亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        花生種子顆粒離散元仿真參數(shù)標(biāo)定與試驗(yàn)

        2020-03-03 00:21:18吳孟宸叢錦玲彭心怡王怡蘇

        吳孟宸,叢錦玲,3,閆 琴,朱 彤,彭心怡,王怡蘇

        花生種子顆粒離散元仿真參數(shù)標(biāo)定與試驗(yàn)

        吳孟宸1,叢錦玲1,3※,閆 琴2,朱 彤1,彭心怡1,王怡蘇1

        (1. 石河子大學(xué)機(jī)械電氣工程學(xué)院,石河子 832003;2. 石河子大學(xué)水利建筑工程學(xué)院,石河子 832003;3. 農(nóng)業(yè)農(nóng)村部西北農(nóng)業(yè)裝配重點(diǎn)實(shí)驗(yàn)室,石河子 832003)

        由于花生排種裝置在優(yōu)化設(shè)計(jì)過(guò)程中缺乏準(zhǔn)確的仿真模型參數(shù),從而造成仿真與理論計(jì)算結(jié)果存在較大誤差,一定程度上制約了花生排種裝置的發(fā)展。該研究系統(tǒng)測(cè)定了花生種子的三軸尺寸、顆粒密度、彈性模量、泊松比等本征參數(shù)及其靜摩擦因數(shù)、滾動(dòng)摩擦因數(shù)、恢復(fù)系數(shù)。通過(guò)開(kāi)展花生種子顆粒堆積試驗(yàn),標(biāo)定得到花生種間靜摩擦因數(shù)為0.213,種間滾動(dòng)摩擦因數(shù)為0.035。為檢驗(yàn)標(biāo)定參數(shù)的可靠性,開(kāi)展了花生堆積角仿真與物理試驗(yàn)對(duì)比,結(jié)果表明花生物理堆積角和仿真堆積角相對(duì)誤差為0.22%。通過(guò)開(kāi)展機(jī)械式花生精量排種器的仿真與臺(tái)架排種性能的對(duì)比試驗(yàn),得到排種性能中漏播指數(shù)、重播指數(shù)相對(duì)誤差分別為8.24%、5.12%,結(jié)果表明花生標(biāo)定參數(shù)具有可靠性。該研究結(jié)果可為排種裝置的優(yōu)化設(shè)計(jì)與仿真研究提供理論參考。

        試驗(yàn);離散元法;排種裝置;堆積角;滾動(dòng)摩擦

        0 引 言

        目前,中國(guó)油料作物總產(chǎn)量呈上升趨勢(shì),但食用油量仍超過(guò)65%依靠進(jìn)口[1]。花生作為中國(guó)第二大油料作物,單產(chǎn)量居油料作物首位,對(duì)中國(guó)糧油安全具有重要影響。近年來(lái),中國(guó)花生種植面積穩(wěn)中有升,2018年全國(guó)花生種植面積約為4.62×1010m2,產(chǎn)量為1.73×107t[2-3],具有良好的發(fā)展前景。

        花生種植是花生生產(chǎn)的重要環(huán)節(jié),機(jī)械化播種是提高花生種植效率的重要方式,排種器作為花生播種機(jī)的核心部件,對(duì)播種效率有直接影響。為提高排種器工作性能,國(guó)內(nèi)外學(xué)者對(duì)排種裝置進(jìn)行了大量研究[4-6]。近年來(lái),基于離散元法的EDEM軟件廣泛應(yīng)用于排種裝置優(yōu)化分析中。通過(guò)離散元法研究其關(guān)鍵部件與種子間的相互作用,為排種器設(shè)計(jì)及優(yōu)化提供參考依據(jù),可有效提高研發(fā)效率,減少研發(fā)成本。王鳳花等[7]利用EDEM軟件分析排種裝置振動(dòng)頻率和震動(dòng)幅度對(duì)種群離散程度的影響,為排種裝置充種性能的分析提供理論參考;楊薇等[8]利用EDEM軟件分析了排種裝置齒形攪種盤(pán)對(duì)種子充填角的影響;李兆東等[9]采用EDEM軟件開(kāi)展了傳統(tǒng)平面盤(pán)、凹槽盤(pán)、槽齒盤(pán)3種排種盤(pán)的擾種對(duì)比試驗(yàn)。因仿真輸入?yún)?shù)的合理性是離散元仿真結(jié)果可靠的基礎(chǔ),為得到準(zhǔn)確的離散元仿真分析結(jié)果,需要精確的輸入?yún)?shù)值(如顆粒密度、泊松比、彈性模量和與接觸材料間的摩擦因數(shù)等)。目前離散元仿真分析的研究對(duì)象多為小麥[10]、水稻[11]、馬鈴薯[12]等物料,花生種子仿真模型物性參數(shù)標(biāo)定及其排種裝置離散元仿真分析鮮有報(bào)道。

        本研究以四粒紅花生為研究對(duì)象,基于國(guó)內(nèi)外散粒體物料基本參數(shù)測(cè)量方法,對(duì)花生本征參數(shù)及其相互作用特性參數(shù)進(jìn)行測(cè)定,建立花生種子離散元仿真模型。并使用EDEM軟件(離散元法)對(duì)花生種子顆粒堆積過(guò)程進(jìn)行仿真,采用圖像處理方法測(cè)定花生種群堆積角,利用堆積角試驗(yàn)對(duì)種間摩擦因數(shù)及種子與材料間滾動(dòng)摩擦因數(shù)進(jìn)行離散元仿真標(biāo)定。通過(guò)臺(tái)架試驗(yàn)驗(yàn)證花生模型及其仿真參數(shù)的可靠性,以期為花生排種裝置結(jié)構(gòu)優(yōu)化提供參考。

        1 材料和方法

        選用四粒紅花生作試驗(yàn)對(duì)象,花生種子屬散粒體物料,在仿真裝置內(nèi)的運(yùn)動(dòng)為散粒體運(yùn)動(dòng)過(guò)程[13],采用離散元仿真軟件分析時(shí)可用Hertz-Mindin模型[14]模擬顆粒間及顆粒與裝置間的相互作用。其次,隨著精量播種技術(shù)的發(fā)展,3D打印技術(shù)被應(yīng)用于精量排種裝置的加工制造中,光敏樹(shù)脂及有機(jī)玻璃(Polymethyl Methacrylate,PMMA)被廣泛應(yīng)用。因此,選擇測(cè)定以上2種非金屬材料與花生種子間的接觸特性。試驗(yàn)所用花生種子經(jīng)人工清選,無(wú)損傷,無(wú)霉變,其平均含水率為12.95%,容重為0.69×103kg/m3,花生種子顆粒密度為1.04×103kg/m3。所有非破壞性測(cè)量試驗(yàn)都使用相同的樣本。

