黃向月,熊顯榮,韓杰,楊顯英,王艷,王斌,李鍵
KDM1A在牦牛卵泡發(fā)育過程中的表達(dá)
黃向月1,熊顯榮2,韓杰1,楊顯英1,王艷1,王斌1,李鍵1
(1西南民族大學(xué)生命科學(xué)與技術(shù)學(xué)院,成都 610041;2青藏高原動物遺傳資源保護(hù)與利用國家教育部重點(diǎn)實(shí)驗(yàn)室,成都 6100041)
【目的】分析牦牛卵泡發(fā)育過程中組蛋白賴氨酸脫甲基酶1(lysine-specific histone demethylase 1A,KDM1A)基因的表達(dá)譜,探討KDM1A對牦牛卵泡發(fā)育和卵母細(xì)胞成熟的影響。【方法】以牦牛卵泡為研究對象,根據(jù)卵泡直徑的大小,將卵泡分為3組:大(6.0—9.0 mm)、中(3.0—5.9 mm)、小(1.0—2.9 mm)卵泡,收集各組別卵泡中卵丘-卵母細(xì)胞復(fù)合體(cumulus-oocyte complex, COCs)進(jìn)行體外培養(yǎng),對不同發(fā)育階段卵泡中卵母細(xì)胞的體外成熟率進(jìn)行統(tǒng)計并分析;分別提取各組卵泡卵母細(xì)胞及壁層顆粒細(xì)胞總RNA,通過實(shí)時熒光定量PCR(quantitative real-time RCR, RT-qPCR)方法,檢測KDM1A基因在不同發(fā)育階段的卵泡中mRNA相對表達(dá)量的變化;采用免疫組織化學(xué)技術(shù)檢測KDM1A在牦牛卵泡發(fā)育過程中的細(xì)胞定位及表達(dá)規(guī)律,并結(jié)合體外成熟與RT-qPCR結(jié)果進(jìn)行關(guān)聯(lián)性分析?!窘Y(jié)果】各組卵母細(xì)胞體外成熟率與卵泡直徑的大小呈顯著正相關(guān)關(guān)系,其伴隨卵泡發(fā)育的進(jìn)行呈明顯的上升趨勢,其中大、中、小卵泡組的體外成熟率依次分別為90.53 %、88.10 %、55.14 %。RT-qPCR結(jié)果顯示,KDM1A基因在牦牛卵泡發(fā)育過程中均有表達(dá),且不同發(fā)育階段的mRNA表達(dá)水平差異顯著,其中大、中卵泡時期的卵母細(xì)胞中的mRNA相對表達(dá)量顯著低于小卵泡時期(< 0.05),而在小卵泡時期的壁層顆粒細(xì)胞中的相對表達(dá)量極顯著低于大、中卵泡時期 (< 0.01),在大、中卵泡時期的卵母細(xì)胞及壁層顆粒細(xì)胞中該基因mRNA表達(dá)水平均無差異(> 0.05)。免疫組織化學(xué)研究發(fā)現(xiàn)KDM1A在大、中、小卵泡壁層顆粒細(xì)胞以及膜細(xì)胞中均表達(dá),其蛋白表達(dá)趨勢與RT-qPCR結(jié)果吻合,即隨著發(fā)育時間的進(jìn)行KDM1A表達(dá)水平呈上升趨勢,其中在大卵泡時期KDM1A的表達(dá)量最高?!窘Y(jié)論】在牦牛不同發(fā)育時期卵泡的卵母細(xì)胞及壁層顆粒細(xì)胞中KDM1A mRNA及蛋白的表達(dá)水平呈動態(tài)變化,提示KDM1A在卵泡發(fā)育及卵母細(xì)胞成熟過程中發(fā)揮重要作用。這可能與卵母細(xì)胞的減數(shù)分裂及顆粒細(xì)胞的增殖分化有關(guān),本研究為進(jìn)一步研究該基因在牦牛卵母細(xì)胞減數(shù)分裂過程中的作用機(jī)制提供基礎(chǔ)數(shù)據(jù)。
牦牛;1;免疫組化;卵泡;表達(dá)
【研究意義】牦牛()是青藏高原特有的畜種,主要生活在海拔3 000—6 000 m的高寒地區(qū)。牦牛是牛屬動物中對低氧環(huán)境具有較強(qiáng)適應(yīng)能力的動物之一,有“高原之舟”之稱[1]。但牦牛性成熟晚,繁殖性能低下,已成為阻礙牦牛產(chǎn)業(yè)及高原人民經(jīng)濟(jì)發(fā)展的主要因素之一。為此,開展牦牛的繁殖、生產(chǎn)性能等相關(guān)研究對提高牧區(qū)的生活水平和豐富中國遺傳資源多樣性具有重要意義[2]。【前人研究進(jìn)展】卵泡與卵母細(xì)胞的發(fā)育成熟是影響哺乳動物繁殖效率的因素之一[3]。卵泡發(fā)育始于胎兒時期,而卵母細(xì)胞的最終成熟發(fā)生在初情期以后[4]。