this study. And two improved REP solving algorithms, Newton-Chebyshev-Node Interpolation (REP_NCNI) and Newton Eight-Point Interpolation (REP_NEPI) were proposed. The strengths and weaknesses of the old and improved algorithms were analyzed, according to the distribution characteristics of REP from different algorithms, and the comprehensive attribute information of the different algorithms was compared. It was found that: 1) Maximum First Derivative (REP_MFD) method and Lagrange Three-Point Interpolation (REP_LAGR) method had the largest variation of REP (41 nm), which was sensitive to chlorophyll content, however, there was an obvious bimodal phenomenon. 2) The REP calculated by an Inverted Gaussian (REP_IG) model method ranged from 695 nm to 729 nm with the lowest mean value (719.5 nm). The whole model moved towards the short-wave direction (blue shift) with the highest Relative Error (RE) (0.882%). 3) The REP calculated by the Linear Four-Point Interpolation method (REP_LFPI) were between 717 and 731 nm, with an average value of 725.4 nm. The whole result was clustered in the direction of a long wave, and the REP had the smallest variation (14 nm), which was not sensitive to the change of chlorophyll content. 4) The variation of the Linear Extrapolation (REP_LE) method was better (39 nm), but the average value was lower (721.9 nm). The whole value moved towards the short-wave direction (blue shift), and the RE was larger (0.551%). 5) The results of polynomial fitting of the ninth order (REP_POLY) were generally good, but the bimodal phenomenon was the most serious. 6) The REP_NCNI and REP_NEPI overcame the bimodal phenomenon and displacement of REP effectively with ideal mean value, amplitude, and RE. And the least square regression was adopted to establish the inversion model of chlorophyll content of winter wheat based on REP. The study revealed that compared with traditionalalgorithms, the improved algorithms exhibited the most accurate and robust performance, where the coefficient of determination of the chlorophyll content inversion model established by improved algorithms was higher than that of traditional algorithms with the coefficient of determination of 0.728 and 0.751, respectively. Moreover, in the improved algorithms, the coefficient of determination between the predicted value and the measured value was greater than 0.619, which was 10.480% higher than that of the REP_MFD method, and the standard root mean square error was less than 0.151, indicating that the goodness of the model was better. At the same time, the coefficient of determination of the inverse equation (0.455-0.758) was higher than that of the fitting equation (0.396-0.656). And the inversion model was ranked chlorophyll-a model, chlorophyll-ab model, and chlorophyll-b model, according to the coefficient of determination from large to small. Besides, the research showed that in the two improved algorithms, the REP_NEPI demonstrated the best and satisfactory performance than REP_NCNI. Considering that only 8 bands were needed to calculate REP by REP_NEPI, it provided a theoretical basis for making a simple sensor to determine the chlorophyll content of crops. The results showed that REP_NEPI was the optimal selection for the calculation of REP and the inversion of chlorophyll content of winter wheat. And this study should provide theoretical and technical support for the inversion of biophysical and biochemical parameters of vegetation and the application in agricultural production.

        algorithms; remote sensing; models; winter wheat; inversion of chlorophyll content; Newton-Chebyshev-node interpolation; Newton eight-point interpolation; red edge position

        錢彬祥,黃文江,葉回春,等. 紅邊位置改進(jìn)算法的冬小麥葉綠素含量反演[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):162-170.doi:10.11975/j.issn.1002-6819.2020.23.019 http://www.tcsae.org

        Qian Binxiang, Huang Wenjiang, Ye Huichun, et al. Inversion of winter wheat chlorophyll contents based on improved algorithms for red edge position[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 162-170. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.019 http://www.tcsae.org

        2020-09-24

        2020-11-23

        國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2016YFD0300601);國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(41871339,41901369);國(guó)家高層次人才特殊支持計(jì)劃項(xiàng)目(黃文江)

        錢彬祥,博士生,主要從事植被定量遙感及應(yīng)用研究。Email:2789281754@qq.com

        黃文江,博士,研究員,博士生導(dǎo)師,主要從事植被定量遙感及應(yīng)用研究。Email:huangwj@radi.ac.cn

        10.11975/j.issn.1002-6819.2020.23.019

        S127; S512.1+1

        A

        1002-6819(2020)-23-0162-09

        猜你喜歡
        插值法牛頓冬小麥
        牛頓忘食
        《計(jì)算方法》關(guān)于插值法的教學(xué)方法研討
        風(fēng)中的牛頓
        甘肅冬小麥田
        失信的牛頓
        勇于探索的牛頓
        基于二次插值法的布谷鳥(niǎo)搜索算法研究
        冬小麥和春小麥
        中學(xué)生(2015年4期)2015-08-31 02:53:50
        Newton插值法在光伏發(fā)電最大功率跟蹤中的應(yīng)用
        冬小麥——新冬18號(hào)
        国产综合久久久久| 亚洲熟女少妇一区二区三区青久久| 国产在线播放一区二区不卡| 国产尤物av尤物在线观看| 久久中文字幕av一区二区不卡| 欧美日韩国产在线人成dvd| 特级黄色大片性久久久| 亚洲av国产av综合av卡| 国产成人精品成人a在线观看| 激情 一区二区| 亚洲成人av一区免费看| 中文字幕在线亚洲精品| 午夜无码片在线观看影院| 熟女熟妇伦av网站| 国产精品爆乳在线播放| 亚洲无av高清一区不卡| 精品国产sm最大网站| 无码国产精品一区二区高潮| 亚洲AV无码成人精品区天堂| 一区二区日本免费观看| 中文字幕亚洲综合久久| 国产成+人欧美+综合在线观看 | 看国产黄大片在线观看| 国内精品久久久久久久亚洲| 亚洲国产一区一区毛片a| 成人一区二区人妻少妇| 久久超碰97人人做人人爱| 激情五月天伊人久久| 91精品蜜桃熟女一区二区| 亚洲精品欧美精品日韩精品| 国产成人综合久久精品免费| 国产精品一区成人亚洲| 亚洲不卡高清av网站| 久久精品噜噜噜成人| 国产成人免费高清激情明星 | 久久人妻av无码中文专区| av网站大全免费在线观看| 天天夜碰日日摸日日澡| 91福利国产在线观一区二区 | 亚洲成av人片女在线观看| 欧洲人妻丰满av无码久久不卡 |