        1.1 花生種子顆粒體幾何模型

        為確定花生種子的物理模型,隨機(jī)取四粒紅花生種子200粒,通過(guò)電子游標(biāo)卡尺(精度0.01 mm)對(duì)種子三維尺寸(××)進(jìn)行測(cè)量,如圖1 a所示。四粒紅花生種子長(zhǎng)度、寬度、厚度平均值為13.44 mm×8.37 mm×8.02 mm,根據(jù)測(cè)量結(jié)果發(fā)現(xiàn)花生種子整體呈橢球形。為便于后續(xù)相關(guān)試驗(yàn)的開(kāi)展,將花生種子形狀按球形度S[12]分為橢球形(S<0.8)和類(lèi)球形(S>0.8),所測(cè)樣本中兩者占比分別為87%和13%。

        開(kāi)展離散元仿真分析試驗(yàn)時(shí),需設(shè)置花生種子仿真模型的分布屬性,本研究以花生種子的體積分布為依據(jù)進(jìn)行參數(shù)設(shè)置。因花生種子近似橢球形,根據(jù)橢球體積公式[15]求得花生種子的體積,進(jìn)而獲得花生種子的體積分布,對(duì)其平均值及標(biāo)準(zhǔn)差進(jìn)行測(cè)定?;ㄉN子三維體積基本呈正態(tài)分布(圖1b),且其三維體積均值和標(biāo)準(zhǔn)差分別為0.473和0.084 cm3。

        注:長(zhǎng)軸方向?yàn)閆軸,沿種臍方向?yàn)閅軸,橫向?yàn)閄軸;L、B、T分別為花生種子顆粒的長(zhǎng)度、寬度、厚度,mm。

        1.2 泊松比

        四粒紅花生種子種皮較薄,采用圓柱試樣壓縮方法測(cè)量較為困難。隨機(jī)選取10粒花生種子,記錄其長(zhǎng)軸方向(軸)和橫向(軸)原始尺寸。利用萬(wàn)能材料試驗(yàn)機(jī)(型號(hào):DF-9000)對(duì)整個(gè)花生種子進(jìn)行壓力變形試驗(yàn),通過(guò)測(cè)量花生種子加載前后開(kāi)裂極限處軸向和橫向的變形量計(jì)算泊松比[16]。試驗(yàn)過(guò)程中以0.1 mm/s速度對(duì)花生種子進(jìn)行軸向加載,當(dāng)花生種子出現(xiàn)破裂時(shí)停止加載。使用萬(wàn)能材料試驗(yàn)機(jī)記錄其軸向形變,電子游標(biāo)卡尺記錄花生種子在軸向載荷開(kāi)裂極限處的橫向形變。通過(guò)式(1)計(jì)算泊松比,結(jié)果取平均值。

        式中為種子泊松比;為橫向變形,mm;為樣本寬度,mm;為軸向變形,mm;為樣本長(zhǎng)度,mm;1為樣本破裂后的橫向尺寸,2為樣本橫向原始尺寸,mm;1為樣本試驗(yàn)前的軸向高度,mm;2為樣本破裂后的軸向高度,mm。測(cè)得花生種子的泊松比為0.362。

        1.3 彈性模量

        本研究采用赫茲接觸應(yīng)力方法測(cè)定花生種子的彈性模量[17]。隨機(jī)選取10?;ㄉN子,分別記錄其原始長(zhǎng)度、寬度、厚度。通過(guò)質(zhì)構(gòu)儀(型號(hào):TA-XT plus,英國(guó)Stable Micro System公司)開(kāi)展花生種子彈性模量測(cè)定試驗(yàn),試驗(yàn)采用P/36R壓縮探頭,試驗(yàn)時(shí)花生種子平放于壓縮探頭中心正下方,壓縮前速度為0.04 mm/s,壓縮時(shí)速度為0.02 mm/s,壓縮后速度為2.0 mm/s,觸發(fā)力為0.049 N。

        由赫茲公式[18]推導(dǎo)得出,彈性模量計(jì)算公式為:

        由于花生種子與壓縮裝置兩接觸面接觸點(diǎn)處的曲率半徑幾乎相同,因此可將式(2)簡(jiǎn)化為[19]

        1.4 靜摩擦因數(shù)

        花生種子間及種子與接觸材料間的靜摩擦因數(shù)是重要的摩擦特性,也是排種裝置的重要設(shè)計(jì)參數(shù)[20]。由于排種器排種盤(pán)為光敏樹(shù)脂,排種器前端蓋為有機(jī)玻璃,其在工作過(guò)程中與種子相接觸,因此選擇測(cè)定光敏樹(shù)脂、有機(jī)玻璃板與花生種子間的摩擦特性及花生種間的靜摩擦因數(shù)。

        1.4.1 花生種子與兩種非金屬材料間的靜摩擦因數(shù)

        本研究使用斜面法[21]測(cè)量花生種子靜摩擦因數(shù)。根據(jù)自制摩擦因數(shù)測(cè)定裝置結(jié)構(gòu)尺寸,所用待測(cè)材料板長(zhǎng)、寬、厚分別為300 mm×150 mm×5 mm,試驗(yàn)裝置如圖2所示。因花生種子近似橢球形,測(cè)量靜摩擦因數(shù)時(shí)將其沿長(zhǎng)軸方向擺放于待測(cè)材料表面,試驗(yàn)時(shí)緩慢轉(zhuǎn)動(dòng)手柄使斜面傾角逐漸增大,當(dāng)種子在斜面上具有向下滑動(dòng)趨勢(shì)時(shí),記錄斜面傾角,即滑動(dòng)摩擦角,記為,計(jì)算花生種子的靜摩擦因數(shù)=tan。隨機(jī)選取10?;ㄉN子,每粒種子重復(fù)進(jìn)行3次試驗(yàn),剔除具有滾動(dòng)趨勢(shì)的試驗(yàn)值,取滑動(dòng)狀態(tài)的結(jié)果進(jìn)行計(jì)算。測(cè)得花生種子與有機(jī)玻璃、光敏樹(shù)脂板間靜摩擦因數(shù)平均值分別為0.293、0.441。