且其生長和發(fā)育與卵泡的發(fā)育進(jìn)程同步,受周圍體細(xì)胞(顆粒細(xì)胞等)及各種激素的功能活動影響。這些細(xì)胞通過間隙連接調(diào)節(jié)相關(guān)激素、蛋白質(zhì)、代謝物和調(diào)節(jié)分子,從而促進(jìn)卵母細(xì)胞的發(fā)育和成熟[5]。此過程伴隨著表觀遺傳變化。例如,組蛋白H3和H4在減數(shù)分裂成熟過程中脫乙酰化,并且H3K4和H3K9甲基化在減數(shù)分裂早期表現(xiàn)出動態(tài)變化[6-7]。組蛋白賴氨酸甲基化修飾是一個動態(tài)的、可逆過程,分別由賴氨酸甲基化轉(zhuǎn)移酶(KTMs)和去甲基化酶(KDMs)兩個家族催化完成,KDM1A是組蛋白賴氨酸脫甲基酶家族的成員之一。KDM1A是一個黃素腺嘌呤二核苷酸(Flavin adenine dinucleotide, FAD)依賴性胺氧化酶,可特異性脫去組蛋白H3K4me1/2和H3K9 me1/2的甲基。KDM1A又名LSD1、KIAA0601、p110b、BHC110、NPAO,結(jié)構(gòu)分析顯示KDM1A含有SWIRM、Tower以及FAD依賴的單胺氧化酶等結(jié)構(gòu)域[8-9]。功能研究表明,KDM1A定位于細(xì)胞核內(nèi),通過激活或抑制相關(guān)基因的轉(zhuǎn)錄,在腫瘤發(fā)生和胚胎發(fā)育過程中均起著重要的作用[10]。近期研究表明KDM1A蛋白及其mRNA在小鼠的各個組織中廣泛表達(dá),該基因通過參與相關(guān)基因轉(zhuǎn)錄激活、染色質(zhì)調(diào)節(jié)[11-12]等機(jī)制調(diào)控相關(guān)信號通路來發(fā)揮其生物學(xué)功能,例如,在小鼠生殖系統(tǒng)中KDM1A主要通過調(diào)節(jié)周期蛋白的表達(dá)來間接調(diào)控生殖細(xì)胞減數(shù)分裂活動[13]?!颈狙芯壳腥朦c(diǎn)】目前對KDM1A基因的研究主要在人、小鼠以及斑馬魚等動物的癌癥及胚胎方面[14-17],而該基因在牦牛方面的研究還未見相關(guān)報道。【擬解決的關(guān)鍵問題】為闡明KDM1A基因在牦牛卵泡及卵母細(xì)胞發(fā)育過程中的作用,以牦牛卵泡為研究對象,利用RT-qPCR和免疫組化方法檢測KDM1A在卵泡和卵母細(xì)胞發(fā)育過程中的表達(dá)規(guī)律,并通過體外培養(yǎng)體系統(tǒng)計不同發(fā)育階段卵泡中卵母細(xì)胞的體外成熟率,結(jié)合RT-qPCR與免疫組化結(jié)果進(jìn)行關(guān)聯(lián)性分析,為解析KDM1A在牦牛卵泡發(fā)育及卵母細(xì)胞的成熟過程中的作用機(jī)制奠定基礎(chǔ)。
微量RNA提取試劑盒(Single Cell-to-CtTMKit)、Trizol Reagent購自Invitrogen(美國)公司,SYBR? Premix Ex TaqTMⅡ試劑盒,PrimeScriptTMRT Reagent Kit反轉(zhuǎn)錄試劑盒、Premix TaqTMDNA聚合酶均購自TaKaRa(大連)公司,胎牛血清(FBS)、Medium培養(yǎng)基購自Gibco公司,雌二醇、促黃體素(LH)、促卵泡生成素(FSH)等購自Sigma公司。熒光定量PCR儀、電泳儀和瓊脂糖凝膠成像系統(tǒng)均購自美國Bio-Rad公司,核酸濃度測定儀購于日本島津。卵母細(xì)胞成熟液:M199+10 % FBS+0.01 μg·L-1FSH+0.01 μg·L-1LH+0.001 μg·L-1E2+0.02 ng·L-1EGF。
樣本均采自成都青白江屠宰場,采集健康的牦牛卵巢。無菌生理鹽水沖洗后將采集的卵巢分為2份進(jìn)行處理。第一份用4%多聚甲醛固定運(yùn)回實(shí)驗(yàn)室置于4 ℃?zhèn)溆?。第二份投入含Ga2+、Mg2+的生理鹽水(含雙抗),37 ℃保存。運(yùn)回實(shí)驗(yàn)室用生理鹽水清洗3次,將卵泡根據(jù)卵泡直徑大小分成3組:大(6.0—9.0 mm)、中(3.0—5.9 mm)、?。?.0—2.9 mm)卵泡,抽取卵泡液,并置于90 mm的平皿中,在顯微鏡下收集卵丘-卵母復(fù)合體(Cumulus-oocyte complex, COCs),卵母細(xì)胞成熟液清洗3次。其中收集每組各10個COCs用0.2%透明質(zhì)酸酶分離得到卵母細(xì)胞,并收集各組卵泡液,離心后吸去血細(xì)胞,PBS清洗兩次,得到卵泡壁層顆粒細(xì)胞,-80 ℃保存?zhèn)溆?。剩余COCs用于體外成熟培養(yǎng),以便進(jìn)行后續(xù)研究。
挑選各組卵丘細(xì)胞3層以上、形態(tài)正常的COCs分別置于含35 mm成熟液的培養(yǎng)皿中,在含5.5%的CO2,38.5 ℃飽和濕度的培養(yǎng)箱中體外培養(yǎng)。成熟培養(yǎng)24 h后,在顯微鏡下觀察卵丘細(xì)胞的發(fā)散情況,將COCs經(jīng)0.2%透明質(zhì)酸酶中消化2—3 min,之后用移液槍吹打去除卵丘細(xì)胞,通過觀察是否有第一極體的排出來判定其成熟情況。
Trizol法提取卵泡壁層顆粒細(xì)胞RNA,DEPC水處理后應(yīng)用核酸分析儀檢測濃度和OD值,選取OD值在1.8—2.0之間的RNA作為模板。按照PrimeScriptTMRT Reagent Kit反轉(zhuǎn)錄試劑盒說明書合成cDNA,并使用GAPDH基因的特異性引物檢測cDNA的質(zhì)量,將瓊脂糖凝膠電泳結(jié)果顯示單一清晰條帶的cDNA置于-20℃保存?zhèn)溆?。按照Single Cell-to-CTTMKit試劑盒說明書直接將分離得到的各組卵母細(xì)胞合成cDNA,-20℃保存。
根據(jù)NCBI已報道的野牦牛()1(GenBank登錄號:XM_005905175.2)和mRNA序列(GenBank登錄號:AC_000162.1),使用Primer 5.0分別設(shè)計引物(表1)。由南京金斯瑞生物科技有限公司合成。
表1 引物信息
F:正向引物;R:反向引物 F: Forward primer; R: Reverse primer
采用RT-qPCR檢測KDM1A基因在牦牛不同發(fā)育階段卵泡卵母細(xì)胞及壁層顆粒細(xì)胞中的表達(dá)。RT-qPCR反應(yīng)體系為15 μL,其中SYBR?Premix Ex TaqTMⅡ7.5 μL,cDNA 1.0 μL,ddH2O 5.5 μL,上、下游引物(10 μmol·L-1)各0.5 μL;PCR擴(kuò)增條件:預(yù)變性94℃,4 min,變性94℃,45 s,退火60℃,1 min,72℃,延伸1 min,35個循環(huán),72℃ 7 min。用2-△△Ct法對定量結(jié)果進(jìn)行均一化處理。
利用免疫組化染色法檢測KDM1A蛋白的表達(dá)。將卵巢組織從4 %的多聚甲醛固定液中取出,制成石蠟切片。脫水后置0.88 mol·L-1H2O2中封閉,0.01 mol·L-1PBS(pH7.4)沖洗3次;5 %胎牛血清封閉,滴加一抗(多克隆兔抗KDM1A,BSA100倍稀釋,Abcam公司產(chǎn)品)4 ℃孵育過夜;PBS沖洗3次后滴加二抗(多聚化山羊抗兔IgG,康為世紀(jì)公司產(chǎn)品)37 ℃孵育2 h;PBS沖洗后加入DAB顯色,經(jīng)過蘇木精復(fù)染后,脫水、透明、封片,顯微鏡下觀察。圖片利用Image-Pro Plus 6.0進(jìn)行相對平均光密度分析。
每組試驗(yàn)至少重復(fù)3次,所有試驗(yàn)數(shù)據(jù)使用“平均值±標(biāo)準(zhǔn)誤(Mean ± SEM)”表示。采用SPSS軟件進(jìn)行顯著性分析,<0.01差異極顯著,<0.05差異顯著。
對不同發(fā)育階段卵泡中卵母細(xì)胞進(jìn)行體外成熟培養(yǎng)及成熟率統(tǒng)計分析,結(jié)果顯示,中卵泡時期的卵母細(xì)胞,卵丘細(xì)胞明顯多于小卵泡期,而大卵泡期的卵丘細(xì)胞不如中卵泡期致密,部分卵母細(xì)胞老化。體外培養(yǎng)大、中、小卵泡中卵母細(xì)胞的成熟率依次分別為90.53 %、88.10 %和55.14 %,其中,以小卵泡時期作為參照,大、中卵泡卵母細(xì)胞成熟率約為小卵泡成熟率的1.6倍(< 0.01),而大、中卵泡的成熟率相比較差異不顯著(> 0.05)。