        圖2 花生種子與接觸材料間的靜摩擦因數(shù)測(cè)試試驗(yàn)

        1.4.2 花生種間靜摩擦因數(shù)

        花生種間的靜摩擦因數(shù)也采用斜面法進(jìn)行測(cè)定。將花生種子按其形狀緊密排列,將尺寸過(guò)大的種子底部切除(使種子層表面平齊)粘貼于A4紙表面,制成種子板(圖3 a),并固定于摩擦因數(shù)測(cè)定裝置上。試驗(yàn)時(shí)將花生種子沿長(zhǎng)軸方向置于種子板兩花生顆??p隙間的上表面(圖3 b)。隨斜面傾角緩慢增加,當(dāng)花生種子具有沿種子板面下滑運(yùn)動(dòng)趨勢(shì)時(shí),記錄此刻斜面傾角,隨機(jī)重復(fù)10組試驗(yàn)。測(cè)得花生種間靜摩擦因數(shù)平均值為0.384。

        圖3 花生種間的靜摩擦因數(shù)測(cè)量

        1.5 碰撞恢復(fù)系數(shù)

        1.5.1 試驗(yàn)設(shè)備

        恢復(fù)系數(shù)定義為碰撞后的法向分離速度與碰撞前法向速度的比值[22-23]。本研究采用種子自由下落及高速攝像圖像采集處理結(jié)合的方式進(jìn)行恢復(fù)系數(shù)的測(cè)定。根據(jù)運(yùn)動(dòng)學(xué)原理,設(shè)計(jì)了花生種子恢復(fù)系數(shù)測(cè)定裝置,包括三腳架、硅膠軟管、坐標(biāo)網(wǎng)格紙、待測(cè)材料板、數(shù)顯角度尺(精度0.01°)、高速攝像機(jī)(型號(hào):MS55KS2)、真空泵、自制斜面儀、照明設(shè)備和裝有細(xì)沙土的緩沖盒。其中:硅膠軟管通過(guò)三腳架固定,一端與真空泵相接;坐標(biāo)網(wǎng)格紙為拍攝背景,便于圖像處理后期尺寸的校準(zhǔn);照明設(shè)備為L(zhǎng)ED燈,可有效避免拍攝圖像出現(xiàn)閃頻情況,增強(qiáng)試驗(yàn)拍攝效果。待測(cè)材料為有機(jī)玻璃、光敏樹(shù)脂和種子板;試驗(yàn)高度參考鴨嘴式穴播器種箱與排種器進(jìn)種口間的高度進(jìn)行設(shè)定,為300 mm。

        1.5.2 試驗(yàn)原理及結(jié)果

        將碰撞材料貼付于斜面儀,斜面傾角為30°;種子通過(guò)真空泵吸附于硅膠軟管一端,距斜面儀下落點(diǎn)高度為300 mm。打開(kāi)照明設(shè)備,將鏡頭正對(duì)斜面儀,使得攝像機(jī)可完全采集種子下落軌跡圖像。試驗(yàn)時(shí)以每秒500幀的速度垂直種子下落方向進(jìn)行拍攝。

        為減小測(cè)量誤差及花生種間個(gè)體差異對(duì)試驗(yàn)結(jié)果的影響,隨機(jī)選取25?;ㄉN子分別從設(shè)定高度(300 mm)自由下落。與待測(cè)材料板碰撞后作拋物線運(yùn)動(dòng),最終落至緩沖盒中,將下落的視頻文件單獨(dú)命名。試驗(yàn)結(jié)束后,篩選出花生種子落點(diǎn)聚集性大于90%所在區(qū)域?qū)?yīng)種子下落的視頻文件,選取10粒花生種子的有效碰撞視頻文件導(dǎo)入高速攝像視頻圖像處理軟件ProAnalyst中對(duì)種子碰撞軌跡進(jìn)行選取及分析。

        1.花生種子 2.待測(cè)材料 3.斜面儀

        1.Peanut seed 2.Material to be tested 3.Inclinometer

        注:′為種子下落點(diǎn);點(diǎn)為坐標(biāo)原點(diǎn);為種子下落高度,mm;、為測(cè)量點(diǎn),1、2及1、2分別對(duì)應(yīng)其相對(duì)坐標(biāo)原點(diǎn)的高度和水平位移,mm;V、V分別為種子碰撞后的水平、豎直分速度,m·s-1。

        Note:′ is the seed falling point;is the origin of coordinates;is the falling height of seed, mm;andare measurement points;1,2and1,2correspond to the height and horizontal displacement of the relative coordinate origin, respectively, mm;VandVare the horizontal and vertical velocities respectively, m·s-1.

        圖4 碰撞恢復(fù)系數(shù)原理圖

        Fig.4 Schematic diagram of collision recovery coefficient

        利用高速攝像圖像處理軟件選取花生種子碰撞后拋物線上兩點(diǎn),通過(guò)上述尺寸比例關(guān)系,分別獲得兩點(diǎn)的水平位移1和2及豎直位移1和2。根據(jù)運(yùn)動(dòng)學(xué)方程原理[24]計(jì)算出花生碰撞前的速度以及碰撞后的水平方向分速度和豎直方向分速度,由恢復(fù)系數(shù)定義得到花生種子的碰撞恢復(fù)系數(shù)計(jì)算公式為:

        計(jì)算得花生種子與有機(jī)玻璃板、種子板、光敏樹(shù)脂板之間的碰撞恢復(fù)系數(shù)平均值分別為0.515、0.505、0.519。

        1.6 滾動(dòng)摩擦因數(shù)

        花生種子的滾動(dòng)摩擦因數(shù)與種子形狀、尺寸、質(zhì)量和接觸面表面性質(zhì)有關(guān)[20]。本研究采用斜面法[25]對(duì)其進(jìn)行測(cè)定。為保證種子處于滾動(dòng)狀態(tài),選取已制備樣品中10粒球形度較高(平均球形度為0.92,標(biāo)準(zhǔn)偏差為0.03)的花生種子進(jìn)行試驗(yàn);試驗(yàn)材料選用光敏樹(shù)脂、有機(jī)玻璃板和種子板。