利用RT-qPCR,以內(nèi)參基因作為參照,檢測KDM1A基因在牦牛不同發(fā)育階段卵泡卵母細(xì)胞及其相應(yīng)壁層顆粒細(xì)胞中mRNA的表達(dá)情況(圖1)。結(jié)果顯示,在卵泡發(fā)育各階段,大、中卵泡時期卵母細(xì)胞1的表達(dá)水平相差不大(> 0.05),而小卵泡時期的表達(dá)水平顯著高于這兩個時期(< 0.05)(圖1-A)。在壁層顆粒細(xì)胞中KDM1A基因的表達(dá)水平隨卵泡發(fā)育的進(jìn)行呈明顯的上升趨勢,以小卵泡壁層顆粒細(xì)胞該基因的表達(dá)量作為參考,大、中卵泡的表達(dá)量約為小卵泡的3倍(< 0.01)(圖1-B)。
由于KDM1A基因在不同發(fā)育階段的牦牛卵泡中表達(dá)量有顯著差異,本試驗(yàn)采用免疫組化檢測KDM1A在牦牛不同發(fā)育階段卵泡中的定位(圖2)。結(jié)果顯示,f牦牛卵泡發(fā)育各個階段中KDM1A均有表達(dá),但在不同發(fā)育階段卵泡中該基因的表達(dá)水平存在差異。黃色或棕黃色著色判定為陽性細(xì)胞,主要見于壁層顆粒細(xì)胞(GC)、膜細(xì)胞(TC)。隨著GC的增殖其熒光信號逐漸增大,直至大卵泡時期的表達(dá)量最高,表現(xiàn)為強(qiáng)陽性信號(圖2-C)。其中,大、中卵泡時期的平均光密度顯著高于小卵泡(< 0.05),而大、中卵泡時期相比較差異不顯著(> 0.05)(圖3)。通過RT-qPCR和免疫組化技術(shù)分析發(fā)現(xiàn),KDM1A在牦牛不同發(fā)育階段的卵泡壁層顆粒細(xì)胞中均有表達(dá),且呈現(xiàn)一定的差異性,即隨著發(fā)育時間的進(jìn)行卵泡中KDM1A表達(dá)量呈上升趨勢,其中在大卵泡時期KDM1A的表達(dá)水平最高。
表1 牦牛卵母細(xì)胞成熟度
** 表示差異極顯著(< 0.01) ** Show extremely significant difference (0.01)
** 表示差異極顯著(P < 0.01);* 表示差異顯著(P < 0.05)
A:牦牛大卵泡組織中KDM1A的定位;B:牦牛中卵泡組織中KDM1A的定位情況;C:牦牛小卵泡組織中KDM1A的定位情況(GC:壁層顆粒細(xì)胞;TC:膜細(xì)胞)
* 表示差異顯著(P < 0.05)* Show significant difference (P < 0.05)
哺乳動物KDM1亞家族有KDM1A和KDM1B兩個成員,它們主要介導(dǎo)H3K4去甲基化[8,18]。其中KDM1A是一種染色質(zhì)修飾酶,可通過選擇性與核受體的結(jié)合催化從H3K4和H3K9中去除甲基化基團(tuán)[19-20]。組蛋白修飾對哺乳動物的生殖發(fā)育至關(guān)重要,例如KDM1A與雄激素受體彼此作用,可刺激雄激素受體依賴性轉(zhuǎn)錄,如抑制該蛋白表達(dá)水平會減少雄激素誘導(dǎo)的轉(zhuǎn)錄激活和細(xì)胞增殖,從而影響雄性的生殖發(fā)育進(jìn)程[12]。KDM1A同樣可通過調(diào)控相關(guān)基因表達(dá)介導(dǎo)卵母細(xì)胞發(fā)育及成熟過程。因此,探索KDM1A在卵泡及卵母細(xì)胞的發(fā)育成熟過程中的表達(dá)規(guī)律將為解析牦牛卵母細(xì)胞減數(shù)分裂機(jī)制奠定基礎(chǔ)。
本試驗(yàn)對不同發(fā)育階段牦牛卵泡內(nèi)的卵母細(xì)胞進(jìn)行體外培養(yǎng),通過比較卵泡發(fā)育程度與卵母細(xì)胞成熟度之間的關(guān)系分析發(fā)現(xiàn),隨卵泡發(fā)育的進(jìn)行,大、中卵泡卵母細(xì)胞成熟度相較于小卵泡時期更高。原因可能為發(fā)育成熟的卵泡含有更多的mRNA和蛋白儲存,可增強(qiáng)卵母細(xì)胞的發(fā)育能力并為其生長提供更好的環(huán)境。有研究發(fā)現(xiàn)KDM1A通過下調(diào)通路的一些拮抗劑,例如DKK1,來激活Wnt/β-catenin通路,可能影響卵泡的發(fā)育及排卵能力[21-22]。此外,母源1缺失會導(dǎo)致小鼠二細(xì)胞階段發(fā)育停滯,且在受精后數(shù)周出現(xiàn)顯著的異常表型[23-24]。由此可知,1可能對卵泡卵母細(xì)胞及胚胎的發(fā)育潛能有一定影響,但有待進(jìn)一步的研究來驗(yàn)證。
本試驗(yàn)采用RT-qPCR的方法檢測了KDM1A基因在牦牛不同發(fā)育階段卵泡中的表達(dá)水平。結(jié)果表明1mRNA在牦牛不同發(fā)育階段卵泡內(nèi)的卵母細(xì)胞及其壁層顆粒細(xì)胞中均有表達(dá),其中在小卵泡卵母細(xì)胞中1高水平表達(dá),之后逐漸降低。這與隨發(fā)育進(jìn)行,體外成熟率升高趨勢正好相反,這可能與卵母細(xì)胞減數(shù)分裂進(jìn)程的恢復(fù)有關(guān)。參照文獻(xiàn)報道, YOKOYAMA[25]等研究確定髓磷脂轉(zhuǎn)錄因子1(MyT1)是一種新型KDM1A復(fù)雜組件。MyT1是神經(jīng)細(xì)胞特異性鋅指因子,它可通過直接與KDM1A相互作用形成穩(wěn)定的多蛋白復(fù)合物發(fā)揮相應(yīng)生物學(xué)作用。同時,OH等[26]發(fā)現(xiàn)Myt1的下調(diào)可能導(dǎo)致部分卵母細(xì)胞恢復(fù)減數(shù)分裂,從而促進(jìn)其成熟。由此推測,不同成熟率的卵母細(xì)胞中KDM1A基因的表達(dá)差異可能與其對MyT1的表達(dá)調(diào)控有關(guān)進(jìn)而參與卵母細(xì)胞成熟。此外,1調(diào)控小鼠卵母細(xì)胞中H3K4me2水平,并調(diào)節(jié)CDC25B的表達(dá)來維持卵母細(xì)胞減數(shù)分裂阻滯[13]。因此,隨著卵泡的發(fā)育,1在卵母細(xì)胞中表達(dá)降低,可能導(dǎo)致卵母細(xì)胞恢復(fù)減數(shù)分裂,從而進(jìn)一步成熟,使得大卵泡階段卵母細(xì)胞體外成熟率最高,提示1通過調(diào)控卵母細(xì)胞減數(shù)分裂從而參與卵母細(xì)胞成熟過程。
在牦牛卵母細(xì)胞成熟過程中,卵泡發(fā)育程度[27]及顆粒細(xì)胞的質(zhì)量[28]起至關(guān)重要的作用。其中,來自不同直徑卵泡的卵母細(xì)胞發(fā)育能力也有所不同。隨著卵泡的發(fā)育,顆粒細(xì)胞的增厚,卵母細(xì)胞具備的發(fā)育能力也會逐漸增強(qiáng)[29-31]。免疫組化檢測發(fā)現(xiàn)從小卵泡(1.0—2.9 mm)到大卵泡(6.0—9.0 mm)中的壁層顆粒細(xì)胞及膜細(xì)胞均表達(dá)KDM1A蛋白,且免疫組化結(jié)果與實(shí)時熒光定量結(jié)果吻合,即KDM1A在發(fā)育成熟的大卵泡時期表達(dá)水平達(dá)到峰值。JEESUN等[14]對小鼠卵巢的免疫組化結(jié)果顯示,伴隨卵泡的發(fā)育,KDM1A在小鼠卵泡顆粒細(xì)胞中表達(dá)水平升高。這與本結(jié)果一致。已有研究證實(shí)雌激素通過與顆粒細(xì)胞上的雌激素受體(estrogen receptor, ER)結(jié)合可以促進(jìn)顆粒細(xì)胞的分化。同時,KDM1A可以通過CAC1蛋白增強(qiáng)雌激素受體(ERα)活性,使其更好的激活相應(yīng)的靶基因[32]。由此推測,KDM1A在大卵泡壁層顆粒細(xì)胞中高表達(dá)可能是因?yàn)槠湔T導(dǎo)顆粒細(xì)胞的分化,隨顆粒細(xì)胞的增多進(jìn)而促進(jìn)卵泡的發(fā)育過程。綜上所述,可以推測1一方面在卵母細(xì)胞中通過表達(dá)下調(diào)使卵母細(xì)胞恢復(fù)減數(shù)分裂,使卵母細(xì)胞成熟;另一方面,在顆粒細(xì)胞中通過其表達(dá)上調(diào)來促進(jìn)顆粒細(xì)胞增殖分化,使卵泡及卵母細(xì)胞發(fā)育成熟。盡管目前尚不清楚卵巢中KDM1A是如何被調(diào)控的,但本結(jié)果提示KDM1A參與卵泡與卵母細(xì)胞的發(fā)育過程,該基因的表達(dá)對卵泡發(fā)育及卵母細(xì)胞成熟有積極作用。
在牦牛卵母細(xì)胞和壁層顆粒細(xì)胞中KDM1A mRNA表達(dá)水平隨卵泡發(fā)育的進(jìn)行依次呈逐漸遞減、遞增的趨勢,且其蛋白表達(dá)趨勢與RT-qPCR結(jié)果吻合。結(jié)合不同發(fā)育程度牦牛卵泡中存在差異的卵母細(xì)胞體外成熟結(jié)果,提示KDM1A在卵泡發(fā)育及卵母細(xì)胞成熟過程中發(fā)揮重要作用。這可能與卵母細(xì)胞的減數(shù)分裂及顆粒細(xì)胞的增殖分化有關(guān),為進(jìn)一步研究該基因在牦牛卵母細(xì)胞減數(shù)分裂過程中的作用機(jī)制提供基礎(chǔ)數(shù)據(jù)。