        試驗(yàn)時(shí)將不同材料貼附于摩擦因數(shù)測(cè)定裝置測(cè)試面板上,花生種子放置在待測(cè)材料表面。逐漸增大接觸面與水平面間的夾角,當(dāng)種子在接觸材料表面剛開(kāi)始滾動(dòng)時(shí)停止,由數(shù)顯角度尺記錄此刻角度,記為1,計(jì)算花生種子的滾動(dòng)摩擦因數(shù)1=tan1。每粒種子重復(fù)試驗(yàn)3次,結(jié)果取平均值。

        測(cè)得花生種子與有機(jī)玻璃、光敏樹(shù)脂、種子板間的滾動(dòng)摩擦因數(shù)平均值分別為0.099、0.126、0.135。

        1.7 堆積角仿真標(biāo)定

        因堆積角反映了散粒物料流動(dòng)、摩擦等特性,與接觸材料和其自身物理特性相關(guān)[26-27]。由于花生種子顆粒形態(tài)上存在一定差異,在EDEM軟件中模擬單顆粒的參數(shù)不具普適性,因此,本研究開(kāi)展了花生種子堆積角試驗(yàn)對(duì)其物理參數(shù)進(jìn)行標(biāo)定。

        1.7.1 物理堆積角的測(cè)定

        物理堆積角試驗(yàn)于石河子大學(xué)生物物料實(shí)驗(yàn)室進(jìn)行,室內(nèi)溫度為(24±2)℃,試驗(yàn)樣本與上述試驗(yàn)相同。

        如圖5所示,物理堆積角實(shí)際測(cè)量裝置為一無(wú)蓋殼體,其長(zhǎng)×寬×高為120 mm×120 mm×120 mm,材料為有機(jī)玻璃。試驗(yàn)時(shí)將試驗(yàn)裝置放置在有機(jī)玻璃板上,殼體一側(cè)擋板可向上滑動(dòng)。試驗(yàn)時(shí)緩慢抽提擋板,此過(guò)程中種群在重力作用下向開(kāi)口處滑落,待種群穩(wěn)定后,種群坡度角即為花生物理堆積角。重復(fù)進(jìn)行10次試驗(yàn),利用數(shù)碼相機(jī)將每次試驗(yàn)結(jié)果垂直于種群坡度角進(jìn)行拍攝供進(jìn)一步分析。

        圖5 堆積角測(cè)試試驗(yàn)

        為更準(zhǔn)確的測(cè)量堆積角,減少人為測(cè)量誤差,采用圖像處理方法對(duì)試驗(yàn)照片進(jìn)行分析。MATLAB讀取圖像后,依次對(duì)圖像進(jìn)行灰度處理、二值化處理,閾值分割,最后提取輪廓邊界點(diǎn),邊界點(diǎn)之間的連線即為花生種群堆積角的輪廓曲線,將輪廓點(diǎn)坐標(biāo)導(dǎo)入Origin軟件對(duì)輪廓曲線進(jìn)行繪制及線性擬合。直線斜率的反正切函數(shù)值即為花生種子的物理堆積角,求均值得到花生種群堆積角為22.97°。

        1.7.2 花生種子仿真模型的建立及仿真參數(shù)設(shè)置

        仿真試驗(yàn)時(shí),首先建立花生種子仿真模型。根據(jù)四粒紅花生種子的三維尺寸及形狀,分別選出與計(jì)算平均值最接近的2類(lèi)花生種子進(jìn)行建模。將花生種子沿垂直于軸平面分多層切開(kāi),完成后分別置于15 mm×15 mm的方格內(nèi)利用數(shù)碼相機(jī)垂直于花生切片表面采集圖像,使用Photoshop軟件沿圖像方格邊界裁剪后導(dǎo)入CAD中,使用樣條曲線描繪花生種子切片輪廓。同時(shí),在Solidworks中按切片高度建立對(duì)應(yīng)基準(zhǔn)面,自上而下將切片輪廓按比例逐個(gè)插入,使用放樣命令建立花生種子三維模型(圖6)。

        圖6 花生種子顆粒及其離散元模型

        本研究使用球顆粒填充法[28]建立花生種子仿真模型,將測(cè)定的花生物理特性參數(shù)輸入EDEM軟件中自動(dòng)計(jì)算花生種子顆粒仿真模型自身物料屬性。同時(shí),將測(cè)量裝置幾何模型導(dǎo)入EDEM軟件中,根據(jù)物理堆積角試驗(yàn)定義仿真模型幾何關(guān)系,即花生種子顆粒模型填充高度,幾何模型形狀、尺寸與物理試驗(yàn)裝置相同。將測(cè)量裝置材料設(shè)置為有機(jī)玻璃,其物理屬性同文獻(xiàn)[29]中材料參數(shù)。試驗(yàn)時(shí)殼體側(cè)擋板以0.05 m/s速度提升,花生種群自然下落形成堆積。試驗(yàn)結(jié)束后使用MATLAB軟件對(duì)堆積角圖像進(jìn)行處理。

        1.7.3 花生種間摩擦因數(shù)的標(biāo)定

        仿真幾何模型材料設(shè)置為有機(jī)玻璃,其他輸入?yún)?shù)使用上述試驗(yàn)測(cè)定值進(jìn)行堆積角仿真試驗(yàn),可得花生種子仿真堆積角為29.84°,所得結(jié)果與物理堆積角22.97°相對(duì)誤差為29.91%。分析其原因,是由于通過(guò)離散元球顆粒填充花生種子模型后球顆粒間存在凹陷,仿真試驗(yàn)時(shí)會(huì)增大種間接觸面積,導(dǎo)致花生種子仿真模型表面粗糙度增大。這對(duì)花生種子仿真模型種間摩擦因數(shù)影響更為顯著[30],因此需對(duì)花生種間摩擦因數(shù)進(jìn)行標(biāo)定。

        選取種間靜摩擦因數(shù)和滾動(dòng)摩擦因數(shù)為試驗(yàn)因子,花生物理堆積角為響應(yīng)值,開(kāi)展2×3全因素試驗(yàn),根據(jù)本研究種間摩擦因素測(cè)定值進(jìn)行大量預(yù)試驗(yàn),確定仿真試驗(yàn)水平如表1所示。根據(jù)表1試驗(yàn)水平開(kāi)展仿真堆積角試驗(yàn),建立回歸方程求出最優(yōu)值。