[1] 王汝, 余四九, 崔燕. 幼齡牦牛甲狀腺的顯微結(jié)構(gòu)和超微結(jié)構(gòu)觀察. 中國獸醫(yī)科學(xué), 2009, 39(4): 357-361.
WANG R, YU S J, CUI Y. Observation of microstructure and ultrastructure of the thyroid gland injuvenile yak., 2009, 39(4): 357-361. (in Chinese)
[2] 蘭道亮, 熊顯榮, 位艷麗, 徐通, 鐘金城, 字向東, 王永, 李鍵. 基于RNA-Seq高通量測序技術(shù)的牦牛卵巢轉(zhuǎn)錄組研究: 進(jìn)一步完善牦牛基因結(jié)構(gòu)及挖掘與繁殖相關(guān)新基因. 中國科學(xué), 2014, 44(3): 307-317.
LAN D L, XIONG X R, WEI Y L, XU T, ZHONG J C, ZI X D, WANG Y, LI J. RNA-Seq analysis of yak ovary: improving yak gene structure information and mining reproduction-related genes.2014, 44(3): 307-317. (in Chinese)
[3] SINHA P B, TESFAYE D, RINGS F, HOSSIEN M, HOELKER M, HELD E, NEUHOFF C, THOLEN E, SCHELLANDER K, SALILEW- WONDIM D. MicroRNA-130b is involved in bovine granulosa and cumulus cells function, oocyte maturation and blastocyst formation., 2017, 10(1): 37.
[4] HUNT P A, HASSOLD TJ. Human female meiosis: what makes a good egg go bad ? T, 2008, 24(2):86-93.
[5] PETRO E M, LEROY J L, COVACI A, FRANSEN E, DE NEUBOURG D, DIRTU A C, DE PAUW I, BOLS P E. Endocrine- disrupting chemicals in human follicular fluid impair in vitro oocyte developmental competence., 2012, 27(4):1025-1033.
[6] HAYASHI K, YOSHIDA K, MATSUI Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase.,2005, 438(7066): 374-378.
[7] TACHIBANA M, NOZAKI M, TAKEDA N,SHINKAI Y. Functional dynamics of H3K9 methylation during meiotic prophase progression., 2014, 26(14): 3346-3359.
[8] SHI Y, LAN F, MATSON C, MULLIGAN P, WHETSTINE J R, COLE P A, CASERO R A, SHI Y. Histonedemethylation mediated by the nuclear amine oxidase homolog LSD1., 2004, 119(7): 941-953.
[9] FEI L, NOTTKE AC,YANG S. Mechanismsinvolved in the regulation of histonelysine demethylases. C, 2008, 20(3): 316-325.
[10] 邵根寶, 黃曉佳, 龔愛華, 張志堅, 陸榮柱, 桑建榮. 組蛋白去甲基化酶LSD1及其生物學(xué)功能. 遺傳, 2010, 04: 331-338.
SHAO G B, HUANG X J, GONG A H, ZHANG Z J, LU R Z, SANG J R. Histone to methylase LSD1 and its biological functions., 2010, 04: 331-338. (in Chinese)
[11] GARCIA-BASSETS I, KWON YS, TELESE F,PREFONTAINE G G, HUTT K R, CHENG C S, JU B G, OHGI K A, WANG J, ESCOUBET-LOZACH L, ROSE D W, GLASS C K, FU X D, ROSENFELD M G. Histone methylation-dependentmechanisms impose ligand dependencyfor gene activation by nuclear receptors., 2007, 128(3): 505-518.
[12] METZGER E, WISSMANN M, YIN N, Müller J M, Schneider R, Peters A H, Günther T, Buettner R, Schüle R.LSD1 demethylates repressive histonemarks to promote androgen-receptor- dependenttranscription., 2005,437(7057): 436-439.
[13] JEESUN K, KUMAR S A, YOKO T, Lin K, Shen J, Lu Y, Kerenyi M A, Orkin S H, Chen T. LSD1 is essential for oocyte meiotic progression by regulating CDC25B expression in mice., 2015, 6: 10116.
[14] SHAO G, WANG J, LI Y. Lysine-specific demethylase1 mediates epidermal growth factor signaling to promote cell migration in ovarian cancer cells., 2015, 5: 15344.
[15] ZHENG Y C, MA J, WANG Z, Li J, Jiang B, Zhou W, Shi X, Wang X, Zhao W, Liu H M.A systematic review of histone lysine-specific demethylase 1 and its inhibitors., 2015, 35(5):1032-1071.
[16] LYNCH JT, HARRISWJ, SOMERVAILLE T C. LSD1 inhibition: a therapeutic strategy in cancer?, 2012, 16(12):1239-1249.
[17] OMBRA M N, DI S A, ABBONDANZA C, Migliaccio A, Avvedimento E V, Perillo B. Retinoic acid impairs estrogen signaling in breast cancer cells by interfering with activation of LSD1 via PKA., 2013, 1829(5): 480-486.
[18] CICCONE D N, SU H, HEVI S,Gay F, Lei H, Bajko J, Xu G, Li E, Chen T. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints., 2009, 461(7262): 415-418.
[19] JOHNSON MT, FREEMAN EA, GARDNER DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo., 2007, 77(1):2-8.
[20] Sanchezlazo L, Brisard D, Elis S, Maillard V, Uzbekov R, Labas V, Desmarchais A, Papillier P, Monget P, Uzbekova S. Fatty acid synthesis and oxidation in cumulus cells support oocyte maturation in bovine., 2014, 28(9): 1502-1521.
[21] Usongo M, Rizk A, Farookhi R. β-Catenin/Tcf signaling in murine oocytes identifies nonovulatory follicles., 2012, 144(6):669-676.
[22] Huang Z, Li S, Wei S, Li X, Li Q, Zhang Z, Han Y, Zhang X, Miao S, Du R, Wang L. Lysine-specific demethylase 1 (LSD1/ KDM1A) contributes to colorectal tumorigenesis via activation of the Wnt/β-catenin pathway by down-regulating Dickkopf-1 (DKK1)., 2013, 8(7): 70077.
[23] Ancelin K, Syx L, Borensztein M,Ranisavljevic N, Vassilev I, Brise?o-Roa L, Liu T, Metzger E, Servant N, Barillot E1, Chen C J, Schüle R, Heard E. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation., 2016, 2(5): e08851.
[24] Wasson J A, Simon A K, Myrick D A, Wolf G, Driscoll S, Pfaff SL, Macfarlan T S, Katz D J. Maternally provided LSD1/KDM1A enables the maternal-to-zygotic transition and prevents defects that manifest postnatally., 2016, 27(5):e08848.
[25] Yokoyama A, Igarashi K, Sato T,Takagi K, Otsuka I M, Shishido Y, Baba T, Ito R, Kanno J, Ohkawa Y, Morohashi K, Sugawara A. Identification of myelin transcription factor 1 (MyT1) as a subunit of the neural cell type-specific lysine-specific demethylase 1 (LSD1) complex., 2014, 289(26): 18152-18162.
[26] SU O J, Jin H S, Marco C. Wee1B, Myt1, and Cdc25 function in distinct compartments of the mouse oocyte to control meiotic resumption., 2010, 188(2): 199-207.
[27] ABDI S, SALEHNIA M, HOSSEINKHANI. Quality of oocytes derived from vitrified ovarian follicles cultured in two- and three-dimensional culture system in the presence and absence of kit ligand., 2016, 14(4): 279-288.
[28] WIGGLESWORTH K, LEE KB, O'BRIEN M J, Peng J, Matzuk M M, Eppig J J.Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes., 2013, 110(39): 3723-3729.