        表1 試驗(yàn)設(shè)計(jì)

        2 仿真堆積角結(jié)果與分析

        2.1 堆積角變化趨勢(shì)分析

        種間靜摩擦因素、種間滾動(dòng)摩擦因素與花生堆積角之間的仿真試驗(yàn)結(jié)果如表2所示。

        表2 堆積角仿真試驗(yàn)結(jié)果

        由表2可知,仿真堆積角值隨種間靜摩擦因數(shù)與滾動(dòng)摩擦因數(shù)的增大而增大,靜摩擦因數(shù)較滾動(dòng)摩擦因數(shù)對(duì)堆積角影響更加顯著。靜摩擦因數(shù)取值<0.245時(shí)堆積角值增長(zhǎng)幅度較大,當(dāng)取值>0.245時(shí)增長(zhǎng)趨勢(shì)減緩,但減緩幅度較小,進(jìn)一步說(shuō)明花生種子離散元仿真模型滾動(dòng)摩擦因數(shù)與靜摩擦因數(shù)對(duì)花生堆積角影響較大。

        2.2 堆積角回歸分析

        利用MATLAB擬合工具箱Cftool對(duì)仿真結(jié)果進(jìn)行二元回歸擬合,得到種間靜摩擦因數(shù)、滾動(dòng)摩擦因數(shù)對(duì)堆積角影響的數(shù)學(xué)模型為:

        式中為物理堆積角,(°);1為種間靜摩擦因數(shù),2為種間滾動(dòng)摩擦因數(shù)。該回歸方程的決定系數(shù)2=0.998,均方根誤差為0.39°,表明回歸方程與實(shí)際數(shù)據(jù)的擬合度較高,具有良好的可靠性。將堆積角目標(biāo)試驗(yàn)值22.97°代入公式中,求解得出種間靜摩擦因數(shù)和滾動(dòng)摩擦因數(shù)值分別為0.213和0.035。

        3 試驗(yàn)驗(yàn)證

        3.1 堆積角試驗(yàn)驗(yàn)證

        對(duì)確定的花生種間靜摩擦因數(shù)0.213、滾動(dòng)摩擦因數(shù)0.035作堆積角仿真試驗(yàn),試驗(yàn)結(jié)束后采集圖像與花生物理堆積角進(jìn)行對(duì)比(圖7)。仿真試驗(yàn)堆積角為23.02°,與物理堆積角22.97°的誤差為0.22%。較標(biāo)定前二者相對(duì)誤差(29.91%)有明顯改善。

        圖7 堆積角試驗(yàn)驗(yàn)證

        3.2 排種仿真試驗(yàn)及驗(yàn)證

        開(kāi)展機(jī)械式花生精量排種器排種性能仿真試驗(yàn),計(jì)算其與排種器臺(tái)架試驗(yàn)重播指數(shù)、漏播指數(shù)間的相對(duì)誤差,進(jìn)一步檢驗(yàn)標(biāo)定的花生種子仿真參數(shù)的可靠性。

        3.2.1 仿真參數(shù)設(shè)置

        本研究使用一種機(jī)械式花生精量排種器,型孔輪上設(shè)置有導(dǎo)種條,可以使花生種群流動(dòng)性提高,增加充種率。排種器運(yùn)行過(guò)程中與花生種子接觸的主要有前蓋板、排種輪和種刷,材料分別為有機(jī)玻璃、光敏樹(shù)脂和尼龍塑料。仿真試驗(yàn)時(shí),為驗(yàn)證標(biāo)定參數(shù)的準(zhǔn)確性,仿真模型材料與實(shí)際情況保持一致,通過(guò)查閱文獻(xiàn)獲得材料基本屬性及其他相關(guān)參數(shù)如表3所示。將排種器模型導(dǎo)入EDEM軟件,排種器轉(zhuǎn)速設(shè)置為20 r/min,花生種子顆粒模型生成數(shù)量為300粒,仿真時(shí)間為40 s。

        3.2.2 模型仿真排種過(guò)程及結(jié)果

        花生精量排種器排種仿真過(guò)程如圖8所示,排種盤(pán)順時(shí)針旋轉(zhuǎn),種子在自身重力及周?chē)N群摩擦阻力的作用下進(jìn)入型孔(圖8 a);隨著排種盤(pán)旋轉(zhuǎn),型孔到達(dá)種刷位置,型孔外的種子在自身重力及種刷推力的作用下向種室方向滾落(圖8 b);當(dāng)型孔隨排種盤(pán)轉(zhuǎn)離種刷后,種子隨型孔轉(zhuǎn)至攜種區(qū)(圖8 c)。

        1.花生種子 2.排種盤(pán) 3.型孔 4.種刷

        表3 模型仿真所需材料參數(shù)

        3.2.3 臺(tái)架試驗(yàn)驗(yàn)證

        如圖9所示,排種臺(tái)架試驗(yàn)于石河子大學(xué)排種性能實(shí)驗(yàn)室的JPS-12型排種器性能檢測(cè)試驗(yàn)臺(tái)上進(jìn)行,該試驗(yàn)臺(tái)主要由圖像采集裝置、傳動(dòng)系統(tǒng)、排種器、排種器安裝架與試驗(yàn)臺(tái)組成。試驗(yàn)種子樣本與上述試驗(yàn)為同一批次,品種為四粒紅,百粒質(zhì)量為53.2 g,平均含水率為12.95%。型孔輪采用3D打印技術(shù)加工而成,材料為光敏樹(shù)脂,排種器前蓋板材料為有機(jī)玻璃。試驗(yàn)時(shí)轉(zhuǎn)速為20 r/min。

        1.圖像采集裝置 2.傳動(dòng)軸 3.排種器 4.安裝架 5.試驗(yàn)臺(tái)

        根據(jù)國(guó)家標(biāo)準(zhǔn)GB/T6973-2005《單粒(精密)播種機(jī)試驗(yàn)方法》技術(shù)要求[34],選取排種性能中重播指數(shù)、漏播指數(shù)作為試驗(yàn)指標(biāo),每次測(cè)定300?;ㄉN子,重復(fù)3次。

        式中為理論排種顆粒數(shù),1為重播顆粒數(shù);2為漏播顆粒數(shù)。

        3.2.4 試驗(yàn)結(jié)果與分析

        花生排種器臺(tái)架試驗(yàn)與仿真結(jié)果如表4所示。由表4可知,仿真與試驗(yàn)重播指數(shù)分別為5.75%、6.06%,其相對(duì)誤差為5.12%;仿真與試驗(yàn)漏播指數(shù)分別為3.94%、3.64%,其相對(duì)誤差為8.24%。其結(jié)果說(shuō)明本研究花生仿真參數(shù)標(biāo)定值具有可靠性。仿真與試驗(yàn)重播指數(shù)、漏播指數(shù)均滿足JB/T 10293-2001《單粒(精密)播種機(jī)技術(shù)條件》[35]播種要求。

        表4 仿真與試驗(yàn)結(jié)果對(duì)比

        4 結(jié) 論

        1)測(cè)得花生種子的本征參數(shù)(三軸尺寸、顆粒密度、泊松比和彈性模量)及相互作用特性參數(shù)(恢復(fù)系數(shù)、靜摩擦因數(shù)和滾動(dòng)摩擦因數(shù))。通過(guò)堆積角仿真試驗(yàn)對(duì)種間摩擦因數(shù)進(jìn)行標(biāo)定,得到種間靜摩擦因數(shù)為0.213,種間滾動(dòng)摩擦因數(shù)為0.035。

        2)花生仿真與物理堆積角相差誤差為0.22%;花生排種裝置仿真與臺(tái)架試驗(yàn)重播指數(shù)相對(duì)誤差為5.12%,漏播指數(shù)相對(duì)誤差為8.24%;仿真與臺(tái)架試驗(yàn)重播指數(shù)、漏播指數(shù)相對(duì)誤差均小于技術(shù)要求10%,滿足JB/T 10293-2001《單粒(精密)播種機(jī)技術(shù)條件》播種要求。

        [1]王瑞元. 2019年我國(guó)糧油生產(chǎn)及進(jìn)出口情況[J]. 中國(guó)油脂,2020,45(7):1-4.

        Wang Ruiyuan. China's grain and oil production, import and export in 2019[J]. China Oils and Fats, 2020, 45(7): 1-4. (in Chinese with English abstract)

        [2]廖伯壽. 我國(guó)花生生產(chǎn)發(fā)展現(xiàn)狀與潛力分析[J]. 中國(guó)油料作物學(xué)報(bào),2020,42(2):161-166.

        Liao Boshou. A review on progress and prospects of peanut industry in China[J]. Chinese Journal of Oil Crop Sciences, 2020, 42(2): 161-166. (in Chinese with English abstract)

        [3]中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2019.

        [4]Mandal S, Kumar G V P, Tanna H, et al. Design and evaluation of a pneumatic metering mechanism for power tiller operated precision planter[J]. Current Science, 2018, 115(6): 1106-1114.

        [5]Ibrahim E J, Liao Q, Wang L, et al. Design and experiment of multi-row pneumatic precision metering device for rapeseed[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 116-123.

        [6]Zhang Wanzhi, Liu Chenglong, Lü Zhaoqin, et al. Optimized design and experiment on novel combination vacuum and spoon belt metering device for potato planters[J]. Mathematical Problems in Engineering, 2020(2): 1-12.

        [7]王鳳花,孫凱,賴(lài)慶輝,等. 單行氣吸式微型薯精密播種機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(1):66-76.

        Wang Fenghua, Sun Kai, Lai Qinghui, et al. Design and experimental of minituber precision single-row air-suction planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 66-76. (in Chinese with English abstract)

        [8]楊薇,方憲法,李建東,等.種腔自凈型氣吸式玉米小區(qū)精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):64-73.

        Yang Wei, Fang Xianfa, Li Jiandong, et al. Design and experiment of air-suction precision seed meter with self-clearing seed chamber for corn plot test[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 64-73. (in Chinese with English abstract)

        [9]李兆東,楊文超,張?zhí)?,? 油菜高速精量排種器槽齒組合式吸種盤(pán)設(shè)計(jì)與吸附性能試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(1):12-22.

        Li Zhaodong, Yang Wenchao, Zhang Tian, et al. Design and suction performance test of sucking-seed plate combined with groove-tooth structure on high speed precision metering device of rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35 (1): 12-22. (in Chinese with English abstract)

        [10]劉凡一,張艦,陳軍. 小麥籽粒振動(dòng)篩分黏彈塑性接觸模型構(gòu)建及其參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(15):37-43.

        Liu Fanyi, Zhang Jian, Chen Jun. Construction of visco-elasto-plasticity contact model of vibratory screening and its parameters calibration for wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Trans- actions of the CSAE), 2018, 34(15): 37-43. (in Chinese with English abstract)

        [11]鹿芳媛,馬旭,譚穗妍,等. 水稻芽種離散元主要接觸參數(shù)仿真標(biāo)定與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):93-99.

        Lu Fangyuan, Ma Xu, Tan Suiyan, et al. Simulative calibration and experiment on main contact parameters of discrete elements for rice bud seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 93-99. (in Chinese with English abstract)

        [12]劉文政,何進(jìn),李洪文,等. 基于離散元的微型馬鈴薯仿真參數(shù)標(biāo)定[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(5):125-135,142.

        Liu Wenzheng, He Jin, Li Hongwen, et al. Calibration of simulation parameters for potato minituber based on EDEM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(5): 125-135, 142. (in Chinese with English abstract)

        [13]于建群,付宏,李紅,等. 離散元法及其在農(nóng)業(yè)機(jī)械工作部件研究與設(shè)計(jì)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(5):1-6.

        Yu Jianqun, Fu Hong, Li Hong, et al. Application of discrete element method to research and design of working parts of agricultural machines[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(5): 1-6. (in Chinese with English abstract)

        [14]賴(lài)慶輝,馬文鵬,劉素,等. 氣吸圓盤(pán)式微型薯排種器充種性能模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):44-53.

        Lai Qinghui, Ma Wenpeng, Liu Su, et al. Simulation and experiment on seed-filling performance of pneumatic disc seed-metering device for mini-tuber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 44-53. (in Chinese with English abstract)

        [15]丁為民,趙思琪,趙三琴,等. 基于機(jī)器視覺(jué)的果樹(shù)樹(shù)冠體積測(cè)量方法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(6):1-10,20.