[29] ALM H, KATSKAKSIAZKIEWICZ L, RYńSKA B, Tuchscherer A. Survival and meiotic competence of bovine oocytes originating from early antral ovarian follicles., 2006, 65(7): 1422-1434.
[30] Lequarre A S, Vigneron C, Ribaucour F, Holm P, Donnay I, Dalbiès-Tran R, Callesen H, Mermillod P. Influence of antral follicle size on oocyte characteristics and embryo development in the bovine., 2005, 63(3): 841-859.
[31] 禹學(xué)禮, 昝林森, 鄧雯, 龐有志, 王新莊. 卵泡大小及卵泡液對牛卵母細(xì)胞體外受精后發(fā)育的影響. 中國農(nóng)業(yè)科學(xué), 2005, 38(8): 1664-1668.
Yu X L, Zan L S, Deng W, PANG Y Z, WANG X Z. Effects of follicle size and bovine follicular fluid on developmental competence of bovine oocytes following maturation, fertilization and culture., 2005, 38(8): 1664-1668. (in Chinese)
[32] KIM J H, PARK UH, MOON M, Um S J, Kim E J. Negative regulation of ERa by a novel protein CAC1 through association with histone demethylase LSD1., 2013, 587(1): 17-22.
Expression Pattern of KDM1A in the Development of Yak Follicles
HUANG XiangYue1, XIONG XianRong2, HAN Jie1, YANG XianYing1, WANG Yan1, Wang Bin1, LI Jian1
(1College of Life Science and Technology, Southwest Minzu University, Chengdu 610041;2Key Laboratory of Ministry of Education for Qinghai-Tibet Plateau Animal Genetic Resources Reservation and Exploitation, Chengdu 610041)
【Objective】 The aim of this study was to analyze the role of the lysine-specific histone demethylase 1A (KDM1A) in follicle development and oocyte maturation of yak. 【Method】 Taking yak follicles as research objects and according to the size of the follicles, they were divided into three groups: large-sized (6.0-9.0 mm), medium-sized (3.0-5.9 mm), and small-sized (1.0-2.9 mm) follicles. And the cumulus-oocyte complexes (COCs) were collected from each group and cultured in vitro. The maturation rate of oocytes was counted and analyzed. The total RNA was extracted from oocyte and granulosa cells in each group of follicles. The real time quantitative PCR (RT-qPCR) was used to detect the relative expression of1during follicular development. The cell localization and expression of KDM1A in yak follicle were detected by immunohistochemistry, and the correlation analysis was performed by in vitro maturation and RT-qPCR. 【Result】 The maturation rate of oocytes in vitro maturation was positively related to the size of follicles and showed a rising trend with progressing of follicular development. Meanwhile, the oocyte maturation rates of large-sized, medium-sized and small-sized follicle oocytes were 90.53 %, 88.10 % and 55.14 %, respectively. The result of RT-qPCR was found that1gene of yak was widely expressed during the development of follicles, and its expression level was significantly different in developmental stages of follicles. The relative expression of mRNA in the oocytes of the large and medium-sized follicle was significantly lower than small-sized follicles (< 0.05), but the relative expression of granulosa cells in the small-sized follicle was significantly lower than large and medium-sized (< 0.01), and there was no difference in mRNA expression levels between oocytes and granulosa cells in the large and middle-sized (> 0.05). The results of immunohistochemistry showed that KDM1A was expressed in granulosa cells and membrane cells of follicles, and its expression trend was consistent with RT-qPCR. The expression of KDM1A was the highest in the large follicle and increased with the development of follicles. 【Conclusion】 The expression levels of KDM1A mRNA and protein in oocytes and granulosa cells at the development of yak follicles were dynamic, which indicated that KDM1A played an important role in follicular development and oocyte maturation. It might be related to meiosis of oocytes and proliferation and differentiation of granulosa cells, and these results of study would provide a basic data for further research of the mechanism of KDM1A in the meiosis of yak oocytes.
yak;; immunohistochemistry; follicle; expression
2018-12-06;
2019-09-09
國家重點(diǎn)研發(fā)專項(xiàng)(2018YFD0502304)、牦牛遺傳資源保護(hù)與利用創(chuàng)新團(tuán)隊(duì)(13CXTD01)、青藏高原生態(tài)畜牧業(yè)協(xié)同創(chuàng)新中心開放基金(QZGYXT05)、西南民族大學(xué)研究生創(chuàng)新型科研項(xiàng)目(CX2018SZ34)
黃向月,E-mail:1036404671@qq.com。通信00作者李鍵,E-mail:jianli_1967@163.com。通信000作者熊顯榮,E-mail:xianrongxiong@163.com
(責(zé)任編輯 林鑒非)