        Ding Weimin, Zhao Siqi, Zhao Sanqin, et al. Measurement methods of fruit tree canopy volume based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 1-10, 20. (in Chinese with English abstract)

        [16]Khodabakhshian R. Poisson's ratio of pumpkin seeds and their kernels as a function of variety, size, moisture content and loading rate[J]. Agricultural Engineering International: CIGR Journal, 2012, 14(3): 203-209.

        [17]Shelef L, Mohsenin N N. Evaluation of the modulus of elasticity of wheat grain[J]. Cereal Chemistry, 1967, 44(4): 392-402.

        [18]ASAE S368.4 DEC2000 (R2017), Compression test of food materials of convex shape[S]. St. Joseph: American Society of Agricultural and Biological Engineers, 2017.

        [19]孫靜鑫,楊作梅,郭玉明,等. 谷子籽粒壓縮力學(xué)性質(zhì)及損傷裂紋形成機(jī)理[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(18):306-314.

        Sun Jingxin, Yang Zuomei, Guo Yuming, et al. Compression mechanical properties and crack formation law of millet grain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 306-314. (in Chinese with English abstract)

        [20]馬云海. 農(nóng)業(yè)物料學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2015.

        [21]叢錦玲. 油菜小麥兼用型氣力式精量排種系統(tǒng)及其機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2014.

        Cong Jinling. Study on Seeding System and Mechanism of Pneumatic Precision Metering Device for Wheat and Rapeseed[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese with English abstract)

        [22]韓健,東明,李素芬,等. 飛灰顆粒與平板表面撞擊過(guò)程的實(shí)驗(yàn)研究[J]. 化工學(xué)報(bào),2013,64(9):3161-3167.

        Han Jian, Dong Ming, Li Sufen, et al. Experimental research on fly ash particles impacting planar surface[J]. CIESC Journal, 2013, 64(9): 3161-3167. (in Chinese with English abstract)

        [23]葉陽(yáng),曾亞武,曾超,等. 花崗巖球礫法向恢復(fù)系數(shù)試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2017,36(3):633-643.

        Ye Yang, Zeng Yawu, Zeng Chao, et al. Experimental study on the normal restitution coefficient of granite spheres[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 633-643. (in Chinese with English abstract)

        [24]邢潔潔,張銳,吳鵬,等. 海南熱區(qū)磚紅壤顆粒離散元仿真模型參數(shù)標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(5):158-166.

        Xing Jiejie, Zhang Rui, Wu Peng, et al. Parameter calibration of discrete element simulation model for latosol particles in hot areas of Hainan province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(5): 158-166. (in Chinese with English abstract)

        [25]石林榕,孫偉,趙武云,等. 馬鈴薯種薯機(jī)械排種離散元仿真模型參數(shù)確定及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(6):35-42.

        Shi Linrong, Sun Wei, Zhao Wuyun, et al. Parameter determination and validation of discrete element model of seed potato mechanical seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 35-42. (in Chinese with English abstract)

        [26]賈旭光,陳曦,李鑫. 不同粒度和堆載形態(tài)下散體瞬時(shí)自然安息角的實(shí)驗(yàn)研究[J]. 現(xiàn)代礦業(yè),2015,31(1):25-27.

        Jia Xuguang, Chen Xi, Li Xin. Experiment research on instantaneous natural repose angle of granular slope under different granular slope under different granularity and stack form[J]. Modern Mining, 2015, 31(1): 25-27. (in Chinese with English abstract)

        [27]于剛,趙長(zhǎng)兵,胡文,等. 不同尺度分布散粒材料砂堆形成過(guò)程的二維離散元模擬[J]. 計(jì)算力學(xué)學(xué)報(bào),2008(4):568-573.

        Yu Gang, Zhao Changbing, Hu Wen, et al. 2D DEM simulation on the sandpile formation for granular materials with different grain size distributions[J]. Chinese Journal of Computational Mechanics, 2008(4): 568-573. (in Chinese with English abstract)

        [28]石林榕,吳建民,孫偉,等. 基于離散單元法的水平圓盤(pán)式精量排種器排種仿真試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):40-48.

        Shi Linrong, Wu Jianmin, Sun Wei, et al. Simulation test for metering process of horizontal disc precision metering device based on discrete element method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 40-48. (in Chinese with English abstract)

        [29]劉凡一,張艦,李博,等. 基于堆積試驗(yàn)的小麥離散元參數(shù)分析及標(biāo)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(12):247-253.

        Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap[J]. Transactions of the Chinese Society of Agriculture Engineering (Transactions of the CSAE), 2016, 32(12): 247-253. (in Chinese with English abstract)

        [30]韓燕龍,賈富國(guó),唐玉榮,等. 顆粒滾動(dòng)摩擦因數(shù)對(duì)堆積特性的影響[J]. 物理學(xué)報(bào),2014,63(17):173-179.

        Han Yanlong, Jia Fuguo, Tang Yurong, et al. Influence of granular coefficient of rolling friction on accumulation characteristics[J]. Acta Physica Sinica, 2014, 63(17): 173-179. (in Chinese with English abstract)

        [31]霍星辰. 雙孢菇菌種離散元分析參數(shù)與排種器優(yōu)化試驗(yàn)研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019.

        Huo Xingchen. The Experimental Research on Discrete Element Analysis Parameters of the Agaricus Bisporus Seeds and the Seed-metering Device Optimization[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract)

        [32]董得超. 基于405 nm SLA光固化快速成型用特性光敏樹(shù)脂材料的研究與制備[D]. 武漢:華中科技大學(xué),2016.

        Dong Dechao. Research and Preparation of Special Photosensitive Resin Based on 405 nm SLA Printer[D]. Wuhan: Huazhong University of Science and Technology, 2016. (in Chinese with English abstract)

        [33]趙熙. 頁(yè)巖壓裂裂紋三維起裂與擴(kuò)展行為的數(shù)值模擬與實(shí)驗(yàn)研究[D]. 北京:中國(guó)礦業(yè)大學(xué),2017.

        Zhao Xi. Numerical Simulation and Experimental Study on Three Dimensional Crack Initiation and Propagation of Shale Stimulated by Hydro-Fracture[D]. Beijing: China University of Mining and Technology, 2017. (in Chinese with English abstract)

        [34]中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 單粒(精密)播種機(jī)試驗(yàn)方法,GB/T6973-2005[S].北京:中國(guó)標(biāo)準(zhǔn)出版社,2005.

        [35]全國(guó)農(nóng)業(yè)機(jī)械標(biāo)準(zhǔn)化技術(shù)委員會(huì). 單粒(精密)播種機(jī)技術(shù)條件,GB/T 10293-2001[S]. 北京:機(jī)械科學(xué)研究院,2001.

        Calibration and experiments for discrete element simulation parameters of peanut seed particles

        Wu Mengchen1, Cong Jinling1,3※, Yan Qin2, Zhu Tong1, Peng Xinyi1, Wang Yisu1

        (1.,832003,; 2.832003,;3.832003,)

        In order to obtain the parameters required for the discrete element simulation between the peanut seed and the seed-metering device, the basic physical parameters of peanut seeds, such as the grain density, the dimension feature, Poisson's ratio, elastic modulus, static friction coefficient and recovery coefficient, were determined by experimental method. The average density was 1.04×103kg/m3, the average moisture content was 12.95%, and the bulk density was 0.69×103kg/m3of peanut seed were used. 200 peanut seeds were randomly selected from the peanut seeds with good quality, and the characteristic size of the peanut was measured by a digital vernier caliper. The results showed that the long average of peanut seeds was 13.44 mm, the width was 8.37 mm, and the thickness was 8.02 mm. Since the shape of peanut seeds was similar to an ellipsoid, the volume of the peanut seed was calculated by the ellipsoid volume formula. The volume distribution of peanut seeds was basically normal distribution. With the pressure deformation experiment of peanut seeds was carried out by universal materials testing machine, and Poisson's ratio of peanut seeds was calculated by measuring the deformation of length and width before and after loading seeds, and the result was 0.362. The elastic modulus of peanut seeds measured by Hertz contact stress method was 5.06×107Pa. Using the self-made measuring apparatus of peanut seed static friction coefficient, the static friction coefficients between peanut seed and other material including photosensitive resin and PMMA were measured, and these were respectively 0.441 and 0.293. By the combination of seed-free fall and high-speed camera image acquisition and processing, the collision recovery coefficient between peanut seed and material including peanut seed, photosensitive resin and PMMA was determined, and the collision recovery coefficient was 0.505, 0.519 and 0.515, respectively. Since the current rolling friction coefficient measurement method is not yet mature, the rolling friction coefficient between peanut seeds and the above two materials was measured by the inclined surface method and high-speed photography method. The results showed that the rolling friction coefficients between the peanut seeds and the two materials determined by the inclined surface method were 0.126 and 0.099, respectively. Due to the difference between peanut seeds and simulation particles in shape, the particle models established by the discrete element method are rougher than peanut seeds, which leads to the distortion of simulation test results. Therefore, a discrete element simulation model of peanut seeds was established by the slicing method, the coefficient of static friction and the coefficient of rolling friction between peanut seeds were used as variables, and the angle of repose of peanut is used as the response value to establish a regression model. Predicted values are 0.213 and 0.035 respectively, when peanut angle of repose is 22.97°. Finally, angle of repose simulation experiments were carried out using the calibrated parameters, and compared with the physical test value, the relative error between the two test values of the angle of repose was 0.22%. Through the simulation and bench comparison test of the designed pneumatic-mechanical combined precision metering device for peanut. The results showed that the relative errors of the miss seeding index and replay seeding index of the discrete element simulation test and bench test of the seed-metering device were 8.24% and 5.12%, respectively, which satisfies the standard JB/T 10293-2001 Specifications of single seed drill (precision drill). The above verification test showed that the calibrated parameters were accurate and reliable, and the obtained optimized parameter combination can provide a reference for the discrete element simulation of the peanut metering device.

        experiments; discrete element method; seed metering device; angle of repose; rolling friction

        吳孟宸,叢錦玲,閆琴,等. 花生種子顆粒離散元仿真參數(shù)標(biāo)定與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):30-38.doi:10.11975/j.issn.1002-6819.2020.23.004 http://www.tcsae.org

        Wu Mengchen, Cong Jinling, Yan Qin, et al. Calibration and experiments for discrete element simulation parameters of peanut seed particles[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 30-38. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.004 http://www.tcsae.org

        2020-08-06

        2020-12-01

        國(guó)家自然科學(xué)基金項(xiàng)目(51865052);數(shù)字制造裝備與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題資助項(xiàng)目(DMETKF2017011);石河子大學(xué)國(guó)際科技合作推進(jìn)計(jì)劃資助項(xiàng)目(GJHZ201902)

        吳孟宸,主要從事農(nóng)業(yè)機(jī)械裝備設(shè)計(jì)與試驗(yàn)研究。Email:wmengchen12@163.com

        叢錦玲,博士,教授,主要從事現(xiàn)代農(nóng)業(yè)機(jī)械裝備設(shè)計(jì)與檢測(cè)研究。Email:jlcong@shzu.edu.cn

        10.11975/j.issn.1002-6819.2020.23.004

        S223.23

        A

        1002-6819(2020)-23-0030-09

        麻豆av一区二区天堂| 性色av无码久久一区二区三区| 97一区二区国产好的精华液| 亚洲 暴爽 AV人人爽日日碰| 国内精品少妇久久精品| 青春草在线视频观看| 国产高潮迭起久久av| 久久综合香蕉国产蜜臀av| 欧美aa大片免费观看视频| 日韩av一区二区三区四区av| 国产一区二区白浆在线观看| 国产高清在线精品一区app| 国产一区二区三区乱码| 国产黑色丝袜在线观看下| 2022AV一区在线| 在线观看国产白浆一区三区| 国模无码一区二区三区| 国产人妻黑人一区二区三区| 青青草极品视频在线播放| 性色av色香蕉一区二区蜜桃| 国产免费内射又粗又爽密桃视频| 波多野结衣有码| 91青青草免费在线视频| 亚洲天堂av三区四区不卡| 午夜免费啪视频| 国产精品99久久精品爆乳| 青青青伊人色综合久久| 亚洲av毛片在线免费观看| 国产一区二区波多野结衣| 亚洲爆乳大丰满无码专区| 亚洲日本中文字幕乱码| 国产成人a∨激情视频厨房| 大地资源中文在线观看官网第二页 | 青青青视频手机在线观看| 亚洲人成在线播放网站| 亚洲欧美日韩精品久久亚洲区| 亚洲欧美日韩精品香蕉| 亚洲av日韩av天堂久久不卡| 亚洲av色影在线| 学生妹亚洲一区二区| 国产一区二区三区免费主播|